文档库 最新最全的文档下载
当前位置:文档库 › 计算含参量反常积分的一些特殊方法

计算含参量反常积分的一些特殊方法

计算含参量反常积分的一些特殊方法
计算含参量反常积分的一些特殊方法

习题反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(. 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?.则当?∞ +a dx x f )(发散 时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散. 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

含参量积分汇总

第十九章含参量积分 一.填空题 1.若在矩形区域上_________,则 2.含参量反常积分 在____________上一致收敛. 3.设在上连续,若含参量反常积分 在上___________,则在上连续. 4. 5.在中如令, 则 6. 对于任何正实数函数与B函数之间的关系为 7. 在上不一致收敛是指______________. 8. 9. 设, 则 10. 利用函数定义, 二.证明题 1. 证明在上一致收敛. 2. 证明在上一致收敛. 3.证明若函数在连续, 则, 有

4.证明在上非一致收敛. 5.证明 6.证明在上一致收敛. 7. 证明在上不一致收敛. 8. 证明 9. 证明 10. 证明在R上连续. 计算题1. 求 2. 求 3.设. 求 4. 求 5.用函数与B函数求积分 6.用函数与B函数求积分 7.求积分 8.从等式出发, 计算积分 9.设. 求

10.求 填空题答案 1. 连续. 2. R 3. 一致收敛. 4. 5.. 6. . 7. , 有 8. 1 9. . 10. . 证明题答案: 1. 证明: , 有 , 而收敛, 则 在上一致收敛. 2. 证: , 有, 而, 则 在上一致收敛. 3证: 已知在连续, 使. 设, 有 于是,

4.证: , 有 . 即在上非一致收敛. 5.证: 设有 . 6.证: 由于反常积分收敛,函数对每个单调, 且对任何, 都有. 故由阿贝耳判别法可知 在上一致收敛. 7. 证: 因在处不连续, 而在 内连续, 由连续性定理知, 在上不一致收敛. 8. 证: 令, 则. 9. 证: 令则, . 10. 证:

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

含参量反常积分的一致收敛发判别法及推广汇总

含参量反常积分的一致收敛判别法及推广 作者:蒋碧希 指导老师:张海 摘要 本文主要介绍了含参量反常积分(含参量无穷限反常积分、含参量瑕积分)的基本概念、性 质.然后参照无穷限反常积分的方法建立了相应的含参量瑕积分的一致收敛性.最后结合例题说明其在解题中的应用. 关键词 含参量无穷限反常积分 含参量瑕积分 一致收敛 1 引言 对于含参量无穷限反常积分的基本概念、性质、一致收敛性判别法大部分教材都有详细论述.而忽视了含参量瑕积分的一致收敛性的判定,其实两者之间是同中有异的.本文主要参照无穷限反常积分的方法建立相应的含参量瑕积分的一致收敛判别法,并探究其在解题中的应用. 2 含参量无穷限反常积分的一致收敛判别法 2.1 含参量无穷限反常积分的定义 设函数(,)f x y 定义在无界区域{(,)|,}R x y a x b c y =≤≤≤≤+∞上,若对每一个固定的[,]x a b ∈,反常积分 (,)c f x y dy +∞ ? (1) 都收敛,则它的值是x 在[,]a b 上取值的函数,当这个函数为()I x 时,则有 ()(,),[,],c I x f x y dy x a b +∞ =∈? (2) 称(1)式为定义在[,]a b 上的含参量x 的无穷限反常积分,或简称含参量反常积分. 2.2 含参量反常积分的一致收敛概念 若含参量反常积分(1)与()I x 对任给的正数ε,总存在某一实数N c >,使得当M N >时,对一切[,]x a b ∈,都有 (,)()M c f x y dy I x ε-

(,)M f x y dy ε+∞ ,使得当M A A >21,时,对一切],[b a x ∈,都有 2 1 (,)A A f x y dy ε?ε,0>?M ,M A A >?21,时,使得],[b a x ∈?时,有 1 (,)2A f x y dy ε+∞ ?>?M ε,当M A A >21,时, 有 2 1 (,)A A f x y dy ε,总存在某一实数c M >,使得M A A >21,时,对一切 ],[b a x ∈,都有 2 1 (,)A A f x y dy ε

含参变量反常积分的几种计算方法

含参变量反常积分的几种计算方法 摘 要:含参变量反常积分是一类比较特殊的积分,由于它是函数又是以积分形式给出,所以它在积分计算中起着桥梁作用,并且计算难度较大,本文主要总结含参变量反常积分的几种方法,利用这几种方法,可以进行一系列的积分运算,这样可使含参变量反常积分运算更易理解和掌握。 关键词:含参变量反常积分 积分号下积分法 积分号下微分法 收敛因子 留数定理 在进行含参变量反常积分的运算时,首先要验证条件(包括确定含参变量及其变化范围,把问题归结为能利用含参变量反常积分运算性质的某一种,还要验证所用性质应满足的条件),在验证条件时,判别一致收敛至关重要,判别法通常采用魏尔斯特拉斯判别法、狄利克雷判别法、阿贝尔判别法、柯西判别准则或用定义判别,然而在验证一致收敛时并不简单,这使得含参变量反常积分的计算有一定的难度,经过验证后,就可以利用含参变量反常积分的性质具体进行运算。本人在学习过程中,通过大量的、不断的练习,进行探索和归纳,总结出几种含参变量反常积分的计算方法,这几种方法运算技巧强,便于理解和掌握,下面分述于后。 一 积分号下积分法 要对含参变量反常积分()(),y a g f x y dx +∞=? 实现积分号下求积分,须验证以下条件: (1) (),f x y 在,x a y c ≥≥上连续; (2) (),a f x y dx +∞? 在[),y c ∈+∞上内闭一致收敛,(),c f x y dx +∞ ? 在[),x a ∈+∞上内闭一致收敛; (3) (,)c a dy f x y dx +∞ +∞?? 及(),a c dx f x y dy +∞+∞ ?? 至少有一个收敛, 则 ()(),,a c c a dx f x y dy dy f x y dx +∞+∞ +∞ +∞ =?? ?? 例1 利用2 u e du +∞ -?u=x α令2 ()0 (0)x e dx ααα+∞ -?>?,求2 e d αα+∞ -?的值。 分析:2 x e dx +∞ -?这个积分在概率论中非常有用,它的值可以用多种方法求出,但在这里利用积 分号下积分法求解,是很值得借鉴的,而且须验证的条件又显然成立。 解:由已知,得()g α=2 ()0 x e dx αα+∞ -?是取常值的函数,记I=2 e d αα+∞ -?, 则 I 2=I 2 e d αα+∞ -?=2 Ie d αα+∞ -? =22 ()0 ()x e dx e d αααα+∞+∞ --??=2 2(1) x d e dx α αα+∞+∞ -+?? =2 2(1) x dx e d α αα+∞+∞ -+??= 201121dx x +∞+?=4π 故 二 积分号下微分法

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

含参量反常积分一致收敛的判别法

题目含参量反常积分一致收敛的判别法学生姓名 学号 系别数学系 年级2010级 专业数学与应用数学 指导教师 职称 完成日期

摘要 含参变量的反常积分是研究和表达函数的的有力工具。要更好的研究含参量反常积分所表达的函数,关键问题在于判断他的一致收敛性。本文通过研究判断含参量反常积分一致收敛的判别法,以帮助研究含参量反常积分所表达的函数。关键词:含参量反常积分;一致收敛;判别法

Abstract Improper integral with variable is the study and expression tool function. To better function of parameter improper integral expression of the key problem lies in the judgment, the uniform convergence of his. Through the study of judging function discriminant method of parameter improper integral converges uniformly to help the study of parameter improper integral expression. Key words: Improper integral with variable;uniform convergence; discriminant analysis

目录 1引言 (1) 2基本概念 (1) 2.1含参量反常积分 (1) 2.2含参量反常积分一致收敛 (2) 3含参量反常积分一致收敛的判别方法 (2) 3.1定义法 (2) 3.2柯西准则法 (3) 3.3变上限积分的有界性法 (3) 3.4确界法 (4) 3.5微分法 (5) 3.6级数判别法 (6) 3.7维尔斯特拉斯判别法(简称M判别法) (6) 3.8狄里克莱判别法 (8) 3.9阿贝尔判别法 (8) 4结束语 (1) 参考文献 (10) 致谢 (11)

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

含参量反常积分一致收敛性的判别法资料

含参量反常积分一致收敛的判别法 王 明 星 (德州学院数学科学学院,山东德州 253023) 摘 要: 含参量反常积分是研究和表达函数特别是非初等函数的有力工具.本文通过对含参量反常积分一致收敛性的分析和研究,总结出了判别含参量反常积分一致收敛的几种简单而有效的方法和定理(柯西准则,M 判别法,确界法,狄利克雷判别法等),从而方便了含参量反常积分一致收敛性的学习和掌握. 关键词: 含参量反常积分; 一致收敛; 判别法 含参量反常积分包括含参量无穷限反常积分和含参量无界函数反常积分,两种反常积分一致收敛性的判别法是相似的,所以我们下面仅仅讨论含参量无穷限反常积分一致收敛性的判别法. 1 含参量无穷限反常积分一致收敛的概念 1.1 含参量无穷限反常积分 设函数(,)f x y 定义在无界区域(){},,R x y a x b c y =|≤≤≤<+∞上,若对每一个固定的[],x a b ∈,反常积分 (,)c f x y dy +∞ ? 都收敛,则它的值是x 在[],a b 上取值的函数,当记这个函数为()I x 时,则有 ()(,)c I x f x y dy +∞=?,[],x a b ∈ 称(,)c f x y dy +∞? 为定义在[],a b 上的含参量无穷限反常积分. 1.2 含参量无穷限反常积分收敛 若含参量无穷限反常积分(,)c f x y dy +∞? 与函数()I x 对每一个固定的 [],x a b ∈,任给的正数ε,总存在某一实数N c >,使得M N >时,都有 (,)()M c f x y dy I x ε-

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

含参量反常积分答案

§2 含参量反常积分 一 一致收敛性及其判别法 设函数(,)f x y 定义在无界区域{(,)|,}R x y x I c y =∈≤<+∞上,其中I 为一区间,若对固定的x I ∈,反常积分 (,)c f x y dy +∞ ? (1) 都收敛,则它的值是x 在I 上取值的函数,当记这个函数为()x φ时,则有 ()(,),c x f x y dy x I φ+∞ =∈? , (2) 称(1)式为定义在I 上的含参量x 的无穷限反常积分,或简称含参量反常积分。 如同反常积分与数项级数的关系那样,含参量反常积分与函数项级数在所研究的问题与论证方法上也极为相似。 首先引入含参量反常积分的一致收敛概念及柯西准则。 定义1 若含参量反常积分(1)与函数()x φ对任何的正数ε。总存在某一实数N c >,使得当M N >时,对一切x I ∈。都有 (,)()c f x y dy x φε+∞ -,使得当1 2 ,M A A >时,对一切x I ∈, 都有 1 2 (,)A f x y dy A ε),但在()0,+∞内不一致收敛。

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

第十一章反常积分习题课教学总结

第十一章 反常积分习题课 一 概念叙述 1.叙述()dx x f a ? +∞ 收敛的定义. 答: ()dx x f a ? +∞ 收敛? ()()lim +∞ →+∞=? ? u a a u f x dx f x dx 存在. ?()lim 0+∞ →+∞=?u u f x dx . ?()()0,0,,εε+∞ ?>?>?>-?>?>?>当δ<<+a u a , 有()()ε-,存在0M >,只要12,u u M >, 便有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ,存在0δ>,只 要()12,,u u a a ∈+δ,总有 ()()()2 1 2 1 b b u u u u f x dx f x dx f x dx -=<ε??? . 二 疑难问题 1.试问 ? +∞ a dx x f )(收敛与0)(lim =+∞ →x f x 有无联系? 答:首先,0)(lim =+∞ →x f x 肯定不是 ? +∞ a dx x f )(收敛的充分条件,例如01 lim =+∞→x x ,但 ? +∞ 11 dx x 发散.那么0)(lim =+∞→x f x 是否是?+∞a dx x f )(收敛的必要条件呢?也不是!例如 ? +∞ 1 2 sin dx x ,?+∞ 1 2 cos dx x ,? +∞ 1 4sin dx x x 都收敛,因为前两个无穷积分经换元2t x =得

第5章换元法与分部积分法,反常积分习题集及答案

第五章 习题二 换元法与分部积分法,反常积分 一.选择题 1.设2]2,0[)(C x f ∈,0)0(=f ,4)2(=f ,2)2(='f ,则=''?dx x f x )2(1 0( A ) (A)0; (B)1; (C)2; (D)4. 2.设)(x f 连续,则 =+?b a dy y x f dx d )(( B ) (A)?+'b a dy y x f )(;(B))()(a x f b x f +-+;(C))(a x f +;(D))(b x f +. 3.下列反常积分中收敛的是( D ) (A)dx x ?∞ +1 1; (B)dx x ? 1 031 ; (C)dx x ?101; (D)dx x ?∞+121. 4.下列反常积分中收敛的是( C ) (A)?∞ +e dx x x ln ; (B)?∞+e dx x x ln 1 ; (C)?∞+e dx x x 2) (ln 1; (D)?∞+e dx x x 2 1)(ln 1 . 5.对于反常积分?∞ +1 ln x x dx p ,下列结论正确的是( D ) (A)当1>p 时收敛; (B)p 取任意实数都收敛; (C)当1

相关文档