文档库 最新最全的文档下载
当前位置:文档库 › Coevolution and Maladaptation

Coevolution and Maladaptation

381

at Henan University of Science & Technology on March 2, 2015

https://www.wendangku.net/doc/ad7842048.html,/Downloaded from

382J.N.T HOMPSON ET AL.

posites resulting from time-lagged variable selection around means that themselves shift over time.

Coevolution adds another,fundamentally different, level of complexity to the problem.Unlike adaptation to the physical environment,adaptation to another spe-cies may induce a reciprocal genetic response,as the other species itself evolves in speci?c ways to enhance or mitigate those evolutionary changes.Hosts evolve to decrease the effectiveness of their parasites’adap-tations,and parasites evolve to decrease the effective-ness of their hosts’defenses.Even mutualisms are not immune from this process,because cheaters force changes that push coevolving mutualisms in novel di-rections.By its nature,then,the coevolutionary pro-cess tugs local populations in different evolutionary directions over time,and it is likely to shift different populations in different directions.These coevolution-ary dynamics may produce patterns of maladaptation ranging from local and ephemeral to widespread and permanent.

How maladaptation in species interactions is distrib-uted across landscapes in space and time will depend upon at least six properties of populations and the forc-es acting on them.The?rst?ve of these all introduce time lags into the coadaptation of species within local communities.

Frequency-dependent selection automatically gen-erates temporal patterns of local maladaptation in in-teractions between parasites and hosts.As natural se-lection continues to favor rare host genotypes to which the parasite is poorly adapted,it creates temporal mis-matches between host and parasite genotype frequen-cies within local communities.How much of the time parasites or hosts appear to be locally maladapted will depend upon the rates at which each species can track changes in the other species(Morand et al.,1996).A number of simulation models have now shown that a combination of differences in generation times and strengths of frequency-dependent selection often result in time lags in the adaptation of species to each other. Interacting parasites and hosts should therefore com-monly be at least slightly to moderately mismatched in defenses and counter-defenses much of the time due to time-lagged selection(e.g.,Dybdahl and Lively, 1998;Kaltz and Shykoff,1998;Lively,1999).Differ-ences among populations in the length of time lags will in themselves generate different local temporal patterns in degree of maladaptation of locally inter-acting species.

Density-dependent selection may favor different levels of virulence and defense at different host and parasite densities.Models of predator/prey interactions have indicated that regions of high prey productivity (e.g.,prey birth rates)will favor different coevolution-ary dynamics than regions of low productivity(Hoch-berg and van Baalen,1998).Consequently,rapidly ?uctuating population densities could potentially cre-ate time delays in response to selection,thereby gen-erating temporal patterns of maladaptation in the de-gree of matching among traits.In addition,mismatches can result within?uctuating populations even in the

absence of direct density-dependent selection,if the interacting populations are driven through genetic bot-

tlenecks during epidemic cycles(Burdon and Thomp-

son,1995).

Dormancy/diapause in one of the species has the

potential to introduce time lags into coevolving inter-

actions and thereby create local maladaptation.Recent

studies have suggested that the timing of diapause in

some prey species is related to the seasonal pattern of

intensity of predation,and that selection for diapause

timing is subject to?uctuating selection(Ellner et al.,

1999).Similar?uctuating selection must certainly oc-

cur in interactions between symbionts and hosts.Stud-

ies of local adaptation in sister species or populations

that differ in dormancy/diapause length would be use-

ful in developing our understanding of the dynamics

of maladaptation.

Genetic architecture of interactions in itself can

have important effects on the coevolutionary process

(e.g.,Thompson and Burdon,1992;Frank,1993b,

1996;Burdon et al.,1996;Doebeli,1996;Abrams,

2000;Roy and Kirchner,2000).Recent models have

indicated that host resistance governed by quantitative

genetic effects may create different patterns of selec-

tion and dynamics on parasite virulence than host re-

sistance governed by major gene effects(Gandon and Michalakis,2000).Nevertheless,quantitative genetic

theory on how additivity of traits,epistasis,and plei-

otropy affect the temporal dynamics of coevolutionary maladaptation is still developing.Moreover,there are

major gaps in our understanding of some of the most fundamental questions on the genetic dynamics of co-evolution.For example,we know that most plants are

polyploid and that polyploidy can have major effects

on some plant/insect interactions(Thompson et al.,

1997;Segraves and Thompson,1999;Nuismer and Thompson,2001),but we know nothing about how polyploidy affects coevolutionary dynamics.

Adaptation to multiple hosts or symbionts creates

potential compromises in selection that can make a

pairwise interaction appear maladapted(Combes,

1997).In some cases the maladaptation may be real, depending upon the temporal dynamics of coevolution

involving all the interacting species.In other cases,the adaptations of symbionts or hosts may be the locally

weighted outcomes of selection imposed by their en-

emies.The few studies of adaptive landscapes created

by multispeci?c interactions show evidence of com-

plex?tness surfaces(e.g.,Simms and Rausher,1993).

Studies of a number of symbiont/host interactions have

indicated that adaptation to different hosts can create

either negative trade-offs,positive correlations,asym-

metric effects on performance on different hosts,or no

clear correlations in host-related adaptations(e.g.,Via,

1994;Fry,1996;Thompson,1996;Kraaijeveld et al.,

1998;Fellowes et al.,1999;Crill et al.,2000;Turner

and Elena,2000).Moreover,the structure of these cor-

relations may change over time(Joshi and Thompson,

1995).How the dynamics of these positive and nega-

at Henan University of Science & Technology on March 2, 2015https://www.wendangku.net/doc/ad7842048.html,/

Downloaded from

383 C OEVOLUTION AND M ALADAPTATION

tive correlations relate to the overall adaptation and maladaptation of populations remains largely unre-solved.

The geographic structure of interactions is the?nal crucial component of interactions,shaping the pattern of both temporal and spatial maladaptation.Almost all widespread symbiotic interactions that have been stud-ied show some geographic structure,varying across landscapes in the traits and outcomes that shape co-evolutionary trajectories(e.g.,Berenbaum and Zan-gerl,1998;Parker and Spoerke,1998;Burdon et al., 1999;Lively,1999;Parker,1999;Thompson,1999a; de Jong et al.,2000).Because spatial structure is so prevalent,its role in adaptation and coadaptation is becoming one of the fundamental problems in evolu-tionary biology(e.g.,Wade and Goodnight,1998; Thompson,1999b;Avise,2000).

Developing predictions about the geographic struc-ture of maladaptation requires consideration of three widespread phenomena,which together comprise the core of the geographic mosaic theory of coevolution: selection mosaics,coevolutionary hotspots,and trait remixing across landscapes(Thompson,1994,1999b). Selection mosaics arise when the type or strength of selection on interactions varies across the geographic range of an interaction.The interactions between the pollinating?oral parasite Greya politella and its host plants,for instance,have the potential to shift between mutualism and antagonism across habitats.This vari-ation in outcome is driven largely by the availability of co-pollinators,such that the interaction is mutual-istic in environments where co-pollinators are rare or relatively inef?cient but antagonistic in environments where co-pollinators are abundant(Thompson and Pellmyr,1992;Pellmyr and Thompson,1996;Thomp-son,1997).

These selection mosaics can,in turn,result in a mo-saic of coevolutionary hotspots and coldspots across landscapes.Coevolutionary hotspots are those com-munities where selection acting on an interaction is truly reciprocal.Crossbills and lodgepole pines,for ex-ample,have coevolved only in those parts of the Rocky Mountains of North America where pine squir-rels,which are the major biotic driver of lodgepole pine evolution in the Rockies,are rare or absent (Benkman,1999).Because many interactions may be coevolutionary within only a fraction of their geo-graphic range,spatial variation between coevolution-ary hotspots and coldspots may drive much of the ob-served dynamics of maladaptation.

Metapopulation dynamics and complex patterns of gene movement across broader geographic landscapes are the additional important components of geograph-ically structured coevolution.(e.g.,Gandon et al., 1996;Burdon and Thrall,1999;Burdon et al.,1999). Local metapopulation dynamics may sometimes occur within a similar coevolutionary selection regime,but those dynamics are in turn embedded in larger geo-graphic groups of populations that may be under dif-ferent evolutionary and coevolutionary pressures.The longterm study of the geographic dynamics of gene-

for-gene coevolution between wild?ax and?ax rust

in Australia exempli?es how coevolution between spe-

cies can be continually reshaped by metapopulation dynamics and gene movement across local and broader geographic landscapes(Burdon and Thrall,2000).

These studies have demonstrated that the ongoing co-evolution of species may,in fact,often require com-

plex geographic structure.

T HE D YNAMICS OF C OEVOLUTIONARY M ALADAPTATION

Recent mathematical models of the geographic mo-

saic of coevolution have begun to suggest that com-

plex mosaics of maladaptation are a likely conse-quence of geographically structured species interac-

tions.The models suggest that selection mosaics,co-evolutionary hotspots,and trait remixing through gene

?ow and metapopulation dynamics are capable of act-

ing together to create novel patterns of local and re-

gional maladaptation in coevolving species.

Metapopulation structure and broader geographic

structure

Coevolutionary models incorporating gene?ow and metapopulation structure among populations have

shown that coevolutionary dynamics in spatially struc-

tured populations connected by gene?ow differ from

the dynamics of locally coevolving species.These

novel dynamics and patterns of maladaptation can be especially pronounced when relative gene?ow rates

differ between hosts and parasites,as has now been demonstrated in some symbiotic interactions(e.g., Dybdahl and Lively,1996).These differential gene

?ow rates can create conditions under which one spe-

cies becomes relatively more maladapted than the oth-

er across landscapes.These novel dynamics could de-

velop even in the absence of selection mosaics and coevolutionary hotspots.

For example,recent models incorporating gene?ow

and extinction/recolonization dynamics have suggested

that spatial patterns of maladaptation may frequently develop in host/parasite interactions(Gandon et al.,

1996,1998).Furthermore,these models suggest that

hosts may be less maladapted than parasites whenever

host gene?ow is higher than parasite gene?ow and

overall parasite gene?ow is low.Maladaptation in this

case means that parasites perform worse on their local

host than on allopatric hosts,and host resistance to

local parasites is relatively high.Shifting the relative

and absolute gene?ow rates between parasites and

hosts shifts their degrees of local adaptation relative to

one another.These results,however,have a complex structure,generating strong temporal patterns in the degrees of local maladaptation found in parasites and hosts.

Related spatial models using either a matching al-

leles or gene-for-gene structure have shown that meta-population structure often allows for maintenance of genetic variation over longer periods of time in host/ symbiont interactions than is possible through local

at Henan University of Science & Technology on March 2, 2015https://www.wendangku.net/doc/ad7842048.html,/

Downloaded from

384J.N.T HOMPSON ET AL.

coevolutionary dynamics alone(e.g.,Frank,1993a; Antonovics,1994;Damgaard,1999;Thrall and Bur-don,1999).Consequently,geographically structured coevolution provides ecological conditions under which coevolving populations could cycle through various states of adaptation and maladaptation over long periods of time as host and symbiont populations evolve through frequency-dependent selection,gene ?ow,and random genetic drift.

Selection mosaics

The current generation of metapopulation models assumes that the structure of selection is similar across space.Selection mosaics,however,are likely to be common in many interspeci?c interactions,depending upon the initial conditions under which the interaction arose,the genetic structure of local populations,the life histories of the local interacting populations,and the physical environments in which the interaction oc-curs.Even if the overall outcome(e.g.,mutualism)is the same across landscapes,coevolution may follow different trajectories in different populations.Parker’s (1999)models of the evolution of symbiotic mutual-isms suggest that geographic divergence may result from differences among populations in initial genetic conditions,which lead to subsequent?xation of dif-ferent allelic combinations in different populations. More recently,the models of Switzes and Moody (2001)have indicated that local coevolutionary dy-namics involving diploid species(in particular,a dip-loid species interacting with a haploid species in their analysis)can show a wider range of dynamics and equilibria than found in haploid models.Their results suggest that selection mosaics are likely to be common in species interactions even in the absence of major environmental differences across landscapes,as a re-sult of different initial conditions among populations and the complex genetic dynamics of coevolution.

In many interactions,however,the environments and ecological outcomes differ greatly across land-scapes.An interaction may even be mutualistic in one environment,but antagonistic or commensalistic in an-other.If local mutualistic selection is stronger than an-tagonistic selection in neighboring communities,a lo-cal mutualism can be protected from invasion by other antagonistic genotypes(Nuismer et al.,1999).Under other conditions,however,mutualisms may?uctuate in gene frequency over time,if they are linked by gene ?ow to communities in which the same interaction is strongly antagonistic.These local mutualistic popula-tions will create coevolutionary dynamics similar to that observed in parasite/host interactions driven by frequency-dependent selection(Nuismer et al.,1999). The coevolutionary trajectories of coevolving inter-actions will therefore depend not only upon the pattern of gene?ow among populations but also upon the rel-ative strengths of selection in different habitats and the overall strength of selection relative to gene?ow.

Even if selection favors local?xation of traits in mutualistic interactions,it may take hundreds of gen-erations for the mutualism to become genetically sta-

bilized,when selection varies from antagonism to mu-

tualism among communities(Nuismer et al.,1999).

How long it takes for an interaction to become genet-

ically stabilized depends upon the relative strength of

selection in the different communities and the amount

of gene?ow between communities.This stabilization

itself assumes that the outcomes of interactions do not

vary among the genetically connected communities

over time.Hence,any biologist studying the structure

of a local interaction within a natural community is

often likely to be studying an interaction in nonequi-

librium.

If the populations are connected clinally across landscapes,a broad range of maladaptive outcomes is possible.Recent models suggest that coevolutionary

clines produced by antagonistic interactions are likely

to be highly dynamic over time,producing geograph-

ically shifting patterns of adaptation and maladaptation (Nuismer et al.,2000).In contrast,mutualistic clines

tend toward a stable geographic equilibrium in allele frequencies.

In more geographically complicated interactions

that vary from antagonism to mutualism among com-munities,maladaptation can occur not only at the boundaries of these different outcomes,but also well

into neighboring areas across the geographic landscape

(Fig.1).Moreover,strong spikes of maladaptation(rel-

ative to local potential?tness peaks)can occur in host populations at the boundary between mutualistic and antagonistic sites.Those spikes can be especially pro-

nounced whenever the strength of selection in the mu-

tualistic sites is much stronger than the strength of se-

lection in the antagonistic sites(Fig.1a,b,c).

Finally,the demographic structure of interacting

hosts and symbionts has the potential to further re-

shape selection mosaics in symbiotic interactions.In a

recent model,Hochberg et al.(2000)assumed that

host populations varied geographically from demo-

graphic sources to sinks in the absence of symbionts,

and then explored competition between virulent and

relatively avirulent symbionts.Their models indicated

that the interactions were more likely to evolve toward increased antagonism in environments that are demo-

graphic sources for the host and toward mutualism in environments that are weak demographic sinks.In

these models,weak demographic sinks become the

likely sources for symbiotic mutualisms.

Coevolutionary hotspots

In addition to the effects of gene?ow and selection mosaics,recent models have suggested that coevolu-

tion need not be ubiquitous to shape the evolution of

species interactions.Coevolutionary hotspots,whether antagonistic or mutualistic,can shape the overall tra-

jectories of species interactions,even when the hot-

spots are uncommon relative to the coldspots(Go-mulkiewicz et al.,2000).In the process,hotspots can

generate either increased or decreased maladaptation

in species interactions,and they may do so either lo-

at Henan University of Science & Technology on March 2, 2015https://www.wendangku.net/doc/ad7842048.html,/

Downloaded from

385

C OEVOLUTION

AND

M

ALADAPTATION F IG .1.The spatial structure of maladaptation in a host and sym-biont for an interaction that varies between mutualism and antago-nism.Maladaptation is scaled relative to the local adaptive peak for each population.The interaction is composed of a central core of mutualistic communities (between ?20to ?20),surrounded on ei-ther side by antagonistic communities.Gene ?ow for both species follows a Gaussian distribution with migration variance ?2?2for both species.As the strength of mutualistic selection increases from panels A through C,the level of maladaptation experienced within the mutualistic habitat decreases.This decrease in maladaptation within the mutualism leads to a corresponding increase in malad-aptation at the interface between mutualistic and antagonistic habi-tats.In all ?gure panels the rate of gene ?ow remains constant,demonstrating that observed patterns of maladaptation depend fun-damentally on the strength of local selection.Relative maladaptation (here displayed as a percentage)is de?ned as (w max ?w mean )/(w max ?w min ),where w max and w min are the maximum and minimum local ?tnesses,respectively,for a species and w mean is its local mean ?t-ness.These ?gures were generated by numerical simulation of the model described in Nuismer et al.

(2000).

F I

G .2.The spatial structure of maladaptation in host and parasite for an interspeci?c interaction that spans coevolutionary hotspots and coldspots.Maladaptation is scaled relative to the local adaptive peak for each population.Panels show the dynamics of relative mal-adaptation in hot spots (left panels)and cold spots (right panels)for a parasite (open symbols)and its host (closed symbols)over 300generations of coevolution for three levels of gene ?ow (m ).See Figure 1for the de?nition of relative maladaptation used here.Sim-ulations are based on the model described in the legend of ?gure 6of Gomulkiewicz et al.(2000).

cally or globally.Depending upon the geographic structure of selection and the extent of gene ?ow,pop-ulations of coevolving species can experience higher ?tness either in the hotspots or the coldspots.Hence,patterns of local adaptation will depend upon the geo-graphic mix of genetically connected coevolutionary hotspots and coldspots,and local populations may commonly cycle in maladaptation over time.

For example,consider two interactions between a symbiont and a host,with a geographic structure sim-ilar to that used in Figure 1.In one community,the interaction is in a coevolutionary hotspot in which fre-quency-dependent selection drives the interaction as a parasite/host relationship;in the other,the interaction is in a coldspot in which the interaction is commen-salistic and acts only on the parasite (Fig.2).In the absence of gene ?ow between the hotspot and cold-spot,the relative maladaptation of the species in the hotspot cycles with increasing oscillations,whereas in

the coldspot the interaction rapidly approaches an adaptive peak.With moderate gene ?ow between the hotspot and coldspot (m ?0.1),the interacting species become permanently moderately maladapted in both communities,despite the local differences in the struc-ture of selection.With even higher levels of gene ?ow (m ?0.4),the populations of both species oscillate over time in relative maladaptation in the hotspot and in the coldspot.It is evident from this simple simula-tion that a geographic mix of hotspots and coldspots could maintain complex patterns of adaptation and maladaptation across landscapes.

D ISCUSSION

The study of coevolving symbioses has often been plagued by inexplicable patterns of local outcome that require ad hoc explanations.As we continue to devel-op a full theory of coevolution based upon the actual genetic,ecological,and historical structure of inter-actions,we will become better at interpreting the pat-terns of adaptation,apparent maladaptation,and real maladaptation that we ?nd in local studies of interact-ing populations.We are already beginning to under-stand that local maladaptation is not always necessarily

at Henan University of Science & Technology on March 2, 2015

https://www.wendangku.net/doc/ad7842048.html,/Downloaded from

386J.N.T HOMPSON ET AL.

a result of the failure of coevolutionary selection to adapt species to each other.Instead,local maladapta-tion—sometimes transient;sometimes more perma-nent—is an inevitable and important part of the co-evolutionary process for species interactions distrib-uted across complex landscapes.

The maladaptation found in interactions is the origin of future evolution.The deviation from adaptation drives further selection.In that respect,coevolution is likely a central force in most populations and species, driving ongoing selection and new evolutionary solu-tions.One way of thinking of antagonistic coevolution between parasites and hosts is as a process favoring traits that make the other species more maladapted. The formation of mutualistic interactions changes the structure of selection,but it does not eliminate the role of maladaptation as a major component of coevolu-tionary selection.Cheaters are inevitable within mu-tualisms,either as cheater genotypes within the mu-tualistic species or as yet other species that exploit the mutualism.The result is that most mutualisms can erode over time in the absence of ongoing selection to mitigate what could otherwise become a ratchet of maladaptation.

All the current mathematical models of the geo-graphic mosaic of coevolution produce complex spa-tial patterns and dynamics.Spikes of maladaptation, for instance,can occur near the boundaries of coevo-lutionary hotspots and selection mosaics.These spikes may re?ect what can actually happen at boundaries,or they may re?ect the simplifying genetic assumptions of the models and the simplifying ecological assump-tions about the structure of hotspot boundaries.No models of selection mosaics and coevolutionary hot-spots have incorporated metapopulation dynamics, with either extinction/recolonization or source/sink structures.More complex models with linked genetics and epistasis and more complex demography will like-ly show even more complex patchworks of maladap-tation across landscapes.These dynamics will likely depend upon the distribution of selection mosaics,co-evolutionary patterns,relative rates of gene?ow,and metapopulation dynamics.Even so,the current results already suggest that most geographically structured in-teractions will generate a mix of highly adapted,mod-erately well adapted,and maladapted populations.

Darwin understood that the most convincing evi-dence for evolution was in the imperfection of nature and the jury-rigged structure of adaptation.Subsequent evolutionary biologists have understood this fact as well.Nonetheless,it has taken longer to realize that coevolution,which produces some of the best exam-ples of exquisite adaptation,relies upon a constant in-terplay of adaptation and maladaptation to drive much of the ongoing adaptation and diversi?cation of life.

Understanding the geographic structure and dynam-ics of maladaptation is becoming increasingly impor-tant as we continue to alter communities worldwide. Ecological conditions creating maladaptation in inter-actions through introduction of new taxa and geno-types may be increasing as anthropogenic alteration of communities worldwide rapidly remixes traits among populations that have been traditionally widely sepa-

rated(Harvell et al.,1999).Managing the ecological dynamics of interspeci?c interactions,whether para-

sitic or mutualistic,will rely upon understanding and managing coevolutionary dynamics.The current mod-

els and empirical studies on the geographic mosaic of coevolution are beginning to move our understanding

in that direction.

A CKNOWLEDGMENTS

We thank Mary Beth Saffo for organizing the sym-

posium,and Rebecca Hufft and two anonymous re-

viewers for very helpful comments on the manuscript.

This work was supported by NSF grant DEB-0073911

and DEB-0083548.

R EFERENCES

Abrams,P.A.2000.The evolution of predator-prey interactions: Theory and evidence.Ann.Rev.Ecol.Syst.31:79–105.

Antonovics,J.1994.The interplay of numerical and gene-frequency dynamics in host-pathogen systems.In L.A.Real(ed.),Eco-

logical genetics,pp.129–145.Princeton University Press,

Princeton.

Avise,J.C.2000.Phylogeography:The history and formation of species.Harvard University Press,Harvard.

Benkman,C.W.1999.The selection mosaic and diversifying co-evolution between crossbills and lodgepole pine.Am.Natur.

153:S75–S91.

Berenbaum,M.and A.Zangerl.1998.Chemical phenotype match-ing between a plant and its insect herbivore.Proc.Natl.Acad.

Sci.U.S.A.95:13743–13748.

Burdon,J.J.and J.N.Thompson.1995.Changed patterns of resis-tance in a population of Linum marginale attacked by the rust

pathogen Melampsora lini.J.Ecol.83:199–206.

Burdon,J.J.and P.H.Thrall.1999.Spatial and temporal patterns in coevolving plant and pathogen associations.Am.Natur.153:

S15–S33.

Burdon,J.J.and P.H.Thrall.2000.Coevolution at multiple spatial scales:Linum marginale-Melampsora lini—from the individual

to the species.Evol.Ecol.14:261–281.

Burdon,J.J.,P.H.Thrall,and A.H.D.Brown.1999.Resistance and virulence structure in two Linum marginale-Melampsora

lini host-pathogens metapopulations with different mating sys-

tems.Evolution53:704–716.

Burdon,J.J.,A.Wennstrom,T.Elmqvist,and G.C.Kirby.1996.

The role of race speci?c resistance in natural plant populations.

Oikos76:411–416.

Chihade,J.W.2000.Origin of mitochondria in relation to evolu-tionary history of eukaryotic alanyl-tRNA synthetase.Proc.

Natl.Acad.Sci.U.S.A.97:12153–12157.

Combes,C.1997.Fitness of parasites:Pathology and selection.In-ternat.J.Parasitol.27:1–10.

Crespi,B.J.2000.The evolution of maladaptation.Heredity84: 623–629.

Crill,W.D.,H.A.Wichman,and J.J.Bull.2000.Evolutionary reversals during viral adaptation to alternating hosts.Genetics

154:27–37.

Damgaard,C.1999.Coevolution of a plant host–pathogen gene-for-gene system in a metapopulation model without cost of resis-

tance or cost of virulence.J.Theor.Biol.201:1–12.

de Jong,P.W.,H.O.Frandsen,L.Rasmussen,and J.K.Nielsen.

2000.Genetics of resistance against defences of the host plant

Barbarea vulgaris in a Danish?ea beetle population.Proc.

Royal Soc.London B267:1663–1670.

Doebeli,M.1996.An explicit genetic model for ecological character displacement.Ecology77:510–520.

Dybdahl,M.F.and C.M.Lively.1996.The geography of coevo-

at Henan University of Science & Technology on March 2, 2015https://www.wendangku.net/doc/ad7842048.html,/

Downloaded from

387 C OEVOLUTION AND M ALADAPTATION

lution:Comparative population structures for a snail and its trematode parasite.Evolution50:2264–2275.

Dybdahl,M.F.and C.M.Lively.1998.Host-parasite coevolution: Evidence for rare advantage and time-lagged selection in a nat-ural population.Evolution52:1057–1066.

Ellner,S.P.,J.Hairston,N.G.,C.M.Kearns,and D.Kaba?¨.1999.

The roles of?uctuating selection and long-term diapause in microevolution of diapause timing in a freshwater copepod.

Evolution53:111–122.

Fellowes,M.D.E.,A.R.Kraaijeveld,and H.C.J.Godfray.1999.

Cross-resistance following arti?cial selection for increased de-fense against parasitoids in Drosophila melanogaster.Evolution 53:966–972.

Frank,S.A.1993a.Coevolutionary genetics of plants and patho-gens.Evol.Ecol.7:45–75.

Frank,S.A.1993b.Evolution of host-parasite diversity.Evolution 47:1721–32.

Frank,S.A.1996.Statistical properties of polymorphism in host-parasite genetics.Evol.Ecol.10:307–317.

Fry,J.D.1996.The evolution of host specialization:Are trade-offs overrated?Am.Natur.148:S84–S107.

Gandon,S.,Y.Capowiez,Y.Dubios,Y.Michalakis,and I.Olivieri.

1996.Local adaptation and gene-for-gene coevolution in a metapopulation model.Proc.Royal Soc.London B263:1003–1009.

Gandon,S.,D.Ebert,I.Olivieri,and Y.Michalakis.1998.Differ-ential adaptation in spatially heterogeneous environments and host-parasite coevolution.In S.Mopper and S.Y.Strauss(eds.), Genetic structure and local adaptation in natural insect popu-lations:Effects of ecology,life history,and behavior,pp.325–342.Chapman and Hall,New York.

Gandon,S.and Y.Michalakis.2000.Evolution of parasite virulence against qualitative or quantitative host resistance.Proc.Royal Soc.London B267:985–990.

Gomulkiewicz,R.,J.N.Thompson,R.D.Holt,S.L.Nuismer,and M.E.Hochberg.2000.Hot spots,cold spots,and the geograph-ic mosaic theory of coevolution.Amer.Natur.156:156–174. Harvell,C.D.,K.Kim,J.M.Burkholder,R.R.Colwell,P.R.

Epstein,D.J.Grimes,E.E.Hofmann,E.K.Lipp,A.D.M.E.

Osterhaus,R.M.Overstreet,J.W.Porter,G.W.Smith,and G.

R.Vasta.1999.Emerging marine diseases—Climate links and anthropogenic factors.Science285:1505–1510.

Hochberg,M.E.,R.Gomulkiewicz,R.D.Holt,and J.N.Thomp-son.2000.Weak sinks could cradle mutualisms—Strong sourc-es should harbour parasitic symbioses.J.Evol.Biol.13:213–222.

Hochberg,M.E.and M.van Baalen.1998.Antagonistic coevolution over productivity gradients.Am.Natur.152:620–634.

Joshi,A.and J.N.Thompson.1995.Trade-offs and the evolution of host specialization.Evol.Ecol.9:82–92.

Kaltz,O.,S.Gandon,Y.Michalakis,and J.A.Shykoff.1999.Local maladaptation in the anther-smut fungus Microbotryum viola-ceum to its host plant Silene latifolia:Evidence from a cross-inoculation experiment.Evolution53:395–407.

Kaltz,O.and J.A.Shykoff.1998.Local adaptation in host-parasite systems.Heredity81:361–370.

Kirkpatrick,M.and N.H.Barton.1997.Evolution of a species’range.Am.Natur.150:1–23.

Koskela,T.,V.Salonen,and P.Mutikainen.2000.Local adaptation of a holoparasitic plant,Cuscuta europea:Variation among pop-ulations.J.Evol.Biol.13:749–755.

Kraaijeveld,A.R.,J.J.M.van Alphen,and H.C.J.Godfray.1998.

The coevolution of host resistance and parasitoid virulence.Par-asitology116:S29–S45.

Lively,C.M.1999.Migration,virulence,and the geographic mosaic of adaptation by parasites.Am.Natur.153:S34–S47.Morand,S.,S.D.Manning,and M.E.J.Woolhouse.1996.Parasite-host coevolution and geographic patterns of parasite infectivity

and host susceptibility.Proc.Royal Soc.London B263:119–

128.

Nuismer,S.L.and J.N.Thompson.2001.Plant polyploidy and non-uniform effects on insect herbivores.Proc.Royal Soc.London

B268:1937–1940.

Nuismer,S.L.,J.N.Thompson,and R.Gomulkiewicz.1999.Gene ?ow and geographically structured coevolution.Proc.Royal So-

ciety London B266:605–609.

Nuismer,S.L.,J.N.Thompson,and R.Gomulkiewicz.2000.Co-evolutionary clines across selection mosaics.Evolution54:

1102–1115.

Oppliger,A.,R.Vernet,and M.Baez.1999.Parasite local malad-aptation in the Canarian lizard Gallotia galloti(Reptilia:Lac-

ertidae)parasitized by haemogregarian blood parasite.J.Evol.

Biol.12:951–955.

Parker,M.A.1999.Mutualism in metapopulations of legumes and rhizobia.Am.Natur.153:S48–S60.

Parker,M.A.and J.M.Spoerke.1998.Geographic structure of lineage associations in a plant-bacterial mutualism.J.Evol.

Biol.11:549–562.

Pellmyr,O.and J.N.Thompson.1996.Sources of variation in pol-linator contribution within a guild:the effects of plant and pol-

linator factors.Oecologia107:595–604.

Roy,B.A.and J.W.Kirchner.2000.Evolutionary dynamics of pathogen resistance and tolerance.Evolution54:51–63.

Segraves,K.A.and J.N.Thompson.1999.Plant polyploidy and pollination:Floral traits and insect visits to diploid and tetra-

ploid Heuchera grossulariifolia.Evolution1114–1127.

Simms,E.L.and M.D.Rausher.1993.Patterns of selection on phytophage resistance in Ipomaea purpurea.Evolution47:907–

976.

Switzes,J.M.and M.E.Moody.2001.Coevolutionary interactions between a haploid species and a diploid species.J.Math.Biol.

42:175–194.

Thompson,J.N.1994.The coevolutionary process.University of Chicago Press,Chicago.

Thompson,J.N.1996.Trade-offs in larval performance on normal and novel hosts.Entomol.Exp.Appl.80:133–139.

Thompson,J.N.1997.Evaluating the dynamics of coevolution among geographically structured populations.Ecology78:

1619–1623.

Thompson,J.N.1999a.The evolution of species interactions.Sci-ence284:2116–2118.

Thompson,J.N.1999b.Speci?c hypotheses on the geographic mo-saic of coevolution.Am.Natur.153:S1–S14.

Thompson,J.N.and J.J.Burdon.1992.Gene-for-gene coevolution between plants and parasites.Nature360:121–125.

Thompson,J.N.,B.M.Cunningham,K.A.Segraves,D.M.Althoff, and D.Wagner.1997.Plant polyploidy and insect/plant inter-

actions.Am.Natur.150:730–743.

Thompson,J.N.and O.Pellmyr.1992.Mutualism with pollinating seed parasites amid co-pollinators:Constraints on specializa-

tion.Ecology73:1780–1791.

Thrall,P.H.and J.J.Burdon.1999.The spatial scale of pathogen dispersal:Consequences for disease dynamics and persistence.

Evol.Ecol.Res.1:681–702.

Turner,P.E.and S.F.Elena.2000.Cost of host radiation in an RNA virus.Genetics156:1465–1470.

Via,S.1994.Population structure and local adaptation in a clonal herbivore.In L.A.Real(ed.),Ecological genetics,pp.58–85.

Princeton University Press,Princeton.

Wade,M.J.and C.J.Goodnight.1998.The theories of Fisher and Wright in context of metapopulations:When nature does many

small experiments.Evolution52:1537–1553.

at Henan University of Science & Technology on March 2, 2015https://www.wendangku.net/doc/ad7842048.html,/

Downloaded from

智能存包柜(储物柜)产品技术说明书

条码式寄存柜(储物柜)产品技术说明 一、适用范围 自助行李寄存柜,用于高效率、规范化且消费群体较密集的高档公共场所,如:超市、学校、机场、俱乐部、游泳馆、健身房、超市、大卖场、商场、事业单位等。客户可根据自身特点选择不同类型的机组,有条码型、指纹型、IC卡、条形码卡、磁卡、射频卡以及TM扣等,或者使用客户各自所持有的会员卡。 二、基本组成 自助行李寄存柜,是由嵌入式计算机进行控制,具有管理功能的小件物品寄存系统。主要由输入设备(条码阅读器)、输出设备(如中文液晶显示)、嵌入式计算机处理中心、管理软件以及电源组成。 三、结构、材料、钣金说明 寄存柜柜体选用0.8mm以上优质冷轧板,经冷加工成形后,用二氧化碳气体保护焊焊接装配而成,柜体结构坚固结实。箱体表面经除锈、除油、打磨、磷化处理后喷塑,塑面的颜色可由用户选定。?箱门背面增加纵向加强筋,提高箱门的防撞击能力;能有效防止和降低使用者因疏忽碰伤、磕伤,电控锁采用360度具有防撬、带防软片插入装置。 四、元器件说明 1)电控锁:经过10万次寿命测试无故障,性能可靠稳定。部件的表面均作热 涂锌防锈处理,装配成形后每把锁均作电气绝缘试验和开启试验,并按加工批量的1%作寿命试验。 2)扫描枪:台湾欣技C1000,性能稳定,读码速度快。 3)液晶显示屏:3.5寸彩色显示屏。例如:

表示:空箱,顾客可以存入的箱子 表示:满箱,有合法密码,箱内有物 4)打印机:自主研发使用日本精工打印机芯。 5)控制主板:自主研发生产。 6)切纸刀:自主研发生产、10万次寿命测试,性能稳定,配有走纸导向。 7)控制芯片:采用国际上著名大公司的工业级产品,有ATMEL公司、INTEL公 司、日立公司、德州公司等。 8)键盘:选用电话机水晶键盘,工作可靠,永不退色,使用寿命长。 五、常规技术指标 (1)功率-待机:25W 开箱:60W (2)电源电压:AC110V—AC240V 50HZ (3)后备电源(可选):18V 7AH (4)打印速度:35mm/s (5)打印机寿命:50Km (6)柜体冷轧钢板厚度:0.8mm (7)读码速度:<0.4s (8)显示分辨率:3.5寸彩色液晶屏(可定制显示LOGO) 六、条码寄存柜主要功能说明 ?大屏幕液晶显示屏 操作步骤提示、箱门5种状态显示、时钟显示、常规故障指示、设置菜单、管理界面、工作状态显示等。 在现场安装就位后,确认各个部件正常后,即可上电开机,完整的显示: ?全开放式中文设置菜单(可定制多国语言、语音) 寄存柜的各个管理参数全部面向客户开放,客户可选择相应的菜单进行设置。设有三级管理密码,方便不同级别的管理要求。 ?快捷管理员管理菜单 在管理模式下,管理快捷菜单可应急开启箱门、清除箱门ID、查询箱门状态等操作。可设置500位管理员进行管理,每个管理员可根据自己的用户号及管

脐带干细胞综述

脐带间充质干细胞的研究进展 间充质干细胞(mesenchymal stem cells,MSC S )是来源于发育早期中胚层 的一类多能干细胞[1-5],MSC S 由于它的自我更新和多项分化潜能,而具有巨大的 治疗价值 ,日益受到关注。MSC S 有以下特点:(1)多向分化潜能,在适当的诱导条件下可分化为肌细胞[2]、成骨细胞[3、4]、脂肪细胞、神经细胞[9]、肝细胞[6]、心肌细胞[10]和表皮细胞[11, 12];(2)通过分泌可溶性因子和转分化促进创面愈合;(3) 免疫调控功能,骨髓源(bone marrow )MSC S 表达MHC-I类分子,不表达MHC-II 类分子,不表达CD80、CD86、CD40等协同刺激分子,体外抑制混合淋巴细胞反应,体内诱导免疫耐受[11, 15],在预防和治疗移植物抗宿主病、诱导器官移植免疫耐受等领域有较好的应用前景;(4)连续传代培养和冷冻保存后仍具有多向分化潜能,可作为理想的种子细胞用于组织工程和细胞替代治疗。1974年Friedenstein [16] 首先证明了骨髓中存在MSC S ,以后的研究证明MSC S 不仅存在于骨髓中,也存在 于其他一些组织与器官的间质中:如外周血[17],脐血[5],松质骨[1, 18],脂肪组织[1],滑膜[18]和脐带。在所有这些来源中,脐血(umbilical cord blood)和脐带(umbilical cord)是MSC S 最理想的来源,因为它们可以通过非侵入性手段容易获 得,并且病毒污染的风险低,还可冷冻保存后行自体移植。然而,脐血MSC的培养成功率不高[19, 23-24],Shetty 的研究认为只有6%,而脐带MSC的培养成功率可 达100%[25]。另外从脐血中分离MSC S ,就浪费了其中的造血干/祖细胞(hematopoietic stem cells/hematopoietic progenitor cells,HSCs/HPCs) [26, 27],因此,脐带MSC S (umbilical cord mesenchymal stem cells, UC-MSC S )就成 为重要来源。 一.概述 人脐带约40 g, 它的长度约60–65 cm, 足月脐带的平均直径约1.5 cm[28, 29]。脐带被覆着鳞状上皮,叫脐带上皮,是单层或复层结构,这层上皮由羊膜延续过来[30, 31]。脐带的内部是两根动脉和一根静脉,血管之间是粘液样的结缔组织,叫做沃顿胶质,充当血管外膜的功能。脐带中无毛细血管和淋巴系统。沃顿胶质的网状系统是糖蛋白微纤维和胶原纤维。沃顿胶质中最多的葡萄糖胺聚糖是透明质酸,它是包绕在成纤维样细胞和胶原纤维周围的并维持脐带形状的水合凝胶,使脐带免受挤压。沃顿胶质的基质细胞是成纤维样细胞[32],这种中间丝蛋白表达于间充质来源的细胞如成纤维细胞的,而不表达于平滑肌细胞。共表达波形蛋白和索蛋白提示这些细胞本质上肌纤维母细胞。 脐带基质细胞也是一种具有多能干细胞特点的细胞,具有多项分化潜能,其 形态和生物学特点与骨髓源性MSC S 相似[5, 20, 21, 38, 46],但脐带MSC S 更原始,是介 于成体干细胞和胚胎干细胞之间的一种干细胞,表达Oct-4, Sox-2和Nanog等多

二、分析天平的基本操作

模块二滴定分析基本操作任务一分析天平的基本操作 一、分析天平的分类 分析天平是定量分析中最常用的准确称量物质的仪器。分析天平分类:等臂(双盘)分析天平、不等臂(单盘)分析天平、电子天平。 二、电子天平的介绍 1、工作原理:电磁平衡原理,秤盘通过支架连杆支架作用于线圈上,重力方向向下。线圈内有电流通过时,根据电磁基本理论,通电的导线在磁场中将产生一个向上作用的电磁力,与秤盘重力方向相反大小相同,与之相平衡,而通过导线的电流与被称物体的质量成正比。 2、性能特点:a.使用寿命长,性能稳定,灵敏度高,体积小,操作方便 b.称 量速度快、精度高 c.具有自动校准、累计称量、超载显示、自动去皮等功能 3、称量的一般程序 水平调节——打扫——预热——开启显示器——校准——称量——结束工作 ①水平调节检查水平仪,调节水平调节脚,使水泡位于水平仪中心。 ②打扫打扫天平秤盘 ③预热通电预热30min以上 ④开启显示器按ON键,显示器亮,显示屏出现0.0000g ⑤校准按“校准”键 ⑥称量被称物置于秤盘中间进行称量 ⑦称量结束工作取下被称物,核对零点,关闭天平,进行使用登记 4、基本称量方法 ①直接称量法将称量物直接放在天平盘上直接称量物体的质量。例如,称量 小烧杯的质量,容量器皿校正中称量某容量瓶的质量,重量分析实验中称量某坩埚的质量等,都使用这种称量法。 ②固定质量称量法

用于称量某一固定质量的试剂(如基准物质)或试样。适于称量不易吸潮、在空气中能稳定存在的粉末状或小颗粒样品。 A、去皮将干燥的容器置于秤盘上,待显示平衡后按“去皮”键扣除皮重并显示零点 B、加样打开天平门,用药匙将试样抖入容器内,使之达到所需质量。 固定质量称量法注意:若不慎加入试剂超过指定质量,用牛角匙取出多余试剂,直至试剂质量符合指定要求为止。严格要求时,取出的多余试剂应弃去,不要放回原试剂瓶中。操作时不能将试剂散落于天平盘等容器以外的地方,称好的试剂必须定量地由表面皿等容器直接转入接受容器,此即所谓“定量转移”。 ③递减称量法(减量法) 用于称量一定质量范围的样品或试剂。样品易吸水、易氧化或易与二氧化碳等反应时,可选择此法。。 称量步骤:试样的保存——取出盛试样的称量瓶——称出称量瓶质量——敲样——再称出其质量——样品质量——连续称样——称量工作结束 A、试样保存待称样品放于洁净的干燥容器(称量瓶)中,置于干燥器中保存 B、取出称量瓶左手戴手套取出称量瓶或者用折叠成约1cm的纸取出 C、称出称量瓶质量称出称量瓶质量,记录数据 D、敲样将称量瓶取出,在接收容器的上方倾斜瓶身,用称量瓶盖轻敲瓶口上部使试样慢慢落入容器中,瓶盖始终不要离开接受器上方。当倾出的试样接近所需量时,一边继续用瓶盖轻敲瓶口,一边逐渐将瓶身竖直,使粘附在瓶口上的试样落回称量瓶,然后盖好瓶盖,准确称其质量。两次质量之差,即为试样的质量。按上述方法连续递减,可称量多份试样。

精神分裂症的病因及发病机理

精神分裂症的病因及发病机理 精神分裂症病因:尚未明,近百年来的研究结果也仅发现一些可能的致病因素。(一)生物学因素1.遗传遗传因素是精神分裂症最可能的一种素质因素。国内家系调查资料表明:精神分裂症患者亲属中的患病率比一般居民高6.2倍,血缘关系愈近,患病率也愈高。双生子研究表明:遗传信息几乎相同的单卵双生子的同病率远较遗传信息不完全相同 的双卵双生子为高,综合近年来11项研究资料:单卵双生子同病率(56.7%),是双卵双生子同病率(12.7%)的4.5倍,是一般人口患难与共病率的35-60倍。说明遗传因素在本病发生中具有重要作用,寄养子研究也证明遗传因素是本症发病的主要因素,而环境因素的重要性较小。以往的研究证明疾病并不按类型进行遗传,目前认为多基因遗传方式的可能性最大,也有人认为是常染色体单基因遗传或多源性遗传。Shields发现病情愈轻,病因愈复杂,愈属多源性遗传。高发家系的前瞻性研究与分子遗传的研究相结合,可能阐明一些问题。国内有报道用人类原癌基因Ha-ras-1为探针,对精神病患者基因组进行限止性片段长度多态性的分析,结果提示11号染色体上可能存在着精神分裂症与双相情感性精神病有关的DNA序列。2.性格特征:约40%患者的病前性格具有孤僻、冷淡、敏感、多疑、富于幻想等特征,即内向

型性格。3.其它:精神分裂症发病与年龄有一定关系,多发生于青壮年,约1/2患者于20~30岁发病。发病年龄与临床类型有关,偏执型发病较晚,有资料提示偏执型平均发病年龄为35岁,其它型为23岁。80年代国内12地区调查资料:女性总患病率(7.07%。)与时点患病率(5.91%。)明显高于男性(4.33%。与3.68%。)。Kretschmer在描述性格与精神分裂症关系时指出:61%患者为瘦长型和运动家型,12.8%为肥胖型,11.3%发育不良型。在躯体疾病或分娩之后发生精神分裂症是很常见的现象,可能是心理性生理性应激的非特异性影响。部分患者在脑外伤后或感染性疾病后发病;有报告在精神分裂症患者的脑脊液中发现病毒性物质;月经期内病情加重等躯体因素都可能是诱发因素,但在精神分裂症发病机理中的价值有待进一步证实。(二)心理社会因素1.环境因素①家庭中父母的性格,言行、举止和教育方式(如放纵、溺爱、过严)等都会影响子女的心身健康或导致个性偏离常态。②家庭成员间的关系及其精神交流的紊乱。③生活不安定、居住拥挤、职业不固定、人际关系不良、噪音干扰、环境污染等均对发病有一定作用。农村精神分裂症发病率明显低于城市。2.心理因素一般认为生活事件可发诱发精神分裂症。诸如失学、失恋、学习紧张、家庭纠纷、夫妻不和、意处事故等均对发病有一定影响,但这些事件的性质均无特殊性。因此,心理因素也仅属诱发因

脐带血造血干细胞库管理办法(试行)

脐带血造血干细胞库管理办法(试行) 第一章总则 第一条为合理利用我国脐带血造血干细胞资源,促进脐带血造血干细胞移植高新技术的发展,确保脐带血 造血干细胞应用的安全性和有效性,特制定本管理办法。 第二条脐带血造血干细胞库是指以人体造血干细胞移植为目的,具有采集、处理、保存和提供造血干细胞 的能力,并具有相当研究实力的特殊血站。 任何单位和个人不得以营利为目的进行脐带血采供活动。 第三条本办法所指脐带血为与孕妇和新生儿血容量和血循环无关的,由新生儿脐带扎断后的远端所采集的 胎盘血。 第四条对脐带血造血干细胞库实行全国统一规划,统一布局,统一标准,统一规范和统一管理制度。 第二章设置审批 第五条国务院卫生行政部门根据我国人口分布、卫生资源、临床造血干细胞移植需要等实际情况,制订我 国脐带血造血干细胞库设置的总体布局和发展规划。 第六条脐带血造血干细胞库的设置必须经国务院卫生行政部门批准。 第七条国务院卫生行政部门成立由有关方面专家组成的脐带血造血干细胞库专家委员会(以下简称专家委

员会),负责对脐带血造血干细胞库设置的申请、验收和考评提出论证意见。专家委员会负责制订脐带血 造血干细胞库建设、操作、运行等技术标准。 第八条脐带血造血干细胞库设置的申请者除符合国家规划和布局要求,具备设置一般血站基本条件之外, 还需具备下列条件: (一)具有基本的血液学研究基础和造血干细胞研究能力; (二)具有符合储存不低于1 万份脐带血的高清洁度的空间和冷冻设备的设计规划; (三)具有血细胞生物学、HLA 配型、相关病原体检测、遗传学和冷冻生物学、专供脐带血处理等符合GMP、 GLP 标准的实验室、资料保存室; (四)具有流式细胞仪、程控冷冻仪、PCR 仪和细胞冷冻及相关检测及计算机网络管理等仪器设备; (五)具有独立开展实验血液学、免疫学、造血细胞培养、检测、HLA 配型、病原体检测、冷冻生物学、 管理、质量控制和监测、仪器操作、资料保管和共享等方面的技术、管理和服务人员; (六)具有安全可靠的脐带血来源保证; (七)具备多渠道筹集建设资金运转经费的能力。 第九条设置脐带血造血干细胞库应向所在地省级卫生行政部门提交设置可行性研究报告,内容包括:

电子天平使用说明书.

电子天平使用说明书 使用方法 ◎准备 1、将天平安放在稳定及水平的工作台上,避免振动、气流、阳光直射和剧烈的温度波动; 2、安装称盘; 3、接通电源前请确认当地交流电压是否与天平所附的电源适配器所需电压一致; 4、为获得准确的称量结果,在进行称量前天平应接通电源预热30分钟。 ◎电源 1. 天平随机附配交流电源适配器,输入220+22-33V ~ 50Hz 输出9V 300mA 2. 天平选用电池供电时可打开天平底部的电池盖按极性指示装入电池即可,建议使用9伏碱性电池,可连续工作约12小时。 当天平电池供电时,显示屏左上角电量指示框显示段数表明电池的状态(显示3段:电池充足,显示0段:电池耗尽,当电池电量将耗尽时,最后一个显示段闪烁。 ◎开机 在称盘空载情况下按<开/关>键,天平依次进入自检显示(显示屏所有字段短时点亮、型号显示和零状态显示,当天平显示零状态时即可进行称量; 当遇到相关功能键设置有误无法恢复时,按<开/关>键重新开机即可恢复初始设置状态。

◎校准 为获得准确的称量结果,必须对天平进行校准以适应当地的重力加速度。校准应在天平预热结束后进行,遇到以下情况必须使用外部校准砝码对天平进行校准。 1. 首次使用天平称量之前; 2. 天平改变安放位置后。 校准方法与步骤: 1.准备好校准用的标准砝码并确保称盘空载; 2.按<去皮>键:天平显示零状态; 3.按<校准>键:天平显示闪烁的CAL—XXX,(XXX一般为100、200或其它数字,提醒使用相对应的100g、200g或其它规格的标准砝码 4.将标准砝码放到称盘中心位置,天平显示CAL-XXX,等待几秒钟后,显示标准砝码的量值。此时移去砝码,天平显示零状态,则表示校准结束,可以进行称量。如天平不零状态,应重复进行一次校准工作。 ◎称量 天平经校准后即可进行称量,称量时必须等显示器左下角的“○”标志熄灭后才可读数,称量过程中被称物必须轻拿轻放,并确保不使天平超载,以免损坏天平的传感器。 ◎清零或去皮 清零:当天平空载时,如显示不在零状态,可按<去皮>键,使天平显示零状态。此时才可进行正常称量。

存包柜项目方案说明

存包柜项目方案说明 一、项目基本信息 (一)项目名称 存包柜项目 (二)项目建设单位 xxx有限公司 (三)法定代表人 于xx (四)公司简介 本公司奉行“客户至上,质量保障”的服务宗旨,树立“一切为客户着想” 的经营理念,以高效、优质、优惠的专业精神服务于新老客户。 公司依托集团公司整体优势、发展自身专业化咨询能力,以助力产业提高运营效率为使命,提供全方面的业务咨询服务。 公司将加强人才的引进和培养,尤其是研发及业务方面的高级人才,健全研发、管理和销售等各级人员的薪酬考核体系,完善激励制度,提高公司员工创造力,为公司的持续快速发展提供强大保障。

上一年度,xxx(集团)有限公司实现营业收入7026.99万元,同比增长25.92%(1446.42万元)。其中,主营业业务存包柜生产及销售收入为5749.34万元,占营业总收入的81.82%。 根据初步统计测算,公司实现利润总额1653.53万元,较去年同期相比增长375.52万元,增长率29.38%;实现净利润1240.15万元,较去年同期相比增长139.78万元,增长率12.70%。 (五)项目选址 xx新兴产业示范基地 (六)项目用地规模 项目总用地面积12559.61平方米(折合约18.83亩)。 (七)项目用地控制指标 该工程规划建筑系数71.28%,建筑容积率1.01,建设区域绿化覆盖率7.20%,固定资产投资强度188.57万元/亩。 项目净用地面积12559.61平方米,建筑物基底占地面积8952.49平方米,总建筑面积12685.21平方米,其中:规划建设主体工程7943.44平方米,项目规划绿化面积913.28平方米。 (八)设备选型方案 项目计划购置设备共计91台(套),设备购置费1292.40万元。 (九)节能分析 1、项目年用电量486324.58千瓦时,折合59.77吨标准煤。

分析天平使用说明书

TG-328分析天平使用说明书 一、分析天平结构及作用原理: 1.该分析天平,是属于双盘等臂式,横梁采用铜镍合金制成,上面装有玛瑙刀三把,中间为固定的支点刀,两边可调整的承重刀。 好仪器,好资料,尽在沧州建仪(https://www.wendangku.net/doc/ad7842048.html,)。欢迎查询。 打造中国建仪销售第一品牌,树立沧州产品全新形象 2.支点刀位于支点刀垫上,支点刀垫固定在天平立柱上端。 3.横梁停动装置为双层折翼式,在天平开启时,横梁上的承重刀必须比支点刀先接角触,为了避免刀锋损坏和保证横梁位置的再现性,开启天平求轻稳,避免冲击,摇晃。 4.横梁的左右两端悬挂承重挂钩,左承重挂钩上装有砝码承重架,该二零碎件分别挂在小刀刃上,另有秤盘各一件分别挂在承重挂钩上。 5.整个天平固定在大理石的基座板上,底板前下部装有二只可供调整水平位置的螺旋脚,后面装有一只固定脚,天平木框前面有一扇可供启闭及随意停止在上下位置的玻璃门,右侧有一扇玻璃移门。 6.秤盘上节中间的阻尼装置,是用铝合金板制成,固定在中柱上。是利用空气阻力来减少横梁的摆动时间,达到静止迅速,从而提高工作效率。

7.光学报影装置,固定在底板上前方,可直接读出0.1-10毫克以内的重量值。 8.天平外框左侧装有机械加码装置,通过三档增减砝码的指示旋钮来变换自10毫克-199.99克砝码以内所需重量值。 二、分析天平主要技术指标: 规格型号技术参数:秤盘尺寸 TG328A200g/0.1mg80mm TG328B200g/0.1mg80mm1 TG628A200g/1mg80mm 三、分析天平性能特点: 1.TG系列双盘机械天平,采用空气阻尼,光电读数,具有称量准确,读数简便,价格实惠。 2.专供实验室,学校,工矿等作精密称量分析用。 四、天平的安装方法: a.安装前的准备工作安装前的准备工作安装前的准备工作安装前的准备工作 1.安装选择:天平必须放在牢固的台上,不准有震动,气流存在,室内气温要求干燥明亮,温度最好保持在20℃±2℃左右,避免阳光晒射单面受热和气温潮湿,反之影响天平的灵敏度和正确性。

精神分裂症的发病原因是什么

精神分裂症的发病原因是什么 精神分裂症是一种精神病,对于我们的影响是很大的,如果不幸患上就要及时做好治疗,不然后果会很严重,无法进行正常的工作和生活,是一件很尴尬的事情。因此为了避免患上这样的疾病,我们就要做好预防,今天我们就请广州协佳的专家张可斌来介绍一下精神分裂症的发病原因。 精神分裂症是严重影响人们身体健康的一种疾病,这种疾病会让我们整体看起来不正常,会出现胡言乱语的情况,甚至还会出现幻想幻听,可见精神分裂症这种病的危害程度。 (1)精神刺激:人的心理与社会因素密切相关,个人与社会环境不相适应,就产生了精神刺激,精神刺激导致大脑功能紊乱,出现精神障碍。不管是令人愉快的良性刺激,还是使人痛苦的恶性刺激,超过一定的限度都会对人的心理造成影响。 (2)遗传因素:精神病中如精神分裂症、情感性精神障碍,家族中精神病的患病率明显高于一般普通人群,而且血缘关系愈近,发病机会愈高。此外,精神发育迟滞、癫痫性精神障碍的遗传性在发病因素中也占相当的比重。这也是精神病的病因之一。 (3)自身:在同样的环境中,承受同样的精神刺激,那些心理素质差、对精神刺激耐受力低的人易发病。通常情况下,性格内向、心胸狭窄、过分自尊的人,不与人交往、孤僻懒散的人受挫折后容易出现精神异常。 (4)躯体因素:感染、中毒、颅脑外伤、肿瘤、内分泌、代谢及营养障碍等均可导致精神障碍,。但应注意,精神障碍伴有的躯体因素,并不完全与精神症状直接相关,有些是由躯体因素直接引起的,有些则是以躯体因素只作为一种诱因而存在。 孕期感染。如果在怀孕期间,孕妇感染了某种病毒,病毒也传染给了胎儿的话,那么,胎儿出生长大后患上精神分裂症的可能性是极其的大。所以怀孕中的女性朋友要注意卫生,尽量不要接触病毒源。 上述就是关于精神分裂症的发病原因,想必大家都已经知道了吧。患上精神分裂症之后,大家也不必过于伤心,现在我国的医疗水平是足以让大家快速恢复过来的,所以说一定要保持良好的情绪。

基于单片机的自动存包系统设计

基于单片机的自动存包系统设计 摘要 近年来,随着生活水平的提高,人们对于社会消费品的质量和数量的要求也在逐渐增加。为了更好的为广大顾客服务,在一些商场、影院、超市等公共场合通常设置有自动存包柜,本次便是针对这一现象进行设计。 本文详细介绍了国内自动存包控制系统的发展现状,发展中所面临的问题。并详细介绍了本系统采用的AT89S52单片机做控制器,可以同时管理四个存包柜。柜门锁是由继电器控制,当顾客需要存包的时候,可以自行到存包柜前按“开门”键,需要顾客向光学指纹识别系统输入个指纹,然后通过继电器进行开门(用亮灯表示),顾客即可存包,并需将柜门关上。当顾客需要取包时,要将只要将之前输入的指纹放置于指纹识别器前方,指纹识别器采集到指纹信息输出相应的高低电平信号传给单片机,系统比较密码一致后,发出开箱信号至继电器将柜门打开,顾客即可将包取出。它具有功能实用、操作简便、安全可靠、抗干扰性强等特点。 关键词:自动存包柜,单片机,指纹识别器

李少鹏:基于单片机的自动存包系统设计 Based on single chip microcomputer automatic package design Abstract In recent years, with the improvement of living standards, people for social consumer goo ds quality and quantity requirements are to increase gradually. In order to better service for the g eneral customers, in some stores, movie theaters, supermarkets public Settings are to be put auto matically usually bag ark, it is functional practical, simple operation, safe and reliable, anti-jamm ing strong sexual characteristics. Domestic deposit automatic control system are introduced in detail in this paper the development of the status quo, problems faced in the development of. And introduces in detail the system adopts single chip microcomputer controller, can simultaneously manage multiple pack ark. Cupboard door lock controlled by relay, when customers need to save package, will be allowed to save package before the ark according to the "open" button, need customer to the system input fingerprint, and then through the relay to open the door (with lighting), customers can save package, and the cupboard door must be closed. When customers need to pick up package, as long as before the input fingerprint should be placed on the fingerprint recognizer, fingerprint recognizer collecting to the fingerprint information and output the corresponding high and low level signal to the microcontroller, the system is password consistent, signal out of the box to the relay Key words: Automatic Storage Bag, Microcontroller, Fingerprint recognizer。

电子精密天平秤的使用方法及注意事项(正式版)

电子精密天平秤的使用方法及注意事项 刘维彬电子精密天平秤是定量分析工作中不可缺少的重要仪器,充分了解仪器性能及熟练掌握其使用方法,是获得可靠分析结果的保证。精密天平的种类很多,有普通精密天平、半自动/全自动加码电光投影阻尼精密天平及电子精密天平等。下面就电子精密天平的使用方法及注意事项做一介绍。 操作方法: 1.检查并调整天平至水平位置。 2.事先检查电源电压是否匹配(必要时配置稳压器),按仪器要求通电预热至所需时间。 3.预热足够时间后打开天平开关,天平则自动进行灵敏度及零点调节。待稳定标志显示后,可进行正式称量。 4.称量时将洁净称量瓶或称量纸置于称盘上,关上侧门,轻按一下去皮键,天平将自动校对零点,然后逐渐加入待称物质,直到所需重量为止。 5.称量结束应及时除去称量瓶(纸),关上侧门,切断电源,并做好使用情况登记。 注意事项: 1.天平应放置在牢固平稳水泥台或木台上,室内要求清洁、干燥及较恒定的温度,同时应避免光线直接照射到天平上。 2.称量时应从侧门取放物质,读数时应关闭箱门以免空气流动引起天平摆动。前门仅在检修或清除残留物质时使用。 3.电子精密天平若长时间不使用,则应定时通电预热,每周一次,每次预热

2h,以确保仪器始终处于良好使用状态。 4.天平箱内应放置吸潮剂(如硅胶),当吸潮剂吸水变色,应立即高温烘烤更换,以确保吸湿性能。 5.挥发性、腐蚀性、强酸强碱类物质应盛于带盖称量瓶内称量,防止腐蚀天平。 6.称量重量不得过天平的最大载荷。 7.经常对电子天平进行自校或定期外校,保证其处于最佳状态。 8.天平发生故障,不得擅自修理,应立即报告测试中心质量负责人。 9.天平放妥后不宜经常搬动。必须搬动时,移动天平位置后,应由市计量部门校正计量合格后,方可使用。

精神分裂症的病因是什么

精神分裂症的病因是什么 精神分裂症是一种精神方面的疾病,青壮年发生的概率高,一般 在16~40岁间,没有正常器官的疾病出现,为一种功能性精神病。 精神分裂症大部分的患者是由于在日常的生活和工作当中受到的压力 过大,而患者没有一个良好的疏导的方式所导致。患者在出现该情况 不仅影响本人的正常社会生活,且对家庭和社会也造成很严重的影响。 精神分裂症常见的致病因素: 1、环境因素:工作环境比如经济水平低低收入人群、无职业的人群中,精神分裂症的患病率明显高于经济水平高的职业人群的患病率。还有实际的生活环境生活中的不如意不开心也会诱发该病。 2、心理因素:生活工作中的不开心不满意,导致情绪上的失控,心里长期受到压抑没有办法和没有正确的途径去发泄,如恋爱失败, 婚姻破裂,学习、工作中不愉快都会成为本病的原因。 3、遗传因素:家族中长辈或者亲属中曾经有过这样的病人,后代会出现精神分裂症的机会比正常人要高。 4、精神影响:人的心里与社会要各个方面都有着不可缺少的联系,对社会环境不适应,自己无法融入到社会中去,自己与社会环境不相

适应,精神和心情就会受到一定的影响,大脑控制着人的精神世界, 有可能促发精神分裂症。 5、身体方面:细菌感染、出现中毒情况、大脑外伤、肿瘤、身体的代谢及营养不良等均可能导致使精神分裂症,身体受到外界环境的 影响受到一定程度的伤害,心里受到打击,无法承受伤害造成的痛苦,可能会出现精神的问题。 对于精神分裂症一定要配合治疗,接受全面正确的治疗,最好的 疗法就是中医疗法加心理疗法。早发现并及时治疗并且科学合理的治疗,不要相信迷信,要去正规的医院接受合理的治疗,接受正确的治 疗按照医生的要求对症下药,配合医生和家人,给病人创造一个良好 的治疗环境,对于该病的康复和痊愈会起到意想不到的效果。

自动存包柜的设计与仿真

自动存包柜的设计与仿真 摘要 本课题是基于单片机的自动存包柜设计。自动存包柜是新一代的存包柜,具有功能实用、操作简单、管理方便、安全可靠等特点,能够更好的服务于不同市场的广大群众,使用者可以根据简明清晰的操作说明自行完成存包取包工作。本系统由MCS-51单片机构成核心控制系统,整个系统由主控部分、键盘显示控制部分、执行部分三部分组成,通过随机密码的产生和核对完成自动存包取包过程。本设计中各元器件便于安装且操作简单,能基本实现存包取包功能。 关键词:自动存包柜;单片机;随机密码

Design and Simulation of Automatic Lockers ABSTRACT This topic is microcontroller-based automatic lockers.Automatic lockers is a new generation of lockers, with a practical, simple operation, easy management, safe and reliable, able to better serve the broad masses of the different markets, users are based on a clear and concise instructions to complete the deposit bags to take the package. The system consists of MCS-51 microcontroller core control system, the entire system from the main section, the keyboard display control part of the implementation of some of the three-part composition, random password generation and check completed automatically save the package to take the package process. Various components of this design is easy to install and easy to operate, can basically save the package to take package function. Key words :Automatic lockers; microcontroller; random password

卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规范(试行)

卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规 范(试行)》的通知 【法规类别】采供血机构和血液管理 【发文字号】卫办医政发[2009]189号 【失效依据】国家卫生计生委办公厅关于印发造血干细胞移植技术管理规范(2017年版)等15个“限制临床应用”医疗技术管理规范和质量控制指标的通知 【发布部门】卫生部(已撤销) 【发布日期】2009.11.13 【实施日期】2009.11.13 【时效性】失效 【效力级别】部门规范性文件 卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规范(试行)》的通知 (卫办医政发〔2009〕189号) 各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局: 为贯彻落实《医疗技术临床应用管理办法》,做好脐带血造血干细胞治疗技术审核和临床应用管理,保障医疗质量和医疗安全,我部组织制定了《脐带血造血干细胞治疗技术管理规范(试行)》。现印发给你们,请遵照执行。 二〇〇九年十一月十三日

脐带血造血干细胞 治疗技术管理规范(试行) 为规范脐带血造血干细胞治疗技术的临床应用,保证医疗质量和医疗安全,制定本规范。本规范为技术审核机构对医疗机构申请临床应用脐带血造血干细胞治疗技术进行技术审核的依据,是医疗机构及其医师开展脐带血造血干细胞治疗技术的最低要求。 本治疗技术管理规范适用于脐带血造血干细胞移植技术。 一、医疗机构基本要求 (一)开展脐带血造血干细胞治疗技术的医疗机构应当与其功能、任务相适应,有合法脐带血造血干细胞来源。 (二)三级综合医院、血液病医院或儿童医院,具有卫生行政部门核准登记的血液内科或儿科专业诊疗科目。 1.三级综合医院血液内科开展成人脐带血造血干细胞治疗技术的,还应当具备以下条件: (1)近3年内独立开展脐带血造血干细胞和(或)同种异基因造血干细胞移植15例以上。 (2)有4张床位以上的百级层流病房,配备病人呼叫系统、心电监护仪、电动吸引器、供氧设施。 (3)开展儿童脐带血造血干细胞治疗技术的,还应至少有1名具有副主任医师以上专业技术职务任职资格的儿科医师。 2.三级综合医院儿科开展儿童脐带血造血干细胞治疗技术的,还应当具备以下条件:

大件寄存管理流程

大件寄存程序 一、大件寄存流程 1、当顾客提出大件寄存需求时,服务中心员工应先查看物品大小,如果可自助存包柜寄存的物品,请顾客优先使用自动存包柜,并提醒顾客不要寄放贵重物品。 2、如果物品过大,自助存包柜寄存不下的物品或顾客坚持要求寄存服务台的商品,服务台员工应与顾客确认是否有贵重物品,如有,请顾客将贵重物品取出自行保管,其它物品则办理寄存手续。 3、员工将顾客物品放置在指定区域,挂好存包牌,将另一块号码牌交予顾客,并告知顾客于当天营业结束前凭此号码牌领取寄存物品,请顾客妥善保管。 4、当顾客前来领取寄存物品时,服务中心员工请顾客出示号码牌,员工收回号码牌,根据号码牌查找物品上对应的号码牌,核对无误后交还顾客物品。存包牌两块互绑在一起放回存放盒内。 5、若核对号码牌时发现物品与存放时不符或丢失,应立即告知客服主管或值班经理前来处理(具体处理方法请参照客诉处理办法) 6、如顾客遗失号码牌时,服务中心员工处理程序: A、通知广播寻找遗失的号码牌。 B、询问顾客具体号码牌号或所寄存物品形状、颜色、特征。 C、询问顾客是否有任何的证件,并请顾客提供有效证件证明所寄存物品确为其所属。 D、请顾客在《寄存物异常登记表》上留下地址、电话、证件号等信息。 E、向顾客适当收取号码牌工本费并在退换货收银机做销售操作,将寄存物品归还于顾客。 7、每日营业结束后盘点号码牌,每块号码牌要求一个号码两块互绑在一起,如已不齐全的号码牌则不再使用。号码牌需定期全部更换。 二、大件寄存顾客告示 1、请您在存包后主动索取存包牌,并保存好自己的存包牌,不要遗失。 2、现金、手机、照相机、存折等超过200元的贵重物品及有效证件如身份证、户口本等物品请随身携带,请勿寄存,由此造成的损失,自行承担。 3、当您领取所存物品时,请出示存包牌,并当面点清您所存的物品,离柜本商场不再负责。 4、如存包牌丢失,应及时持有效证件领取所存物品,并付工本费5元,未及时挂失,导致所存物品丢失,不予负责。

精神分裂症应该怎么治疗

精神分裂症应该怎么治疗 1、坚持服药治疗 服药治疗是最有效的预防复发措施临床大量统计资料表明,大多数精神分裂症的复发与自行停药有关。坚持维持量服药的病人复发率为40%。而没坚持维持量服药者复发率高达80%。因此,病人和家属要高度重视维持治疗。 2、及时发现复发的先兆,及时处理 精神分裂症的复发是有先兆的,只要及时发现,及时调整药物和剂量,一般都能防止复发,常见的复发先兆为:病人无原因出现睡眠不好、懒散、不愿起床、发呆发愣、情绪不稳、无故发脾气、烦躁易怒、胡思乱想、说话离谱,或病中的想法又露头等。这时就应该及时就医,调整治疗病情波动时的及时处理可免于疾病的复发。 3、坚持定期门诊复查 一定要坚持定期到门诊复查,使医生连续地、动态地了解病情,使病人经常处于精神科医生的医疗监护之下,及时根据病情变化调整药量。通过复查也可使端正人及时得到咨询和心理治疗解除病人在生活、工作和药物治疗中的各种困惑,这对预防精神分裂症的复发也起着重要作用。 4、减少诱发因素 家属及周围人要充分认识到精神分裂症病人病后精神状态的薄弱性,帮助安排好日常的生活、工作、学习。经常与病人谈心,帮助病人正确对待疾病,正确对待现实生活,帮助病人提高心理承受能力,学会对待应激事件的方法,鼓励病人增强信心,指导病人充实生活,使病人在没有心理压力和精神困扰的环境中生活。 首先是性格上的改变,塬本活泼开朗爱玩的人,突然变得沉默寡言,独自发呆,不与人交往,爱干净的人也变的不注意卫生、生活

懒散、纪律松弛、做事注意力不集中,总是和患病之前的性格完全 相悖。 再者就是语言表达异常,在谈话中说一些无关的谈话内容,使人无法理解。连最简单的话语都无法准确称述,与之谈话完全感觉不 到重心。 第三个就是行为的异常,行为怪异让人无法理解,喜欢独处、不适意的追逐异性,不知廉耻,自语自笑、生活懒散、时常发呆、蒙 头大睡、四处乱跑,夜不归宿等。 还有情感上的变化,失去了以往的热情,开始变的冷淡、对亲人不关心、和友人疏远,对周围事情不感兴趣,一点消失都可大动干戈。 最后就是敏感多疑,对任何事情比较敏感,精神分裂症患者,总认为有人针对自己。甚至有时认为有人要害自己,从而不吃不喝。 但是也有的会出现难以入眠、容易被惊醒或睡眠不深,整晚做恶梦或者长睡不醒的现象。这些都有可能是患上了精神分裂症。 1.加强心理护理 心理护理是家庭护理中的重要方面,由于社会上普遍存在对精神病人的歧视和偏见,给病人造成很大的精神压力,常表现为自卑、 抑郁、绝望等,有的病人会因无法承受压力而自杀。家属应多给予 些爱心和理解,满足其心理需求,尽力消除病人的悲观情绪。病人 生活在家庭中,与亲人朝夕相处,接触密切,家属便于对病人的情感、行为进行细致的观察,病人的思想活动也易于向家属暴露。家 属应掌握适当的心理护理方法,随时对病人进行启发与帮助,启发 病人对病态的认识,帮助他们树立自信,以积极的心态好地回归社会。 2.重视服药的依从性 精神分裂症病人家庭护理的关键就在于要让病人按时按量吃药维持治疗。如果不按时服药,精神病尤其是精神分裂症的复发率很高。精神病人在医院经过一系统的治疗痊愈后,一般需要维持2~3年的

卫生部关于印发《脐带血造血干细胞库设置管理规范(试行)》的通知

卫生部关于印发《脐带血造血干细胞库设置管理规范(试行)》的通知 发文机关:卫生部(已撤销) 发布日期: 2001.01.09 生效日期: 2001.02.01 时效性:现行有效 文号:卫医发(2001)10号 各省、自治区、直辖市卫生厅局: 为贯彻实施《脐带血造血干细胞库管理办法(试行)》,保证脐带血临床使用的安全、有效,我部制定了《脐带血造血干细胞库设计管理规范(试行)》。现印发给你们,请遵照执行。 附件:《脐带血造血干细胞库设置管理规范(试行)》 二○○一年一月九日 附件: 脐带血造血干细胞库设置管理规范(试行) 脐带血造血干细胞库的设置管理必须符合本规范的规定。 一、机构设置 (一)脐带血造血干细胞库(以下简称脐带血库)实行主任负责制。 (二)部门设置 脐带血库设置业务科室至少应涵盖以下功能:脐带血采运、处理、细胞培养、组织配型、微生物、深低温冻存及融化、脐带血档案资料及独立的质量管理部分。 二、人员要求

(一)脐带血库主任应具有医学高级职称。脐带血库可设副主任,应具有临床医学或生物学中、高级职称。 (二)各部门负责人员要求 1.负责脐带血采运的人员应具有医学中专以上学历,2年以上医护工作经验,经专业培训并考核合格者。 2.负责细胞培养、组织配型、微生物、深低温冻存及融化、质量保证的人员应具有医学或相关学科本科以上学历,4年以上专业工作经历,并具有丰富的相关专业技术经验和较高的业务指导水平。 3.负责档案资料的人员应具相关专业中专以上学历,具有计算机基础知识和一定的医学知识,熟悉脐带血库的生产全过程。 4.负责其它业务工作的人员应具有相关专业大学以上学历,熟悉相关业务,具有2年以上相关专业工作经验。 (三)各部门工作人员任职条件 1.脐带血采集人员为经过严格专业培训的护士或助产士职称以上卫生专业技术人员并经考核合格者。 2.脐带血处理技术人员为医学、生物学专业大专以上学历,经培训并考核合格者。 3.脐带血冻存技术人员为大专以上学历、经培训并考核合格者。 4.脐带血库实验室技术人员为相关专业大专以上学历,经培训并考核合格者。 三、建筑和设施 (一)脐带血库建筑选址应保证周围无污染源。 (二)脐带血库建筑设施应符合国家有关规定,总体结构与装修要符合抗震、消防、安全、合理、坚固的要求。 (三)脐带血库要布局合理,建筑面积应达到至少能够储存一万份脐带血的空间;并具有脐带血处理洁净室、深低温冻存室、组织配型室、细菌检测室、病毒检测室、造血干/祖细胞检测室、流式细胞仪室、档案资料室、收/发血室、消毒室等专业房。 (四)业务工作区域应与行政区域分开。

相关文档