文档库 最新最全的文档下载
当前位置:文档库 › 空气动力学考试题与答案

空气动力学考试题与答案

空气动力学考试题与答案
空气动力学考试题与答案

(1~6)

一、概念

1、理想流体:忽略粘性的流体。

2、粘性:当流体各流层间发生相对滑移时,流体内部表现出阻碍这种相对滑移的性质。

3、完全气体:忽略气体分子的体积,忽略分子间引力和斥力,忽略碰撞完全弹性。

4、等温压缩系数:在可逆定温过程中,压力每升高一个单位体积的缩小率。

5、绝热压缩系数:在可逆绝热过程中,压力每升高一个单位体积的缩小率。

6、热胀系数:在准平衡等压过程中,温度每升高一个单位体积的膨胀率。

7、功率系数:风(空气)实际绕流风机后,所产生的功率与理论最大值P max=1/2ρV02A之比。

8、贝兹极限:功率系数的最大值,其数值为0.593。

9、弦长:前、后缘点所连接直线段的长度。

10、骨架线(中轴线):风力机叶片截面上内切圆圆心的连线。

11、弯度、最大弯度:中轴线与几何弦长的垂直距离称为弯度;中轴线上各点弯度不同,其中最大值为最大弯度。

12、拱度、最大拱度:截面上弦的垂线与轮廓线有两个交点,这两个交点之间的距离称为拱度;截面上弦的垂线上的拱度不同,其中最大值为最大拱度。13、NACA4412:“NACA”,美国航空总局标志;第一个“4”,表示最大弯度出现在弦上距前缘点4/10弦长处;第二个“4”,表示最大弯度为弦长的4%;“12”表示最大拱度为弦长的12%。

14、简述绕流翼型产生升力的原因。

无穷远处均匀来流,绕流如图所示翼型,在尾部锐缘点处产生一个逆时针的漩涡,均匀来流无涡,因此在翼型表面形成一个与尾涡大小相当,方向相反,顺时针漩涡,使上表面流速加快,下表面流速减慢,由伯努利方程,上表面流速减慢,压力增大,上下表面压差产生升力。

15、写出理想流体的伯努利方程(不计重力),并说明其物理意义。

P+1/2ρV2=常数(P/ρ+1/2=常数)

物理意义:流体压力势能与动能之间相互转化,二者之和守恒。

16、简述风能本身及当前风力发电产业链的优缺点。

风能本身优点:清洁、可再生、无污染、分布广

缺点:过于分散、难于收集、稳定性差

风力发电产业链优点:可再生、分布广

缺点:过于分散、难于集中与控制、稳定性差、使用寿命短、成本高17、风力机叶轮转速是多少?20~50r/min

励磁电机转速是多少?1000r/min、1500r/min、3000r/min

如何实现变速?通过变速齿轮箱来实现

二、图表分析与简答。

1、P27 图4.4

①推力系数C T关于a=0.5对称。当a=0.5时,C T取最大值,C Tmax=1;当a=0或1时,C T取最小值C Tmin=0;②功率系数C p在a≈0.33时,取最大值,C pmax≈0.59

(0.6,略小于0.6);当a=0或1时,C p 取最小值,C pmin =0。

2、P37 图5.2与图5.3

图5.3 说明在同一推力系数下,闭式风轮的功率系数(功率)大于开式风轮;开式风轮的最大值略小于0.6,而闭式风轮没这个限制;其功率系数可接近1;采用闭式风轮后,最大功率系数C pma 所对应的推力系数C p 变小。

图5.2 说明采用闭式风轮后,C p.d 大于C p.b ,同时流经风力机叶片的质量流量也有所增加,md>mb ;二者的增加率相等,即C p.d /C pb =m d /m b ;最小增加率略大于50%,最大增加率80%左右。

3、比较各功率系数C p 计算公式,①Cp=4a(1-a)2

?-=λ

λ03)1('28/Cp dx x a a

?-=λ

λ03)1('28/Cp dx Fx a a

①仅考虑了一维动量理论,未考虑尾涡损失,更未考虑仅有的3个叶片不能充满整个风力机的叶片旋转平面,因此计算结果较大,误差也大;②考虑了尾涡损失,但未考虑仅有的3个叶片不能充满整个风力机的叶片旋转平面,因此计算结果中等,误差居中;③但考虑尾涡损失,又考虑仅有的3个叶片不能充满整个风力机的叶片旋转平面,因此计算结果最小,但最精确。

4、经典的叶素动量理论做了哪些假设?普朗特叶尖损失因子是对其中哪个理论的修正?

(1)空气是完全气体,密度均匀,不可压缩;(2)空气是理想流体,即忽略空气粘性;(3)径向性质相互独立,即在某个单元发生的情况不影响其他单元;(4)每个环形单元中,叶片作用在流体上的力是定常的;该假设对应叶片无穷的风轮。 对(2)进行了修正。

(7~~15章)

1.简述控制/调解的目的与方法.

目的:保证风力机运行在设计范围内,

(1)风力机转速保持在特定范围内。

(2)风力机能偏航。

(3)功率输出保持在一定范围内。

(4)风力机能启动和停机。

方法:为了限制高风速时的功率输出,可采用以下四种策略,其中前两种最常用。

(1)失速调节。

(2)桨距调节。

(3)偏航调节。

(4)变速。

2.已知发电机的极对数P=1,2,3,求转速n 。

P=1,n 1=60f/p,n=3000r/min

P=2,n 2=1500r/min

P=3,n

=1000r/min

3

3简述失速产生原因,及其对气(汽)轮机危害。

当攻角α过大(α>15o)时,尾涡前移,使绕流不畅,阻力加大,升力锐减,造成失速;前移尾涡内,空气对叶片有磨损和腐蚀作用,缩短气(汽)轮机使用寿命,甚至直接损坏,飞机失速可能造成机毁人亡。

4.P56 图7.3,说出失速调节的优缺点。

图1,风速在16~24m/s内变化,平均风速20m/s,浮动范围±4m/s,浮动率±20%;

≈100r/min,图2,起初τ=400~420s,风力机未启动,异步发电机转速很低,n

开始从100 r/min 但未静止,接下来τ=420~445s左右启动,风力机开始启动,n

上升至1600 r/min﹥1500 r/min,τ=445s后,风力机完全启动,此时转速完全稳定在1600r/min,虽稳定但略大于1500 r/min;图3,τ=420~445s左右,即风力机完全启动前发电机功率为零,在τ=445s左右瞬间,发电机功率经历三次突变,先充当电动机,再跳落至1.5MW,后回落至1.1MW,幅度±0.1MW,浮动率±9.1%,远小于±20%,平均功率略大于1MW.

由此可见失速调节优缺点:

优点:调节结果稳定,功率和转速稳定;

缺点:在风力机完全启动瞬间,会发生接连三次功率突变,损害发电机;此外,风力机停不下来,正常运行时功率较大。

5.从原理上看,桨距调节和失速调节有什么不同?

每一个叶片都可以配置一个小的电动机,这样每一个叶片的桨距都可以单独调节。桨距角已经调节的叶片可以发挥启动刹车的作用,因此,在桨距调节风机中,无需像失速型风机那样,在叶尖配置启动刹车。通过调节整个叶片的桨距角就有可能控制叶片攻角,从而控制功率输出。

6.P59 图

7.5(图1 图3)说明桨距调节的优缺点。

图1,风速变化大致在10~25m/s内变化,平均风速17.5m/s,浮动范围±7.5m/s,浮动率±37.5%;图3,在0~200s内,风力机未启动,异步发电机功率P=0,转速n

=0;200~250s,风力机开始启动,功率开始逐步振荡上升,在250s左右,0

风力机正常运行,异步发电机功率维持在1MW上下,振幅约±0.3MW,有时达到±0.5MW,浮动率±30%,有时达±50%。

优点:不再有突变,可以停机,调节后输出功率和转速均值维持在额定值1MW 和1500 r/min。

缺点:输出功率和转速振幅较大,不稳定。

7.P64 图7.12,说明该风力机在不同来流风速下,转速与输出功率的关系?

相对同一来流风速,随转速的增加,功率先增加后减小,相对不同的风速,同一转速下,来流风速越大,输出功率越大;不同风速下,最大功率所对应的转速不同,该转速随来流风速的增加而增大。

8.从纯技术角度讲,什么是风机最优化设计?

从纯技术观点来看,所谓最优化设计,就是给定风轮直径的风力机每年能获取尽可能多的发电量。

9.P68 图8.1,对风力机采用哪种设计,为什么?

采用设计2。

设计1虽然在设计风速上取得最大功率,但是达不到贝兹极限Cp=0.593。而风速稍有偏离,Cp值下降快,功率系数不稳定,年发电量小;设计2在设计风速上取得平稳功率,虽然Pmax远离贝兹极限,但当风速偏离时,Cp值几乎不下降,

全年输出功率稳,保证较大年发电量。

10.非定长:各点状态,特别是转速和来流风速随时间变化而变化错误!未找到引用源。≠0.

11.简述几种非定长叶素动量模型。

(1)动量尾流模型气动载荷处于平衡前考虑时间延迟。

(2)动态失速叶片攻角的改变不会在载荷中立即显示出来,而是有一个时间延迟。

(3)偏航/倾斜模型如果风轮已经偏航,则诱导速度将会有一个方位角的变化,当叶片指向上游比同一叶片转了半圈后指向下游的诱导速度小了些。

(4)风的确定性模型越接近地面风速越小,但风速的变化越快。

12.载荷:单位面积上所承受的力。1N/m2=1Pa

13.风力机叶片的材料,过去,考虑什么,现在?

在过去,叶片中已经使用过如木炭、钢、铝、玻璃纤维增强塑料(GRP)和碳纤维增强塑料(CFRP)等材料。选择材料时取决许多参数,例如强度、重量、刚度和价格,并且对风力机而言非常重要的是疲劳特性。目前,大多数风力机叶片是使用玻璃纤维增强塑料(GRP)材料制成。

14.单自由度系统(SDOF):最简单的系统,仅仅由一个集中质量组成。

15.有限元模型:一种计算机辅助计算模型,往往使用四面体网格。

有限差分模型:一种计算机辅助计算模型,往往使用六面体网格。

16.简述风力机载荷三个最重要来源及其规律。

(1)重力载荷:地球的重力场给每一个叶片带来一个按正弦曲线变化的重力载荷。

(2)惯性载荷:当风力机加速或者减速时,将产生惯性载荷,起停时该载荷最明显。

(3)气动载荷:气动载荷是由空气流经叶片和塔架时产生的。

17.如何用p127图14.1和P48 图6.6(下)算出年发电量

在V-t图上截取一年的时间段。先查出0点的速度V,再到P-V图查出V(0)所对应的功率,将该点标注在P-t图上,对1,2,.......点重复该步骤,在每两个相邻所得点中,连直线段,得到一个新锯齿形曲线,该曲线向下围成的面积即年发电量。

18.疲劳:应力小于直接破坏应力时,疲劳是应力的时空积分的结果。

空气动力学复习题

3 流体的粘性系数与温度之间的关系:气体的粘性系数随温度的升高而增大。 4 在大气层内,大气密度随高度增加而减小 压强随高度增加而减小。 6影空粘性力要因素B速度梯度C空气温度 1于露点温度“相对湿度达100%时的温度是露点温度、“露点温度下降,绝对湿度下降” 13”对于音速、音速是空气可压缩性的标志B空气音速高,粘性就越大 1海平面的大气参数是. P=1013 hPa T=15℃ρ=1.225kg/m3 19音速随大气高度的变化情况是B在对流层内随高度增高而降低。C在平流层底层保持常数 2民机巡航的气层对流层顶层、平流层底层 25对起飞降落安全性造成不利影响的是A低空风切变C垂直于跑道的飓风 26影响飞机机体腐蚀的大气因素是A空气的相对湿度C空气的温差D空气污染物 27影响飞机机体腐蚀的大气因素是A空气的相对湿度C空气的温度和温差D空气污染物 36附面层? A层流附面屡的厚度小于紊流附面层的厚度C附面层的气流各层不相混杂面成层流动,称为层流附面层。 3亚音速空气流速增加可有如下效果B气流分离点后移C阻力增加D升力增加 84机翼的压力中心B翼弦与机翼空气动力作用线的交点 2控制飞机绕横轴运动的舵面升降舵,绕立轴运动的舵面是方向舵。绕纵轴运动的舵面是副翼 1机翼展弦比是展长与平均几何弦长之比。 64相对湿度是指大气中所含水蒸气的量与同温度下大气能含有的水蒸气最大量之比‘相对厚度‘翼型的最大厚度与弦长的比值。相对弯度’翼型的最大弯度与弦长的比值、迎角‘机翼的弦线与相对气流速度之间的夹角称. 1连续介质——把空气看成是由空气微团组成的没有间隙的连续体。作用——把空气压强(P)、密度(ρ)、温度(T)和速度(V)等状态参数看作是空间坐标及时间的连续函数,便于用数学工具研究流体力学问题。 2.。流场——流体所占居的空间。定常流动——流体状态参数不随时间变化。非定常流动——流体状态参数随时间变化。3流线——在定常流动中,空气微团流过的路线(轨迹)。流线谱——用流线组成的描绘流体微团流动情况的图画。流管——在流场中取一封闭曲线,通过曲线上各点的流线所形成的管形曲面,流体不会穿越管壁流动。 6.说明气体伯努利方程的物理意义和使用条件? p+1/2ρv2=p0=常数方程物理意义:空气在低速一维定常流动中,同一流管的各个截面上,静压与动压之和(总压)相等。在同一流管中,流速快的地方,压力小;流速慢的地方,压力大。 方程应用条件:1.气流是连续的、稳定的气流(定常流);2.没有粘性(理想流体);3.空气密度的变化可忽略不计(不可压流) 9.附面层是怎样产生的? 空气流过物体时,由粘性作用,在紧贴物体表面的地方,就产生了流速沿物面法线方向逐渐增大的薄层空气。这薄层空气称为附面层。 11.什么是层流附面层、紊流附面层、转捩点? 层流附面层——分层流动,互不混淆,无上下乱动现象,厚度较小,速度梯度小; 紊流附面层——各层强烈混合,上下乱动明显,厚度较大,速度梯度大; 转捩点——层流附面层与紊流附面层之间的一个过渡区,可看成一个点。 6机翼前缘线与垂直机身中心线的直线之间的夹角称为机翼的后掠角 6水平安定面的安袈角与机翼安装角之差称为纵向上反角 21.安装角?机翼弦线与机身中心线之间的夹角。23机翼的前缘半径、后缘角?翼型前缘处的曲率半径1翼型上下表面围线在后缘处的切线之间的夹角 28.简述飞机升力产生的机理 气流以一定的正迎角流经机翼,机翼上表面流管变细,气流速度增大,压力下降;机翼下表面流管变粗,气流速度减小,压力升高。机翼上表面负压,下表面正压,机翼总气动力在竖直方向的分量形成升力,在水平方向的分量形成阻力。 1.激波形成;参数变化;答:当气流以超音速流过带有内折角物体表面时,收到强烈压缩而形成的强扰动波。气流通过激波后:速度下降,压力、密度、温度上升。 63正激波:波面与气流方向垂直,波阻最大斜激波:波面与气流方向不垂直 64膨胀波答:当气流以超音速流过带有外折角物体表面时,气流速度增高、压力和密度

空气动力学期末复习题

第一章 一:绪论;1.1大气的重要物理参数 1、 最早的飞行器是什么?——风筝 2、 绝对温度、摄氏温度和华氏温度之间的关系。——9 5)32(?-T =T F C 15.273+T =T C K 6、摄氏温度、华氏温度和绝对温度的单位分别是什么?——C F K 二:1.1大气的重要物理参数 1、 海平面温度为15C 时的大气压力为多少?——29.92inHg 、760mmHg 、 1013.25hPa 。 3、下列不是影响空气粘性的因素是(A) A 、空气的流动位置 B 、气流的流速 C 、空气的粘性系数 D 、与空气的接触面积 4、假设其他条件不变,空气湿度大(B) A 、空气密度大,起飞滑跑距离长 B 、空气密度小,起飞滑跑距离长 C 、空气密度大,起飞滑跑距离短 D 、空气密度小,起飞滑跑距离短 5、对于音速.如下说确的是: (C) A 、只要空气密度大,音速就大 B 、只要空气压力大,音速就大

C、只要空气温度高.音速就大 D、只要空气密度小.音速就大 6、大气相对湿度达到(100%)时的温度称为露点温度。 三:1.2 大气层的构造;1.3 国际标准大气 1、大气层由向外依次分为哪几层?——对流层、平流层、中间层、电离层和散逸层。 2、对流层的高度.在地球中纬度地区约为(D) A、8公里。 B、16公里。 C、10公里。 D、11公里 3、现代民航客机一般巡航的大气层是(对流层顶层和平流层底层)。 4、云、雨、雪、霜等天气现象集中出现于(对流层)。 5、国际标准大气指定的依据是什么?——国际民航组织以北半球中纬度地区大气物理性质的平均值修正建立的。 6、国际标准大气规定海平面的大气参数是(B) A、P=1013 psi T=15℃ρ=1、225kg/m3 B、P=1013 hPA、T=15℃ρ=1、225 kg/m3 C、P=1013 psi T=25℃ρ=1、225 kg/m3 D、P=1013 hPA、T=25℃ρ=0、6601 kg/m3 7. 马赫数-飞机飞行速度与当地音速之比。 四:1.4 气象对飞行的影响;1.5 大气状况对机体腐蚀的影响

空气动力学期末复习题

空气动力学期末复习题 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第一章 一:绪论;大气的重要物理参数 1、最早的飞行器是什么——风筝 2、绝对温度、摄氏温度和华氏温度之间的关系。——9 5)32(?-T =T F C 6、摄氏温度、华氏温度和绝对温度的单位分别是什么——C F K 二:大气的重要物理参数 1、海平面温度为15C 时的大气压力为多少——、760mmHg 、。 3、下列不是影响空气粘性的因素是(A) A 、空气的流动位置 B 、气流的流速 C 、空气的粘性系数 D 、与空气的接触面积 4、假设其他条件不变,空气湿度大(B) A 、空气密度大,起飞滑跑距离长 B 、空气密度小,起飞滑跑距离长 C 、空气密度大,起飞滑跑距离短 D 、空气密度小,起飞滑跑距离短 5、对于音速.如下说法正确的是:(C) A 、只要空气密度大,音速就大 B 、只要空气压力大,音速就大 C 、只要空气温度高.音速就大 D 、只要空气密度小.音速就大 6、大气相对湿度达到(100%)时的温度称为露点温度。 三:大气层的构造;国际标准大气 1、大气层由内向外依次分为哪几层——对流层、平流层、中间层、电离层和散逸层。

2、对流层的高度.在地球中纬度地区约为(D) A、8公里。 B、16公里。 C、10公里。 D、11公里 3、现代民航客机一般巡航的大气层是(对流层顶层和平流层底层)。 4、云、雨、雪、霜等天气现象集中出现于(对流层)。 5、国际标准大气指定的依据是什么——国际民航组织以北半球中纬度地区大气物理性质的平均值修正建立的。 6、国际标准大气规定海平面的大气参数是(B) A、P=1013psiT=15℃ρ=1、225kg/m3 B、P=1013hPA、T=15℃ρ=1、225 kg/m3 C、P=1013psiT=25℃ρ=1、225 kg/m3 D、P=1013hPA、T=25℃ρ=0、6601 kg/m3 7.马赫数-飞机飞行速度与当地音速之比。 四:气象对飞行的影响;大气状况对机体腐蚀的影响 1、对飞机飞行安全性影响最大的阵风是:(A) A、上下垂直于飞行方向的阵风 B、左右垂直子飞行方向的阵风 C、沿着飞行方向的阵风逆着 D、飞行方向的阵风 2、飞机起飞和着陆应尽量利用(逆风)条件。 3、对飞机起飞降落的安全性威胁最严重的气象条件是(低空风切变)。 4、大气相对湿度超过临界值时,机体腐蚀会由(化学)腐蚀变为(电化学)腐蚀,腐蚀速度将变快。 第二章 流体运动的基本概念 1、飞机相对气流的方向与飞机(D)方向相反。 A、机头 B、机身 C、机翼 D、运动 2、利用风可以得到飞机气动参数,其基本依据是(B) A、连续性假设

空气动力学题库21-1-8

空气动力学题库21-1- 8

问题: [单选]下列说法错误的是() A.流体的粘性和逆压梯度是边界层分离的必要条件 B.粘性流体运动的基本性质有:运动的有旋性、旋涡的扩散性、能量的耗散性 C.曲壁面上的边界方程与平壁面上的完全相同 D.雷诺数代表作用在流体为团上的惯性力与粘性力之比

问题: [多选]下列关于粘性的说法正确的是() A.由于实际流体都存在粘性,所以实际流体中存在剪切力。 B.液体的动力粘性系数随温度的升高而减小,气体的动力粘性系数随温度的升高而增大。 C.压强越大,粘性系数越大。 D.粘性的存在是产生阻力的重要原因。

问题: [多选]下列关于压强的说法正确的是() A.在理想流体中,其任意一点仅存在法向正应力;在粘性流体中,不仅存在法向正应力,也存在切应力。 B.在理想流体的任意点处,如果受压方位不同,那么压强也不同。 C.当流体平衡时,压强沿某个方向的偏导数,等于单位体积的质量力在该方向的分量。 D.有粘性的运动流体,严格说来压强指的是三个互相垂直方向的法向力的平均值(加负号)。 出处:天津11选5 https://www.wendangku.net/doc/a57786653.html,;

问题: [单选]下列说法错误的是() A.流体质点是宏观上组成流体的最小单元:一个包含一定质量的空间点。 B.流体微团是由连续质点组成的质点系。 C.在流体力学中,系统是指有任何确定流体质点组成的团体。 D.在不可压缩流体中,密度处处是同一常数。

问题: [多选]下列关于势函数和流函数的说法错误的是() A.在平面不可压流场中,势函数和流函数同时存在。 B.势函数在某个方向的偏导数等于速度在那个方向的分量。 C.流函数线的切线方向与速度矢量方向重合。 D.过同一点的等速度势函数线与等流函数线正交

最新空气动力学考试题与答案

(1~6) 一、概念 1、理想流体:忽略粘性的流体。 2、粘性:当流体各流层间发生相对滑移时,流体内部表现出阻碍这种相对滑移的性质。 3、完全气体:忽略气体分子的体积,忽略分子间引力和斥力,忽略碰撞完全弹性。 4、等温压缩系数:在可逆定温过程中,压力每升高一个单位体积的缩小率。 5、绝热压缩系数:在可逆绝热过程中,压力每升高一个单位体积的缩小率。 6、热胀系数:在准平衡等压过程中,温度每升高一个单位体积的膨胀率。 7、功率系数:风(空气)实际绕流风机后,所产生的功率与理论最大值P max=1/2ρV02A之比。 8、贝兹极限:功率系数的最大值,其数值为0.593。 9、弦长:前、后缘点所连接直线段的长度。 10、骨架线(中轴线):风力机叶片截面上内切圆圆心的连线。 11、弯度、最大弯度:中轴线与几何弦长的垂直距离称为弯度;中轴线上各点弯度不同,其中最大值为最大弯度。 12、拱度、最大拱度:截面上弦的垂线与轮廓线有两个交点,这两个交点之间的距离称为拱度;截面上弦的垂线上的拱度不同,其中最大值为最大拱度。13、NACA4412:“NACA”,美国航空总局标志;第一个“4”,表示最大弯度出现在弦上距前缘点4/10弦长处;第二个“4”,表示最大弯度为弦长的4%;“12”表示最大拱度为弦长的12%。 14、简述绕流翼型产生升力的原因。 无穷远处均匀来流,绕流如图所示翼型,在尾部锐缘点处产生一个逆时针的漩涡,均匀来流无涡,因此在翼型表面形成一个与尾涡大小相当,方向相反,顺时针漩涡,使上表面流速加快,下表面流速减慢,由伯努利方程,上表面流速减慢,压力增大,上下表面压差产生升力。 15、写出理想流体的伯努利方程(不计重力),并说明其物理意义。 P+1/2ρV2=常数(P/ρ+1/2=常数) 物理意义:流体压力势能与动能之间相互转化,二者之和守恒。 16、简述风能本身及当前风力发电产业链的优缺点。 风能本身优点:清洁、可再生、无污染、分布广 缺点:过于分散、难于收集、稳定性差 风力发电产业链优点:可再生、分布广 缺点:过于分散、难于集中与控制、稳定性差、使用寿命短、成本高17、风力机叶轮转速是多少?20~50r/min 励磁电机转速是多少?1000r/min、1500r/min、3000r/min 如何实现变速?通过变速齿轮箱来实现 二、图表分析与简答。 1、P27 图4.4 推力系数C T关于a=0.5对称。当a=0.5时,C T取最大值,C Tmax=1;当a=0或1时,C T取最小值C Tmin=0;功率系数C p在a≈0.33时,取最大值,C pmax≈0.59

空气动力学考试题与答案

(1~6) 一、概念 1、理想流体:忽略粘性的流体。 2、粘性:当流体各流层间发生相对滑移时,流体内部表现出阻碍这种相对滑移的性质。 3、完全气体:忽略气体分子的体积,忽略分子间引力和斥力,忽略碰撞完全弹性。 4、等温压缩系数:在可逆定温过程中,压力每升高一个单位体积的缩小率。 5、绝热压缩系数:在可逆绝热过程中,压力每升高一个单位体积的缩小率。 6、热胀系数:在准平衡等压过程中,温度每升高一个单位体积的膨胀率。 7、功率系数:风(空气)实际绕流风机后,所产生的功率与理论最大值 P maX=1/2 'V o2A 之比。 8贝兹极限:功率系数的最大值,其数值为0.593。 9、弦长:前、后缘点所连接直线段的长度。 10、骨架线(中轴线):风力机叶片截面上内切圆圆心的连线。 11、弯度、最大弯度:中轴线与几何弦长的垂直距离称为弯度;中轴线上各点弯度不同,其中最大值为最大弯度。 12、拱度、最大拱度:截面上弦的垂线与轮廓线有两个交点,这两个交点之间的距离称为拱度;截面上弦的垂线上的拱度不同,其中最大值为最大拱度。 13、 NACA4412 :“NACA ”,美国航空总局标志;第一个“ 4”,表示最大弯度出现在弦上距前缘点4/10弦长处;第二个“4”,表示最大弯度为弦长的4%; “12” 表示最大拱度为弦长的12%。 14、简述绕流翼型产生升力的原因。 无穷远处均匀来流,绕流如图所示翼型,在尾部锐缘点处产生一个逆时针的漩涡,均匀来流无涡,因此在翼型表面形成一个与尾涡大小相当,方向相反,顺时针漩涡,使上表面流速加快,下表面流速减慢,由伯努利方程,上表面流速减慢,压力增大,上下表面压差产生升力。 15、写出理想流体的伯努利方程(不计重力),并说明其物理意义。 P+1/2 ‘V2=常数(P/ '+1/2=常数) 物理意义:流体压力势能与动能之间相互转化,二者之和守恒。 16、简述风能本身及当前风力发电产业链的优缺点。 风能本身优点:清洁、可再生、无污染、分布广缺点:过于分散、难于收集、稳定性差 风力发电产业链优点:可再生、分布广 缺点:过于分散、难于集中与控制、稳定性差、使用寿命短、成本高 17、风力机叶轮转速是多少?20~50r/mi n 励磁电机转速是多少?1000r/min、1500r/min、3000r/min 如何实现变速?通过变速齿轮箱来实现 二、图表分析与简答。 1、P27 图 4.4 推力系数C T关于a=0.5对称。当a=0.5时,C T取最大值,C TmaX=1;当a=0 或1时,C T取 最小值C Tmin=0;功率系数C P在a 0.33时,取最大值,C PmaX 0.59

北航空气动力学试题2009(刘沛清)

北京航空航天大学 2008-2009学年第二学期 考试统一用答题册考试课程空气动力学(Ⅰ)(A卷)班级成绩 姓名学号 2009年6月18日

一、选择题(在所选括号内选择一个正确答案 ,每小题4 分,共16分) 1.流体具有以下那几个属性 a. 所有流体不能保持固定的体积() b. 流体能保持固定的形状() c. 在任何状态下,流体不能承受剪切力() d. 在静止状态下,流体几乎不能承受任何剪切力()2.流体微团的基本运动形式包括 a. 仅有平移运动() b. 平移运动与整体旋转运动() c. 平移运动、整体旋转运动和变形运动() d. 平移运动、旋转运动和变形运动()3.以下说法正确的是 a. 理想流体运动的速度势函数满足拉普拉斯方程() b. 理想不可压缩流体的运动存在速度势函数() c. 理想流体无旋流动的速度势函数满足拉普拉斯方程() d. 理想不可压缩流体无旋流动的速度势函数满足拉普拉斯方程()4.在边界层内 a. 流体微团所受的粘性力大于惯性力 ( ) b. 流体微团所受的粘性力大于压力 ( ) c. 流体微团所受的粘性力小于惯性力 ( ) d. 流体微团所受的粘性力与惯性力同量级 ( ) 二、填空题(在括号内填写适当内容,每小题4分,共16 分) 1.流动Re数是表征()。根据其大小可以用来判别流动的()。在圆管中,流动转捩的下临界Re数为()。 2.沿空间封闭曲线L的速度环量定义为(),如果有涡量不为零的涡线穿过该空间曲线所围的区域,则上述速度环量等于()。 3.写出在极坐标系下,速度势函数与径向、周向速度分量之间的关系。 ()

4.一维定常理想不可压流伯努利方程(欧拉方程沿流线的积分)写为( );一维定常绝热流能量方程写为( )。 三、 简答题(每小题4分,共16分) 1.用图形说明理想不可压缩流体有环量圆柱绕流,随涡强Г增大时流线的变化图谱。 2.分别写出流体微团平动速度、旋转角速度、线变形与角变形速率的分量表达式。 3.简述绕流物体压差阻力产生的物理机制。工程上减小压差阻力的主要措施是什么。 4.试简要说明超音速气流通过激波和膨胀波时,波前、后气流参数(速度、压强、温度、密度)的变化趋势是什么,并说明是否为等熵过程。 四、 计算题(共52分) 1.已知流函数323ay y ax -=ψ 表示一个不可压缩流场。①请问该流动是 有旋的还是无旋的?如果是无旋的,请求出势函数。②证明流场中任意一点的速度的大小,仅仅取决于坐标原点到这点的距离。(10分) 2.为了测定圆柱体的阻力系数Cd ,将一个直径为d 、长度为L 的圆柱垂直放入风洞中进行试验,设风洞来流为定常不可压缩均匀流,在图示1-1和2-2断面上测得速度分布,这两个断面上压力分布均匀为大气压Pa ,上下远离柱体的流线处压强也为大气压。试求圆柱的阻力系数。Cd 定义为: 其中,D 为圆柱的阻力, 为空气密度, 为风洞来流速度。(10分) ∞V ρdL V D C d 22 ∞=ρ

空气动力学复习题

飞行原理空气动力学复习思考题 第一章低速气流特性 1.何谓连续介质为什么要作这样的假设 连续介质一一把空气看成是由空气微团组成的没有间隙的连续体。 作用一一把空气压强(P)、密度(P)、温度(T)和速度(V)等状态参数看作是空间坐标及时间的连续函数,便于用数学工具研究流体力学问题。 2.何谓流场举例说明定常流动与非定常流动有什么区别。 流场一一流体所占居的空间。 定常流动一一流体状态参数不随时间变化; 非定常流动一一流体状态参数随时间变化; 3.何谓流管、流谱、流线谱低速气流中,二维流谱有些什么特点 流线谱一一由许多流线及涡流组成的反映流体流动全貌的图形。 流线一一某一瞬间,凡处于该曲线上的流体微团的速度方向都与该曲线相应点的切线相重合。 流管一二通过流场中任一闭合曲线上各点作流线,由这些流线所围成的管子。 二维流谱一一1.在低速气流中,流谱形状由两个因素决定:物体剖面形状,物体在气流中的位置关 系。 2.流线的间距小,流管细,气流受阻的地方流管变粗。 3 .涡流大小决定于剖面形状和物体在气流中的关系位置。 4.? 5.写出不可压缩流体和可压缩流体一维定常流动的连续方程,这两个方程有什 么不同有什么联系 连续方程是质量守恒定律应用于运动流体所得到的数学关系式。 在一维定常流动中,单位时间內通过同一流管任一截面的流体质量都相同。方程表达式: P VA 不可压流中,P~常数, 方程可变为: VA=C (常数) 气流速度与流管切面积成反比例。 可压流中,P H常数, 方程可变为: m二p VA 适用于理想流体和粘性流体 6.说明气体伯努利方程的物理意义和使用条件。 方程表达式:P +斗0八+ P^h =常4(

M8空气动力学题库-392道资料

空气动力学习题集 1 空气的组成为: 答案:C A.78%氮,20%氢和2%其他气体 B.90%氧,6%氮和4%其他气体 C.78%氮,21%氧和1%其他气体 D.21%氮,78%氧和1%其他气体 2 在大气层内,大气密度:答案:C A在同温层内随高度增加保持不变。B随高度增加而增加。 C随高度增加而减小。D随高度增加可能增加,也可能减小。 3 对于空气密度如下说法正确的是:答案:B A空气密度正比于压力和绝对温度B“空气密度正比于压力,反比于绝对温度”C“空气密度反比于压力,正比于绝对温度”D空气密度反比于压力和绝对温度 4 绝对温度的零度是: 答案:C A-273F B-273K C-273C D32F 5 大气层内,大气压强:答案:B A随高度增加而增加。B随高度增加而减小。 C在同温层内随高度增加保持不变。D随高度增加也可能增加,也可能减小。 6 “一定体积的容器中,空气压力”答案:D A与空气密度和空气温度乘积成正比B与空气密度和空气温度乘积成反比

C与空气密度和空气绝对温度乘积成反比D与空气密度和空气绝对温度积成正比 7“一定体积的容器中,空气压力”答案:D A与空气密度和摄氏温度乘积成正比B与空气密度和华氏温度乘积成反比C与空气密度和空气摄氏温度乘积成反比D与空气密度和空气绝对温度乘积成正比 8流体的粘性系数与温度之间的关系是:答案:B A液体的粘性系数随温度的升高而增大。B气体的粘性系数随温度的升高而增大。 C液体的粘性系数与温度无关。D气体的粘性系数随温度的升高而降低。 9.对于具有静稳定性的飞机向左侧滑行时机头会(B) A不变B左转C右转B不定 10假设其他条件不变,空气湿度大:答案:B A空气密度大,起飞滑跑距离长B空气密度小,起飞滑跑距离长 C空气密度大,起飞滑跑距离短D空气密度小,起飞滑跑距离短 11增加垂直安定面的面积产生的影响:答案:B

空气动力学与飞行力学复习题10

】 《空气动力学与飞行力学》复习题 一、选择题 1.连续介质假设意味着。 (A) 流体分子互相紧连 (B) 流体的物理量是连续函数 (C) 流体分子间有间隙 (D) 流体不可压缩 2.温度升高时,空气的粘度。 (A) 变小(B)变大 (C) 不变 3.水的体积弹性模量空气的体积弹性模量。 ( (A) < (B)近似等于 (C) > 8.的流体称为理想流体。 (A) 速度很小(B)速度很大 (C) 忽略粘性力(D)密度不变 9.的流体称为不可压缩流体。 (A) 速度很小(B)速度很大 (C) 忽略粘性力(D)密度不变 10.静止流体的点压强值与无关。 (A) 位置(B)方向 (C) 流体种类(D)重力加速度 11.油的密度为800kg/m3,油处于静止状态,油面与大气接触,则油面下处的表压强为kPa。 — (A) (B) (C) (D) 12.在定常管流中,如果两个截面的直径比为d1/d2= 3,则这两个截面上的速度之比V1/ V2 = 。 (A) 3 (B)1/3 (C) 9 (D)1/9 13.流量为Q,速度为V的射流冲击一块与流向垂直的平板,则平板受到的冲击力为。 (A) QV (B)QV2(C) ρQV (D)ρQV2 14.圆管流动中,层流的临界雷诺数等于。 (A) 2320 (B)400 (C) 1200 (D)50000 15.超音速气流在收缩管道中作运动。 > (A) 加速(B)减速 (C) 等速 16.速度势只存在于 (A) 不可压缩流体的流动中(B)可压缩流体的定常流动中 (C) 无旋流动中(D)二维流动中 17.流函数存在于 (B) 不可压缩流体的平面流动中(B)可压缩流体的平面流动中 (C) 不可压缩流体的轴对称流动中(D)任意二维流动中 18.水的粘性随温度升高而 , A . 增大; B. 减小; C. 不变。 19.气体的粘性随温度的升高而 A. 增大;B. 减小;C. 不变。

空气动力学经典题目

空气动力学基础及飞行原理笔试题 1绝对温度的零度是: C A -273℉ B -273K C -273℃ D 32℉ 2 空气的组成为 C A 78%氮,20%氢和2%其他气体 B 90%氧,6%氮和4%其他气体 C78%氮,21%氧和1%其他气体 D 21%氮,78%氧和1%其他气体 3 流体的粘性系数与温度之间的关系是? B A液体的粘性系数随温度的升高而增大。 B气体的粘性系数随温度的升高而增大。 C液体的粘性系数与温度无关。 D气体的粘性系数随温度的升高而降低。 4 在大气层内,大气密度: C A在同温层内随高度增加保持不变。 B随高度增加而增加。 C随高度增加而减小。 D随高度增加可能增加,也可能减小。 5 在大气层内,大气压强: B A随高度增加而增加。 B随高度增加而减小。 C在同温层内随高度增加保持不变。 C随高度增加可能增加,也可能减小。 6 增出影响空气粘性力的主要因素 B C A空气清洁度 B速度梯度 C空气温度 D相对湿度 7 对于空气密度如下说法正确的是 B A空气密度正比于压力和绝对温度 B空气密度正比于压力,反比于绝对温度C空气密度反比于压力,正比于绝对温度 D空气密度反比于压力和绝对温度 8 “对于音速.如下说法正确的是” C A只要空气密度大,音速就大” B“只要空气压力大,音速就大“ C”只要空气温度高.音速就大” D“只要空气密度小.音速就大” 9 假设其他条件不变,空气湿度大: B A空气密度大,起飞滑跑距离长B空气密度小,起飞滑跑距离长 C空气密度大,起飞滑跑距离短 D空气密度小,起飞滑跑距离短 10一定体积的容器中。空气压力 D A与空气密度和空气温度乘积成正比 B与空气密度和空气温度乘积成反比

《航空概论》试题库(含空气动力学)

<<航空概论>> 1、气体的物理参数压力(P)、密度(ρ)、温度(T)三者之间的变化关系可以用气体状态方程式( D )来表示; A、ρ=PRT B、T=PRρ C、P=Rρ/ T D、P=RρT 2、国际标准大气规定,海平面上的大气压力为( B )牛/平方厘米,大气温度为()℃,大气密度为()千克/立方米; A、1012 / 17 /1.225 B、10.12 / 15 / 1.225 C、10.12 / 15 / 122.5 D、10.12 / 0 / 1.225 3、飞机水平尾翼的最主要作用是( B ); A、产生升力 B、俯仰稳定性 C、横向稳定性 D、方向稳定性 4、下列( A )的叙述不属于平流层的特点; A、含有大量的水蒸气及其他微粒 B、温度大体不变,平均在-56.5℃ C、没有上下对流,只有水平方向的风 D、空气质量不多,约占大气层总质量的1/4 5、空气的物理性质主要包括( C ); A、空气的粘性 B、空气的压缩性 C、空气的粘性和压缩性 D、空气的可朔性 6、下列( B )的叙述属于对流层的特点; A、空气中几乎没有水蒸气 B、空气上下对流激烈 C、高度升高气温迅速上升 D、空气中的风向风速不变 7、流体的连续性定理是( C )在空气流动过程中的应用; A、能量守衡定律 B、牛顿第一定律 C、质量守衡定律 D、牛顿第二定律 8、下列( D )的叙述是错误的; A、伯努利定理的物理实质是能量守衡定律在空气流动过程中的应用 B、物体表面一层气流流速从零增加到迎面气流流速的流动空气层叫做附面层 C、空气粘性的物理实质是空气分子作无规则运动的结果

D、气流低速流动时,在同一流管的任一切面上,流速和流管的横切面积始终成正比 9、机翼翼弦线与飞机机体纵轴线之间的夹角是( D ); A、机翼的后掠角 B、机翼的上反角 C、机翼的迎角 D、机翼的安装角 10、下列( D )的叙述与伯努利定理无关; A、气流流速大的地方压力小,气流流速小的地方压力大 B、气流稳定流过一条粗细不等的流管时,气流的总能量是不变的 C、气流沿流管稳定流动过程中,气流的动压和静压之和等于常数 D、气流流过流管时,流管粗的地方流速小,流管细的地方流速大 11、根据连续性定理和伯努利定理可知,稳定气流的特性为( A ): A、流管横截面积小的地方,流速就大,压力就小 B、流管横截面积小的地方,流速就小,压力就高 C、流管横截面积大的地方,流速就小,压力就小 D、流管横截面积大的地方,流速就大,压力就高 12、机翼升力的产生主要靠( C )的作用; A、机翼上表面压力 B、机翼下表面压力 C、机翼上表面吸力 D、机翼下表面吸力 13、测量机翼的翼弦长度是从( C ); A、翼尖到翼尖 B、机翼的连接点到翼尖 C、机翼前缘到后缘 D、最大上弧线到基准线 14、翼型中弧线的最高点距翼弦的距离与弦长的比值的百分数,叫做翼型的( B ); A、相对厚度 B、相对弯度 C、相对最大厚度位置 D、翼型弦长 15、在飞机机翼的展弦比里,包括( B )物理因素; A、机翼的厚度和翼弦 B、机翼的翼展和翼弦 C、机翼的上反角和迎角 D、机翼的后掠角和迎角 16、机翼翼弦线与相对气流之间的夹角是( C ); A、机翼的后掠角 B、机翼的上反角 C、机翼的迎角 D、机翼的安装角 17、机翼空气动力的方向( A ); A、与相对气流流速垂直 B、与相对气流流速平行 C、与翼弦线垂直 D、垂直向上

空气动力学基础要点

空气动力学基础(教学重点) 绪论(1学时) 第一章流体静力学(5学时) 1、掌握连续介质假设的概念、意义和条件; 2、了解掌握流体的基本物理属性,尤其是易流性、粘性、压缩性等属性的物理本质和数学表达; 3、掌握流体力学中作用力的分类和表达、静止流体中压强的定义及其特性; 4、初步掌握静止流体微团的力学分析方法,重点掌握流体平衡微分方程的表达及其物理意义; 5、在流体平衡微分方程的应用方面,掌握重力场静止液体中的压强分布规律,重点掌握标准大气问题。 第二章流体运动学与动力学基础(12学时) 1、了解两种描述流场的方法的区别与特点,重点掌握欧拉法下加速度的表达和意义 2、掌握流体微团的几种变形和运动及其数学表达,掌握流体微团的运动分解与刚体运动的异同; 3、了解系统分析方法与控制体分析方法的区别与联系,了解雷诺输运方程的表达及意义; 4、空气动力学基本方程是本章重点,积分形式方程要掌握质量方程、动量方程和能量方程的表达和意义,并会用它们解决实际工程问题;微分形式方程要重点掌握连续方程、欧拉方程和能量方程的表达和意义;掌握微元控制体分析方法;掌握伯努利方程的表达、意义、条件和应用; 5、重点需要掌握的概念:流线、流量、散度、旋度、位函数、流函数、环量与涡的表达、意义及其相互之间的关系; 第3章低速平面位流(6学时) 3.1 平面不可压位流的基本方程及其边界条件 二维流动 不可压无旋流动的基本方程是位函数满足的拉普拉斯方程 不穿透条件(可滑移条件) 拉普拉斯方程的叠加原理,速度也可叠加,压强不可叠加 流函数也满足拉普拉斯方程 3.2 几种简单的二维位流 各基本解的速度、位函数、流函数 直匀流 源,汇 偶极子,偶极子的形成,轴线,方向 点涡点涡的环量 3.3 一些简单的迭加举例 直匀流加点源 压强系数 直匀流加偶极子 达朗培尔疑题

北航空气动力学选择题

北航空气动力学选择题 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

2号 1、下列说法不正确的是:C A、气体的动力粘性系数随温度的升高而升高。 B、液的动力粘性系数随温度的升高而降低。 C、有黏静止流体的压强为三个互相垂直方向的法向应力的平均值。 D、有黏运动流体的压强为三个互相垂直方向的法向应力的平均值。 2、下列说法不正确的是:D A、欧拉法认为引起流体质点速度变化的原因有流场的不均匀性和非定常性。 B、迁移加速度中的任何一项都是速度分量与同一方向的导数的乘积。 C、随体导数可用于P,T,V。 D、流体质点的迹线表示同一质点不同时刻的轨迹线,流线在同一时刻由不同流体质点组成,两者一定不重合。 3、下列说法正确的是:A A、对于密度不变的不可压流,速度的散度必为0。 B、对于密度不变的不可压流,速度的旋度必为0。 C、对于密度不变的不可压流,一定有位函数。 D、对于无旋流,速度的散度必为0。 4、下列说法正确的是:B A、连续方程只适用于理想流体。 B、伯努利方程只适用于理想流体的定常流动。 C、欧拉运动微分方程只适用于无旋流体。 D、雷诺运输方程只适用于理想流体的定常流动。

5、下列说法不正确的是:C A、流体的粘性是指流体抵抗剪切变形的能力。 B、流体的粘性剪应力是指由流体质点相对运动而产生的应力。 C、粘性静止流体具有抵抗剪切变形的能力。 D、粘性运动流体具有抵抗剪切变形的能力。 3号 1、流体的易流动性是指 c A、在任何情况下流体不能承受剪力 B、在直匀流中流体不能承受剪力 C、在静止状态下流体不能承受剪力 D、在运动状态下流体不能承受剪力 2、下列关于流体压强的各向同性描述不正确的是 d A、静止状态下的粘性流体内压强是各向同性的 B、静止状态下的理想流体内压强是各向同性的 C、运动状态下的理想流体内压强是各向同性的 D、运动状态系的粘性流体内压强是各向同性的 3、下列关于流向的描述不正确的是 d A、流线上某点的切线与该点的微团速度指向一致 B、在定常流动中,流体质点的迹线与流线重合 C、在定常流动中,流线是流体不可跨越的曲线 D、在同一时刻,一点处不可能通过两条流线 4、下列关于不可压流体的表述正确的是 c

1第一章 空气动力学基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组成成分保持不变。 从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到 1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。

空气动力学基础及飞行原理题库

《空气动力学基础及飞行原理》 1、绝对温度的零度是(C) A、-273℉ B、-273K C、-273℃ D、32℉ 2、空气的组成为(C) A、78%氮,20%氢和2%其他气体 B、90%氧,6%氮和4%其他气体 C、78%氮,21%氧和1%其他气体 D、21%氮,78%氧和1%其他气体 3、流体的粘性系数与温度之间的关系是?(B) A、液体的粘性系数随温度的升高而增大。 B、气体的粘性系数随温度的升高而增大。 C、液体的粘性系数与温度无关。 D、气体的粘性系数随温度的升高而降低。 4、空气的物理性质主要包括(C) A、空气的粘性 B、空气的压缩性 C、空气的粘性和压缩性 D、空气的可朔性 5、下列不是影响空气粘性的因素是(A) A、空气的流动位置 B、气流的流速 C、空气的粘性系数 D、与空气的接触面积 6、气体的压力

、密度<ρ>、温度三者之间的变化关系是(D) A、ρ=PRT B、T=PRρ C、P=Rρ/ T D、P=RρT 7、在大气层内,大气密度(C) A、在同温层内随高度增加保持不变。 B、随高度增加而增加。 C、随高度增加而减小。 D、随高度增加可能增加,也可能减小。 8、在大气层内,大气压强(B) A、随高度增加而增加。 B、随高度增加而减小。 C、在同温层内随高度增加保持不变。 D、随高度增加可能增加,也可能减小。 9、空气的密度(A) A、与压力成正比 B、与压力成反比 C、与压力无关。 D、与温度成正比。 10、影响空气粘性力的主要因素: (BC) A、空气清洁度B速度剃度C空气温度D、相对湿度 11、对于空气密度如下说法正确的是(B) A、空气密度正比于压力和绝对温度 B、空气密度正比于压力,反比于绝对温度 C、空气密度反比于压力,正比于绝对温度 D、空气密度反比于压力和绝对温度 12、对于音速.如下说法正确的是: (C) A、只要空气密度大,音速就大 B、只要空气压力大,音速就大 C、只要空气温度高.音速就大 D、只要空气密度小.音速就大 13、假设其他条件不变,空气湿度大(B) A、空气密度大,起飞滑跑距离长 B、空气密度小,起飞滑跑距离长 C、空气密度大,起飞滑跑距离短 D、空气密度小,起飞滑跑距离短 14、一定体积的容器中,空气压力(D) A、与空气密度和空气温度乘积成正比 B、与空气密度和空气温度乘积成反比 C、与空气密度和空气绝对湿度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 15、一定体积的容器中.空气压力(D) A、与空气密度和摄氏温度乘积成正比 B、与空气密度和华氏温度乘积成反比 C、与空气密度和空气摄氏温度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 16、对于露点温度如下说法正确的是: (BC) A、温度升高,露点温度也升高 B、相对湿度达到100%时的温度是露点温度 C、露点温度下降,绝对湿度下降 D、露点温度下降,绝对湿度升高

空气动力学复习资料

空气动力学复习 一、基本概念 1 粘性 施加于流体的应力和由此产生的变形速率以一定的关系联系起来的流体的一种宏观属性,表现为流体的内摩擦。 以气体为例,气体分子的速度是由平均速度和热运动速度两部分叠加而成,前者是气体团的宏观速度,后者决定气体的温度。若相邻两部分气体团以不同的宏观速度运动,由于它们之间有许多分子相互交换,从而带来动量的交换,使气体团的速度有平均化的趋势,这便是气体粘性的由来。 2 压缩性 流体的压缩性是流体质点在一定压力差或温度差的条件下,其体积或密度可以改变的性质。其物理意义是:单位体积流体的体积对压强的变化率。 气体流速变化时,会引起气体的压强和密度发生变化。在低速气流中,由于气流速度变化而引起的气体密度的相对变化量很小,可以把气体看作不可压缩流体来处理;高速气流压缩性的影响不能忽略,必须按可压流体来处理。一般0.3Ma作为气体是否可压的分界点。 3 理想气体 忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引和排斥,即不计分子势能,分子之间及分子与器壁之间发生的碰撞是完全弹性的,不造成动能损失。这种气体称为理想气体。 严格遵从气体状态方程的气体,叫做理想气体(Ideal gas.有些书上,指严格符合气体三大定律的气体。)从微观角度来看是指:气体分子本身的体积和气体分子间的作用力都可以忽略不计,不计分子势能的气体称为是理想气体。 4 焓 热力学中表征物质系统能量的一个重要状态参量,焓的物理意义是体系中热学能(内能)再附加上PV(压能)这部分能量的一种能量。 5理想流体 不可压缩、不计粘性(粘度为零)的流体。欧拉在忽略粘性的假定下,建立了描述理想流体运动的基本方程。理想流体和理想气体是两个不同的概念,前者指流体没有粘性,后者指气体状态参量满足气体状态方程的气体。 6 音速 音速是介质中弱扰动的传播速度,其大小因媒质的性质和状态而异。在流动的气体中,相对于气流而言,微弱扰动的传播速度也是声速。在温度T不为常数的流场中,各点的声速是不一样的,与某一点的温度相当的声速称为该点的“当

空气动力学复习题

第一章大气物理学复习题 1.粘度系数是衡量流体粘性的指标,不同的流体具有不同的粘度系数,一般液体的粘度系数随温度的升高而_______,气体的粘度系数随温度的升高而________。 2.音速大小用公式表示是什么?物理意义是什么? 3.在同一介质中,音速的大小随介质温度的升高而_______。 4.什么叫做相对湿度?湿度对飞机起飞有什么影响? 5.根据大气的物理性质,大气从地表向上依次分为5层:_______、_______、_______、_______、_______,普通客机飞行在_______层。 6.完全气体的状态方程为:_________。 7.大气温度随高度的变化关系是什么? 8.大气中短时间强烈对流产生的扰动称为阵风,阵风分为水平阵风和垂直阵风,哪一种阵风对飞机飞行的影响比较大?如何克服? 9.为了飞行安全,飞机应该_______(顺风,逆风)起飞和着陆。 10.大气污染物中_______、_______两种气体对飞机的腐蚀比较大。 第二章空气动力学复习题 1.何谓连续介质?为什么要作这样的假设? 连续介质——把空气看成是由空气微团组成的没有间隙的连续体。 作用——把空气压强(P)、密度(ρ)、温度(T)和速度(V)等状态参数看作是空间坐标及时间的连续函数,便于用数学工具研究流体力学问题。 2.何谓流场?举例说明定常流动与非定常流动有什么区别。 流场——流体所占居的空间。 定常流动——流体状态参数不随时间变化。 非定常流动——流体状态参数随时间变化。 3.何谓流线?流线谱?流管? 流线——在定常流动中,空气微团流过的路线(轨迹)。 流线谱——用流线组成的描绘流体微团流动情况的图画。 流管——在流场中取一封闭曲线,通过曲线上各点的流线所形成的管形曲面,流体不会穿越管壁流动。 4.流体的连续性方程(B ) A) 只适用于理想流动 B) 适用于可压缩和不可压缩流体的稳定管流 C) 只适用于不可压缩流体的稳定管流 D) 只适用于可压缩流体的稳定管流 5.写出不可压缩流体和可压缩流体定常流动的连续方程。 连续方程是质量守恒定律应用于运动流体所得到的数学关系式。在一维定常流动中,单位时间内通过同一流管任一截面的流体质量都相同。方程表达式:qm=ρA V(可压流,ρ≠常数)不可压流中,ρ≈常数,方程为:A V=C(常数) 6.说明气体伯努利方程的物理意义和使用条件? p+1/2ρv2=p0=常数 方程物理意义: 空气在低速一维定常流动中,同一流管的各个截面上,静压与动压之和(总压)相等。在同一流管中,流速快的地方,压力小;流速慢的地方,压力大。

相关文档
相关文档 最新文档