文档库 最新最全的文档下载
当前位置:文档库 › 线性代数试题及答案

线性代数试题及答案

线性代数试题及答案
线性代数试题及答案

线性代数试题及答案 The Standardization Office was revised on the afternoon of December 13, 2020

(试卷一)

一、

填空题(本题总计20分,每小题2分)

1. 排列7623451的逆序数是_______。

2. 若

122

21

12

11=a a a a ,则=1

6

030

322211211a a a a 3. 已知n 阶矩阵

A 、

B 和

C 满足E ABC =,其中E 为n 阶单位矩阵,则

CA

B =-1。

4. 若

A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是

_________ 5. 设

A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为

__2___________。

6. 设A 为三阶可逆阵,???

?

? ??=-1230120011

A

,则=*A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是

8.已知五阶行列式1

23453

201

111111

2

1403

54321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)

T

-的模(范数)______________

。 10.若()

T

k 11=α与()

T

121-=β正交,则=k

二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D)

A.s r

=

B.s r ≤

C.r s

D.r s <

2. 若A 为三阶方阵,且

043,02,02=-=+=+E A E A E A ,则=A (A)

A.8 B.8-

C.

3

4

D.3

4-

3.设向量组A 能由向量组B 线性表示,则( d )

A.)()(A R B R ≤

B.)()(A R B R <

C.)()

(A R B R = D.)()(A R B R ≥

4. 设n 阶矩阵

A 的行列式等于D ,则

()

*

kA 等于_____。c

)

(A *kA )(B *A k n )(C *-A k n 1 )(D *A

5. 设n 阶矩阵

A ,

B 和

C ,则下列说法正确的是_____。

)

(A AC AB = 则 C B = )(B 0=AB ,则0=A 或0=B

)(C T T T

B A AB =)( )(D 22))((B A B A B A -=-+

三、计算题(本题总计60分。1-3每小题8分,4-7每小题9分)

1. 计算n 阶行列式22221 =D 22222 22322 2

12

2

2-n

n 2

222

2.设A 为三阶矩阵,*

A 为A 的伴随矩阵,且2

1=

A ,求*

A A 2)3(1--.

3.求矩阵的逆

111211120A ?? ?=- ? ???

4. 讨论λ为何值时,非齐次线性方程组2

123123123

1x x x x x x x x x λλλλλ?++=?

++=??++=?

① 有唯一解; ②有无穷多解; ③无解。

5. 求下非齐次线性方程组所对应的齐次线性方程组的基础解系和此方程组的通解。

???

??=++=+++=+++5

221322431

43214321x x x x x x x x x x x

6.已知向量组()T 32011=α、()T

53112=α、()T

13113

-=α、

()T 94214=α、()

T

52115=α,求此向量组的一个最大无关组,并把其余向量用该最大无

关组线性表示.

7. 求矩阵???

?

?

??--=201034011A 的特征值和特征向量.

四、证明题(本题总计10分)

设η为

b AX =()0≠b 的一个解,12

,n r ξξξ-为对应齐次线性方程组0=AX 的基础解系,证明

12,,n r ξξξη-线性无关。

(答案一)

一、填空题(本题总计20分,每小题 2 分)

1~15;2、3;3、CA ;4、()n b A R A R ==),(;5、2;6、???

?

?

??123012001;7、()n A R <;8、0;9、3;10、1。.二、选择题

(本题总计 10 分,每小题 2分 1、D ;2、A ;3、D ;4、C ;5、B 三、计算题(本题总计60分,1-3每小题8分,4-7他每小题9分)

1、

解:D

),,4,3(2n i r r i =-00021 00022 00122

03022-n 2

00

22-n ------3分

122r r - 00001 00022 - 00122 - 030

22--n

2

0022

--n -------6分

)!2(2)2()3(21)2(1--=-?-????-?=n n n ----------8分

(此题的方法不唯一,可以酌情给分。)

解:(1)???

?

? ??---????? ??-????? ??--=-1111111112412131121111111

111

2A AB ------1分

????? ??---????? ??=222222222

602222464?

????

?

?=420004242------5分 (2)????? ??--????? ??--=-171111610239511311

1311

2

2B A ?

???? ?

?-------=161287113084--------8分 3. 设A 为三阶矩阵,*

A 为A 的伴随矩阵,且

2

1=

A ,求*

A A 2)3(1--. 因*

A A =

E E 2

1

=

A ,故411=

=-n A *A

3分

**

A A A

211==

-A 5分 27164

1

34342322)3(3

1

-=??? ??-=-=-=--****

A A A A A 8分

4、解: ????? ??---=100111010011

001001),(E A 1

31

2r r r r ++???

?

? ??---10111001101000100

1---3分 23r r +????? ??---112100011010001001)1()1()1(321-÷-÷-÷r r r ?

??

?? ??------11210001101000

1001---6分

故?

???

? ??------=-11201100

11

A -------8分 (利用*-=A A A 11公式求得结果也正确。)

5、解;???

?? ??=2111

1111),(λλλλλb A 13

123

1r

r r r r r λ--?????

?

??------322

2111011011λλλλλλλλλ23r r + ????

? ??-+-+---)1()1()1)(2(00110112

2

2

λλλλλλλλλλ---------3分

(1)唯一解:3),()

(==b A R A R 21-≠≠λλ且 ------5分 (2)无穷多解:3),()(<=b A R A R 1=λ --------7分

(3)无解:),()

(b A R A R ≠ 2-=λ --------9分 (利用其他方法求得结果也正确。)

6、解:????

?

??=522011113221111),(b A ?→?

r ?????

??---000003111052201--------3分 ???=--=++0022432

431x x x x x x 基础解系为 ?

?

???

?

? ??-=01121ξ,???????

??-=10122ξ-----6分 ???-=--=++3522432431x x x x x x 令043==x x ,得一特解:?????

?

? ??-=0035η---7分 故原方程组的通解为:

????

??

? ??-+??????? ??-+??????? ??-=++101201120035212211k k k k ξξη,其中R k k ∈21,---9分(此题结果表示不唯一,只要正确可以给分。)

7、解:特征方程

2110430(2)(1)1

2A E λ

λλλλλ

---=--=--- 从而1232,1λλλ=== (4分)

当12λ=时,由(2)0A E X -=得基础解系1(0,0,1)T ζ=,即对应于12λ=的全部特征向量为11k ζ1(0)k ≠ (7分) 当2

31λλ==时,由()0A E X -=得基础解系2(1,2,1)T ζ=--,即对应于231λλ==的全部特征向量为22k ζ2(0)k ≠

四、证明题(本题总计10 分) 证: 由12,n r ξξξ-为对应齐次线性方程组0=AX 的基础解系,则12

,n r ξξξ-线性无关。(3分)

反证法:设12

,,n r ξξξη-线性相关,则η可由12

,n r ξξξ-线性表示,即:r r ξλξλη++= 11 (6分)

因齐次线性方程组解的线性组合还是齐次线性方程组解,故η必是0=AX 的解。这与已知条件η为b AX =()0≠b 的一个解相

矛盾。(9分). 有上可知,12

,,n r ξξξη-线性无关。(10分)

(试卷二)

一、填空题(本题总计 20 分,每小题 2 分) 1. 排列6573412的逆序数是 .

2.函数

()f x = 21112

x

x x

x x

---中3

x 的系数是 .

3.设三阶方阵A 的行列式

3A =,则*1()A -= A/3 .

4.n 元齐次线性方程组AX=0有非零解的充要条件是 .

5.设向量(1,2,1)T

α=--,β=????

? ??-22λ正交,则λ= .

6.三阶方阵A 的特征值为1,1-,2,则

A = .

7. 设1

121021003A --??

?=- ?

???

,则_________A *=. 8. 设

A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为

_____________. 9.设A 为n 阶方阵,且

A =2 则1*1

()3

A A --+= .

10.已知20022311A x -?? ?= ? ???相似于12B y -??

?

= ? ??

?

,则=x ,=y .

二、选择题(本题总计 10 分,每小题 2 分)

1. 设n 阶矩阵A 的行列式等于D ,则A -5等于 .

(A) (5)n

D - (B)-5D (C) 5D (D)1(5)n D --

2. n 阶方阵

A 与对角矩阵相似的充分必要条件是 . (A) 矩阵A 有n 个线性无关的特征向量 (B) 矩阵A 有n 个特征值 (C) 矩阵A 的行列式0A ≠

(D) 矩阵

A 的特征方程没有重根

3.A 为m n ?矩阵,则非齐次线性方程组AX b =有唯一解的充要条件是 .

(A)(,)R A b m < (B)()R A m < (C)()(,)R A R A b n =

= (D)()(,)R A R A b n =<

4.设向量组A 能由向量组B 线性表示,则( ) (A).)()(A R B R ≤

(B).)()(A R B R <

(C).)()(A R B R =

(D).)()(A R B R ≥

5. 向量组12,,,s ααα线性相关且秩为r ,则 .

(A)r s = (B) r s < (C) r s > (D) s r ≤

三、计算题(本题总计 60 分,每小题 10 分)

1. 计算n 阶行列式: 22221 =D 22222 22322 2

12

2

2-n

n 2

222

.

2.已知矩阵方程AX A X =+,求矩阵X ,其中220213010A ??

?

= ? ???

.

3. 设n 阶方阵

A 满足0422=--E A A ,证明3A E -可逆,并求1

(3)

A E --.

4.求下列非齐次线性方程组的通解及所对应的齐次线性方程组的基础解系:

12341234

123423423

23883295234

x x x x x x x x x x x x x x x +++=??-++=??

-+--=-??--=-? 5.求下列向量组的秩和一个最大无关组,并将其余向量用最大无关组线性表示.

123421234,1,3,5.2012αααα????????

? ? ? ?

==== ? ? ? ? ? ? ? ?????????

6.已知二次型:3231212

32221321844552),,(x x x x x x x x x x x x f --+++=,

用正交变换化),,(321x x x f 为标准形,并求出其正交变换矩阵Q .

四、证明题(本题总计 10 分,每小题 10 分)

设1

1b a =, 212b a a =+ , , 12r r b a a a =+++, 且向量组r a a a ,,,21 线性无关,证明向量

组r b b b ,,,21 线性无关.

(答案二)

一、填空题(本题总计 20 分,每小题2 分)

1. 17

2. -2 3.13A 4.()R A n <5.2λ=-6.-27.116

A -或12110216003-??

??-??????

8. 29、

21n

)(-10、2,0-==y x 二、选择题(本题总计 10 分,每小题 2 分)1. A 2. A 5. B 三、计算题(本题总计 60 分,每小题 10分)

1、

解:D

),,4,3(2n i r r i =-00021 00022 00122

03022-n 2

00

22

-n ------4分

122r r - 00001 00022 - 00122 - 030

22--n

2

0022

--n -------7分

)!2(2)2()3(21)2(1--=-?-????-?=n n n ---------10分(此题的方法不唯一,可以酌情给分。)

2.求解

AX A X =+,其中

220213010A ??

?

= ? ???

解:由AX

A X =+得

()1

X A E A -=- (3分)

()120220,203213011010A E A ?? ?

-= ? ?-?? (6分)

100226010203001213r

-??

?- ? ?--??

(8分)

所以 226203213X -?? ?

=- ? ?--??

(10分)

3.解:利用由0422

=--E A A

可得:0))(3(=-+-E E A E A --------5分

即 E E A E A =+-)

)(3( ------7分 故E A 3-可逆且)()3(1E A E A +=----------10分

4.求下列非齐次线性方程组的通解及所对应的齐次线性方程组的基础解系.

12341234

123412323

238832295234

x x x x x x x x x x x x x x x +++=??-++=??

-+--=-??--=-? 解:111

2321388()3219501234A b ?? ?-

?= ?---- ?---??1112301234001120

0000r ??

?

--- ?

? ?

??

(2分)

1

002101010001120

0000r ??

?

- ? ? ???

(4分)则有 142434

2102

x x x x x x +=??

-=??+=? (6分)

取4x 为自由未知量,令4x c =,则通解为:12

3421101210x x c x x -?????? ? ? ? ? ? ?=+

? ? ?- ? ? ? ?

??????

c R ∈ (8分) 对应齐次线性方程组的基础解系为:2111-??

? ?

?- ???

(10分)

5.求下列向量组的秩和一个最大无关组,并将其余向量用最大无关组线性表示.

123421234,1,3,5.2012αααα???????? ? ? ? ?

==== ? ? ? ? ? ? ? ?????????

解:

()1234αααα=212321232123413501110111201201110000??

????

?

? ?--- ? ? ? ? ? ?---??????

1101201110000??

? ? ? ? ???

(2分) 12,αα为一个极大无关组. (4分) 设 31122x x ααα=+, 41122y y ααα=+

解得 1

2

121x x ?

=???=?, 1211y y =??

=?. (8分) 则有 31212ααα=+, 412ααα=+ 6 解

3

231212

32221321844552),,(x x x x x x x x x x x x f --+++=

f 的矩阵 ????

??????----=542452222

A (2分)A 的特征多项式 )10()1()(2---=λλλ? (4分)

121==λλ的两个正交的特征向量 ??????????=1101p , ??????????-=1142p 103=λ的特征向量 ??

??

?

?????-=2213p

正交矩阵 ????

????

?

?--=32

23121322312

1312340

Q 8分) 正交变换y Q x =:标准形2

32221

10y y y f ++= 四、证明题(本题总计 10分)若设,2121211,,,r r a a a b a a b a b +++=+== 且向量组r a a a ,,,21 线性无关,证明

向量组r b b b ,,,21 线性无关. 证明:设存在12λ,λ,,λr R ∈,使得 1122r r b +b +

+b =0λλλ 也即

1121212()()0r r a a a a a a λλλ+++++= 化简得 12122()()0r r r r a a a λλλλλλ++++++++=

又因为

12,,

,r

a a a 线性无关,则1220

r r r λλλλλλ++

+=??++=??

??=?

(8分)解得 120r λλλ====

所以,12r b , b ,, b 线性无关.

同济大学线性代数第六版答案(全)

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

同济大学线性代数期末考试试题(多套)

微 信 公 众 号 : 学 习 资 料 杂 货 铺 同济大学课程考核试卷(A 卷) 2009—2010学年第一学期 一、填空题(每空3分,共24分) 1、 设1α、2α、3α均为3维列向量,已知矩阵 123(,,)A ααα=, ()123123123927,248B ααααααααα=++++++,3,且1A =,那么B = -12 . 2、 设分块矩阵A O C O B ?? =? ??? , ,A B 均为方阵,则下列命题中正确的个数为4 . (A).若,A B 均可逆, 则C 也可逆. (B).若,A B 均为对称阵, 则C 也为对称阵. (C).若,A B 均为正交阵, 则C 也为正交阵. (D).若,A B 均可对角化, 则C 也可对角化. 3、 设23413 451 45617891 D = ,则D 的第一列上所有元素的代数余子式之和为 0. 4、 设向量组(I):12,,,r αααL 可由向量组(II):12,,,s βββL 线性表示,则 D 成立.(注:此题单选) (A).当r s <时,向量组(II)必线性相关 (B).当r s >时,向量组(II)必线性相关 (C).当r s <时,向量组(I)必线性相关 (D).当r s >时,向量组(I)必线性相 关 5、 已知方阵A 满足2 23A A O +=, 则() 1 A E ?+= E+2A . 6、 当矩阵A 满足下面条件中的 ABC 时,推理“若AB O =, 则B O =”可成立. (注:此题可多选) (A).A 可逆(B).A 为列满秩(即A 的秩等于A 的列数) (C).A 的列向量组线性无关 (D).A O ≠7、 设矩阵,A B 分别为3维线性空间V 中的线性变换T 在某两组基下的矩阵,已知1,2?为 A 的特征值, B 的所有对角元的和为5, 则矩阵B 的全部特征值为 1,-2,6 . 8、 设n J 是所有元素均为1的n 阶方阵(2n ≥),则n J 的互不相同的特征值的个数为2 . 二、(10分)已知矩阵200011031A ????=??????,100052021B ????=??????, 112101030C ???? =??????? .

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

渤海大学 线性代数试题 期末考试试卷及参考答案

渤海大学20 级 专科 (机电一体化技术专业) 第二学期《线性代数》试卷 题号 一 二 三 四 五 六 总分 得分 一、 填空:(每空2分,共20分) (1) _________3 412=。 (2)_________40 00 03000020 00011 =????? ???? ???- (3) _________4 00 083005 720604 1= (4)_________11211120122431210133=???? ??????-+??????????- (5)若__________ 5032==??? ? ??=A A A T 则 (6)=+-==-=32132127) ,5, 2( ,)1 ,2 ,4( , )2 ,1 ,1(αααααα则有=_______ (7)1 2111-??? ? ??=____________。 (8)若A=???? ??????333222321则A 的列向量组为____________若r(A)=2,则列 向量组的秩为________。 二、选择题: (每题2分,共10分) (1) 设==≠==2 2 2 333 1 1113 3 3 222 111 222222222D ,0c b a c b a c b a k c b a c b a c b a D 则( ) (a)-2k (b)2k (c)-8k (d)8k (2)n 阶行列式D 的元素ij a 的余子式ij M 和代数余子式ij A 的关系为( ) ij ij A M a -=)( ij n ij A M b )1()(-= ij ij A M c =)( ij j i ij A M d +-=)1()( (3)E C B A 、、、为同阶矩阵,且E 为单位阵,若E ABC =,下式( )总是成立的。 E BCA a =)( E ACB b =)( E CBA c =)( E CAB d =)( (4)), (=κ下列方程组有唯一解。 ?? ?? ?? ?---=--=-=--=++)1)(3()1(32213332321k k x k k x k x x k x x x 2)(a 1)( 4)( 3)( -d c b (5)设A 是n m ?矩阵,0=AX 是非齐次线性方程组B AX =所对应的齐次线性方程组,则下列 结论正确的是( ) 有唯一解。仅有零解,则若B AX AX a ==0)( 有无穷多解。非零解,则若B AX AX b ==0)( 仅有零解。有无穷多解,则若0)(==AX B AX c 有非零解。有无穷多解,则若0)(==AX B AX d 三、 简单计算(每题8分,共24分) (1)1 3 042 241 -- (2) ???? ? ??? ????????-021012 7011011 得分 阅卷人 得分 阅卷人 得分 阅卷人

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数期末考试试卷答案

线性代数期末考试题样卷 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, ,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,,Λ21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, ,Λ21中任意两个向量都线性无关 ② s ααα,, ,Λ21中存在一个向量不能用其余向量线性表示 ③ s ααα,, ,Λ21中任一个向量都不能用其余向量线性表示

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

上海财经大学《 线性代数 》课程考试卷(B)及答案

诚实考试吾心不虚 ,公平竞争方显实力, 考试失败尚有机会 ,考试舞弊前功尽弃。 上海财经大学《 线性代数 》课程考试卷(B )闭卷 课程代码 105208 课程序号 姓名 学号 班级 一、单选题(每小题2分,共计20分) 1. 当=t 3 时,311244s t a a a a 是四阶行列式中符号为负的项。 2. 设A 为三阶方阵,3A = ,则* 2A -=__-72__。 3. 设矩阵01000 01000010 00 0A ????? ?=?????? ,4k ≥,k 是正整数,则=k P 0 。 4. 设A 是n 阶矩阵,I 是n 阶单位矩阵,若满足等式2 26A A I +=,则 () 1 4A I -+= 2 2A I - 。 5. 向量组()()()1,2,6,1,,3,1,1,4a a a +---的秩为1,则 a 的取值为__1___。 6. 方程组1243400x x x x x ++=??+=? 的一个基础解系是 ???? ? ? ? ??--??????? ??-1101,0011 。 7. 设矩阵12422421A k --?? ?=-- ? ?--??,500050004A ?? ? = ? ?-?? ,且A 与B 相似,则=k 4 。 …………………………………………………………… 装 订 线…………………………………………………

8. 123,,ααα是R 3 的一个基,则基312,,ααα到基12,αα,3α的过渡矩阵为 ???? ? ??001100010 。 9. 已知413 1 210,32111 a A B A A I -===-+-, 则B 的一个特征值是 2 。 10. 设二次型222 12312132526f x x x tx x x x =++++为正定, 则t 为 5 4||< t 。 二.选择题(每题3分,共15分) 1. 设A 为n 阶正交方阵,则下列等式中 C 成立。 (A) *A A =; (B)1*A A -= (C)()1T A A -=; (D) *T A A = 2. 矩阵 B 合同于145-?? ? - ? ??? (A) 151-?? ? ? ??? ; (B )????? ??--321;(C )???? ? ??112;(D )121-?? ? - ? ?-?? 3. 齐次线性方程组AX O =有唯一零解是线性方程组B AX =有唯一解的( C )。 (A )充分必要条件; (B )充分条件; (C )必要条件; (D )无关条件。 4.设,A B 都是n 阶非零矩阵,且AB O =,则A 和B 的秩( B )。 (A )必有一个等于零;(B )都小于n ;(C )必有一个等于n ;(D )有一个小于n 。 5.123,,ααα是齐次线性方程组AX O =的基础解系,则__B___也可作为齐次线性方程组 AX O =的基础解系。 (A) 1231231222,24,2αααααααα-+-+--+ (B )1231212322,2,263αααααααα-+-+-+

大一线性代数期末考试试卷

线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( ) 。 ① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

刘三阳线性代数第二版第一章标准答案

刘三阳线性代数第二版第一章答案

————————————————————————————————作者:————————————————————————————————日期:

第一章矩阵及其应用习题解答 本章需要掌握的是: 1)矩阵的定义,以及矩阵的运算(加、减、数乘和乘法); 2)方阵的幂和多项式,以及矩阵转置的性质; 3)逆阵的定义,以及逆阵的4条性质; 4)分块矩阵的运算规则; 5)矩阵的三种初等变换及行阶梯矩阵和行最简矩阵; 6)三种初等矩阵,以及定理1.4(左乘行变,右乘列变)、1.5、1.6和1.7;7)求逆阵的方法:定义法和初等变换法。 1、设方阵A满足,求。 题型分析:此类题型考核的知识点是逆阵的定义,即。因此无论题中给出的有关矩阵A的多项式(如本题是)多么复杂,只 需要把该多项式配方成“(所求逆的表达式)*(配方后的因子)=E”即可,即本题是要配成(A-E)*(?)=E。 解: %配出2003A可提取的(A-E) %配出1998可提取的(A-E) %提取公因式(A-E) %将只有单位阵的那一项移至等式右端 %写成“AB=BA=E”的形式

%由逆阵定义可知 巩固练习:教材第38页第13题 2、设,求。其中k为正整数。 题型分析:此类题型考核的知识点是矩阵的乘法和幂运算。解题思路为依次计算 最多到,通常这时已经可以看出规律,依此规律解题即可。 解:,,因此推论,用数学归纳法证明如下: 1)当k=1时,成立; 2)假设当k=n-1时,上式成立,即,则有 当k=n时,也成立。 所以 巩固练习:教材第41页二、填空题(3) 3、设A=E-uu T ,E为n阶单位阵,u为n维非零列向量,u T 为u的转置,证明:1)A2=A的充要条件是u T u=1; 2)当u T u=1时,A是不可逆的。 题型分析:这道题综合了矩阵这一章的大部分知识点,是个综合题,对于刚学了第一章的同学们来说也是一道难题。解题思路首先要明确u为n为非零向量是指u是一个只有一行 或一列的矩阵,题中有即告诉我们u是一个n*1阶列矩阵即列向量。

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

线性代数练习题及答案精编

线性代数练习题 一 选择题 1B A ,都是n 阶矩阵,且0=AB , 则必有:( ) (A) 0A =或0=B . (B) 0A B == . (C) 0=A 或.0=B (D) 0A B == 2设1011,1101a b c d -??????= ??? ?-?????? 则a b c d ?? = ???( ) (A)01. 11?? ?-?? (B)11. 10-?? ??? (C)11. 11-?? ??? (D)11. 01?? ?-?? 3若 A 为n m ?矩阵,且n m r A R <<=)(则( )必成立. (A )A 中每一个阶数大于r 的子式全为零。 (B )A 是满秩矩阵。 (C )A 经初等变换可化为??? ? ??000r E (D )A 中r 阶子式不全为零。 4 向量组 s ααα ,,21,线性无关的充分条件是( ) (A ) s ααα ,,21均不是零向量. (B ) s ααα ,,21中任一部分组线性无关. (C ) s ααα ,,21中任意两个向量的对应分量都不成比例. (D ) s ααα ,,21中任一向量均不能由其余S-1个向量线性表示. 5 齐次线性方程组0AX =是非齐次线性方程组AX B =的导出组,则( )必定成立. (A )0AX =只有零解时, AX B =有唯一解. (B )0AX =有非零解时, AX B =有无穷多解. (C )α是θ=AX 的任意解,0γ 是AX B =的特解时,0γα+是AX B =的全部解. (D )12γγ,是AX B =的解时, 21γγ+ 是0AX =的解. 6若θ≠B ,方程组B AX =中, 方程个数少于未知量个数,则有( )

大学线性代数期末考试试题

大学线性代数期末考试试 题 The Standardization Office was revised on the afternoon of December 13, 2020

a 0 0 一、选择题 线性代数测试 a 1 b 1 c 1 c 1 b 1 + 2c 1 a 1 + 2b 1 + 3c 1 1. 设行列式 D = a 2 b 2 c 2 ,则 D 1 = c 2 b 2 + 2c 2 a 2 + 2b 2 + 3c 2 = ( ) A. - D a 3 b 3 c 3 B. D c 3 C. 2D b 3 + 2c 3 a 3 + 2b 3 + 3c 3 D. - 2D 2. 下列排列是偶排列的是 . (A )13524876; (B )51324867; (C )38124657; (D )76154283. 3. 设 A m ?s , B t ?n , C s ?t ,则下列矩阵运算有意义的是( ) A. ACB ; B. ABC ; C. BAC ; D. CBA . 4. 设 A 是n 阶方阵, A 经过有限次矩阵的初等变换后得到矩阵 B ,则有() A. A = B ; B. A ≠ B ; C. R ( A ) = R (B ) ; D. R ( A ) ≠ R (B ) . 5. 设 A 是 4×5 矩阵, A 的秩等于 3,则齐次线性方程组 Ax = 0 的基础解系中所含解向量的个数为( ) A. 4 B.5 C.2 D.3 6. 向量组a 1 , a 2 , , a m ( m ≥ 2 )线性相关,则( ). A. a 1 , a 2 , , a m 中每一个向量均可由其余向量线性表示; B. a 1 , a 2 , , a m 中每一个向量均不可由其余向量线性表示; C. a 1 , a 2 , , a m 中至少有一个向量可由其余向量线性表示; D. a 1 , a 2 , , a m 中仅有一个向量可由其余向量线性表示. ? a b + 3 0 ? ? 7. 矩阵 A = a - 1 a 0 ? 为正定矩阵,则 a 满足 . ? ? ? 1 1 (1) a > 2 ; (B ) a > ; (C ) 2 a < ; (D )与b 有关不能确定. 2 8. 设 A , B 均为 n 阶方阵,并且 A 与 B 相似,下述说法正确的是 . (A ) A T 与 B T 相似; (B ) A 与 B 有相同的特征值和相同的特征向量; (C ) A -1 = B -1 ; (D )存在对角矩阵 D ,使 A 、 B 都与 D 相似. 二、判断题 1、如果n (n > 1) 阶行列式的值等于零,则行列式中必有两行元素对应成比例。 2、设向量组的秩为 r ,则向量组中任意 r 个线性无关的向量都是其极大无关组。 3、对 A 作一次初等行变换相当于在 A 的右边乘以相应的初等矩阵。 4、两个向量α1 ,α2 线性无关的充要条件是α1 ,α2 对应成比例. 5、若 A 是实对称矩阵,则 A 一定可以相似对角化. 三、填空题

(完整版)线性代数(经管类)考试试卷及答案(一)

高等教育自学考试全国统一命题考试 线性代数(经管类)优化试卷(一) 说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式. 一、单项选择题(本大题共10小题。每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分. 1.设A为3阶方阵,且|A|=2,则| 2A-l | ( ) A.-4 B.-1 C.1 D.4 2.设矩阵A=(1,2),B=,C=,下列矩阵运算中有意义的是( ) A.ACB B.ABC C.BAC D.CBA 3.设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是( ) A.A+A T B.A - A T C.A A T D.A T A 4.设2阶矩阵A= ,则A*= ( ) 5.矩阵的逆矩阵是()

6.设矩阵A=,则A中( ) A.所有2阶子式都不为零 B.所有2阶子式都为零 C.所有3阶子式都不为零 D.存在一个3阶子式不为零 7.设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( ) A.A的列向量组线性相关 B.A的列向量组线性无关 C.A的行向量组线性相关 D.A的行向量组线性无关 8.设3元非齐次线性方程组Ax=b的两个解为,且系数矩阵A的秩r(A)=2,则对于任意常数k,k1,k2,方程组的通解可表为( ) 9.矩阵的非零特征值为( ) A.4 B.3 C.2 D.l

10.4元二次型的秩为( ) A.4 B.3 C.2 D.l 二、填空题(本大题共10小题.每小题2分.共20分) 请在每小题的空格中填上正确答案.错填、不填均无分. 11.若i=1,2,3,则行列式=_________________。 12.设矩阵A= ,则行列式|A T A|=_______________。 13.若齐次线性方程组有非零解,则其系数行列式的值为__________________。 14.设矩阵A= ,矩阵B=A – E,则矩阵B的秩r(B)=______________。15.向量空间的维数为_______________。 16.设向量,则向量的内积=_______________。 17.设A是4×3矩阵,若齐次线性方程组Ax=0只有零解,则矩阵A的秩r(A)=____________。 18.已知某个3元非齐次线性方程组Ax=b 的增广矩阵经初等行变换化为: ,若方程组无解,则a的取值为___________。19.设3元实二次型f ( x1 , x2 , x3 ) 的秩为3,正惯性指数为2,则此二次型的规范形式_____________。 20.设矩阵A= 为正定矩阵,则a的取值范围是_______________。三、计算题(本大题共6小题,每小题9分.共54分)

北京邮电大学版 线性代数 课后题答案

习题 三 (A 类) 1. 设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3. 解:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1+2α2-α3=(3,3,0)+(0,2,2)-(3,4,0)=(0,1,2) 2. 设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α3=(4,1,-1,1).求α. 解:由3(α1-α)+2(α2+α)=5(α3+α) 整理得:α=1 6(3α1+2α2-5α3),即α=16 (6,12,18,24) =(1,2,3,4) 3.(1)× (2)× (3)√ (4)× (5)× 4. 判别下列向量组的线性相关性. (1)α1=(2,5), α2=(-1,3); (2) α1=(1,2), α2=(2,3), α3=(4,3); (3) α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2); (4) α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1). 解:(1)线性无关;(2)线性相关;(3)线性无关;(4)线性相关. 5. 设α1,α2,α3线性无关,证明:α1,α1+α2,α1+α2+α3也线性无关. 证明:设 112123123()()0,k k k αααααα+++++= 即 123123233()()0.k k k k k k ααα+++++= 由123,,ααα线性无关,有 123233 0,0,0.k k k k k k ++=?? +=??=? 所以1230, k k k ===即 112123,,αααααα+++线性无关. 6.问a 为何值时,向量组 '''123(1,2,3),(3,1,2),(2,3,)a ααα==-= 线性相关,并将3α用12,αα线性表示. 解: 1 3 2 2137(5),32A a a =-=-当a =5时, 312111.77ααα= +

相关文档
相关文档 最新文档