文档库 最新最全的文档下载
当前位置:文档库 › julyzoo7基于近似嫡和统计复杂度的交通流复杂性测度

julyzoo7基于近似嫡和统计复杂度的交通流复杂性测度

julyzoo7基于近似嫡和统计复杂度的交通流复杂性测度
julyzoo7基于近似嫡和统计复杂度的交通流复杂性测度

2013年全国交通事故数据统计情况表

2013年全国交通事故数据统计情况表 历年的数据显示,从2004年我国发生交通事故的567753起、2005年的450254起、2006年的278781起、2007年的327209起、2008年的265204起、2009年的238351起、2010年219521起、2011年210812 起、……,呈下降趋势。每年的死亡人数也成下降趋势,从2004年的9.4万余人、2005年的9.8万余人、2006年的8.9万余人、2007年的8.1万余人、2008年7.3万余人、2009年的6.7万余人、2010年6.5万余人…..,亦成下降趋势。 目前网上还没有官方公布的2013年全国交通事故具体数据统计,但从过去十年的交通事故数据来分析,2013年全国交通涉及人员伤亡的交通事故有望低于20万起,死亡人数应该在6万人以下。 随着汽车产业的快速发展,我国汽车数量日益增加,根据公安部相关数据显示,截止2012年底,我国机动车保有数量2.4亿余辆,驾驶机动车的人数达到了2.6亿,而且驾驶人数以每年2647万的速度在增长。对于因汽车剧增和驾驶人数骤长带来的交通压力,针对2012年,同比2011年涉及人身伤亡的交通事故起数和死亡数下降有3.1和3.8个百分点,造成损失达到重大交通事故和特大交通事故的数量也有所减少。如此比较,2013年交通事故的起数和伤亡人数有望进一步下降,重大交通事故和特大交通事故至多和2012年持平。 原因分析:2013年交通事故发生的起数和带来的损失有所下降,原因可以总结为以下几点。 一、国家立法的进一步完善 随着《道路交通安全法》、《道路交通安全法实施条例》、《道路交通事故处理程序规定》、《最高人民法院关于审理道路交通事故损害赔偿案件适用法律若干问题的解释》等对于交通管理和事故赔偿的法律、法规与解释的进一步实施,我国在道路交通方面取得了较为明显的进步。 二、交通事故执法力度的加强 各地交通警察部门不断改进交通执法方法,提高交通执法效率,严查、严打各类交通违章违法行为,使各地交通秩序得到明显提高,交通事故数量明显减少。

西安交通大学计算方法B上机报告

计算方法上机报告

姓名: 学号: 班级:能动上课班级:

题目及求解: 一、对以下和式计算: ∑ ∞ ? ?? ??+-+-+-+=0681581482184161n n n n S n ,要求: ① 若只需保留11个有效数字,该如何进行计算; ② 若要保留30个有效数字,则又将如何进行计算; 1 算法思想 (1)根据精度要求估计所加的项数,可以使用后验误差估计,通项为: 1421114 16818485861681 n n n a n n n n n ε??= ---<< ?+++++??; (2)为了保证计算结果的准确性,写程序时,从后向前计算; (3)使用Matlab 时,可以使用以下函数控制位数: digits(位数)或vpa(变量,精度为数) 2 算法结构 ;0=s ?? ? ??+-+-+-+= 681581482184161n n n n t n ; for 0,1,2,,n i =??? if 10m t -≤ end; for ,1,2,,0n i i i =--??? ;s s t =+ 3 Matlab 源程序 clear; %清除工作空间变量 clc; %清除命令窗口命令 m=input('请输入有效数字的位数m='); %输入有效数字的位数 s=0;

for n=0:50 t=(1/16^n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)); if t<=10^(-m) %判断通项与精度的关系break; end end; fprintf('需要将n值加到n=%d\n',n-1); %需要将n值加到的数值 for i=n-1:-1:0 t=(1/16^i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)-1/(8*i+6)); s=s+t; %求和运算 end s=vpa(s,m) %控制s的精度 4 结果与分析 若保留11位有效数字,则n=7,此时求解得: s =3.1415926536; 若保留30位有效数字时,则n=22, 此时求解得: s =3.8。 通过上面的实验结果可以看出,通过从后往前计算,这种算法很好的保证了计算结果要求保留的准确数字位数的要求。 二、某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。已探测到一组等分点位置的深度数据(单位:米)如下表所示:

大学概率论与数理统计复习资料

第一章 随机事件及其概率 知识点:概率的性质 事件运算 古典概率 事件的独立性 条件概率 全概率与贝叶斯公式 常用公式 ) ()()()()()2(加法定理AB P B P A P B A P -+= ) ,,() ()(211 1 有限可加性两两互斥设n n i i n i i A A A A P A P ∑===) ,(0 )()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==) ()()()()5(AB P A P B A P B A P -==-) () ()()()(时当A B B P A P B A P B A P ?-==-))0(,,()()/()()()6(211 >Ω=∑=i n n i i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ) ,,()] (1[1)(211 1 相互独立时n n i i n i i A A A A P A P ∏==--=) /()()/()()()4(B A P B P A B P A P AB P ==) (/)()/()3(A P AB P A B P =) () /()() /()()/()7(1 逆概率公式∑== n i i i i i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L A P n r A P ==

应用举例 1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。 2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。 3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。 4、若,3.0)(=A P ===)(,5.0)(,4.0)(B A B P B A P B P ( )。 5、,,A B C 是三个随机事件,C B ?,事件()A C B - 与A 的关系是( )。 6、5张数字卡片上分别写着1,2,3,4,5,从中任取3张,排成3位数,则排成3位奇数的概率是( )。 某日他抛一枚硬币决定乘地铁还是乘汽车。 (1)试求他在5:40~5:50到家的概率; (2)结果他是5:47到家的。试求他是乘地铁回家的概率。 解(1)设1A ={他是乘地铁回家的},2A ={他是乘汽车回家的}, i B ={第i 段时间到家的},4,3,2,1=i 分别对应时间段5:30~5:40,5:40~5:50,5:50~6:00,6:00以后 则由全概率公式有 )|()()|()()(2221212A B P A P A B P A P B P += 由上表可知4.0)|(12=A B P ,3.0)|(22=A B P ,5.0)()(21==A P A P 35.05.03.04.05.0)(2=?+?=B P (2)由贝叶斯公式 7 4 35.04.05.0)()()|(22121=?== B P B A P B A P 8、盒中12个新乒乓球,每次比赛从中任取3个来用,比赛 后仍放回盒中,求:第三次比赛时取到3个新球的概率。 看作业习题1: 4, 9, 11, 15, 16

概率统计分布表(常用)

标准正态表

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

中国历年《道路交通安全》事故统计【收藏】

中国历年道路交通安全事故统计(1995-2011) 时间:2012-03-29 12:02:04来源:中国救援网 【收藏】字号:T|T 中国历年道路交通安全事故数量统计表(1995-2011)。中国救援网吴飞制 中国历年道路交通安全事故死亡人数统计表(1995-2011)。中国救援网吴 飞制图 中国是世界上交通事故死亡人数最多的国家之一。从二十世纪八十年代末中国交通事故年死亡人数首次超过五万人至今,中国(未包括港澳台地区)每年因交通事故死亡人数已经连续十余年居世界第一。截止到2008年,中国大陆的这一冠军头衔才终于让给了印度。 根据公安部交管局发布的数据,2011年8月中国汽车保有量首次突破1亿辆大关,仅次于美国的2.85亿辆,位居世界第二,但是中国1亿辆汽车保有量中,包括近2000万辆三轮和四轮低速货车,也就是我们所说的农用车。扣除农用车后中国的汽车保有量大约为7800万辆,超过日本的7000万辆,仍然居世界第二。 然而数据显示,2011年,在严格禁止酒驾后,汽车保有量大约为7800万辆的中国,共发生道路交通事故210812起,高达62387人死亡。而汽车保有量在7000多万辆的日本,虽然2011年共发生690907起交通事故是中国的3倍,且受伤人数为852094人,但是造成的死亡人数只有区区4611人。汽车保有量2.85亿辆,大大超过我们的美国,车祸死亡人数也只有4.2万人。因此我国在道路交通安全方面与这些国家还有相当大的差距,这种差距体现在许多方面,包括:交通法规制定和执行力度、驾驶人员安全意识和道德素质、事故发生后的自救互救能力、社会的救援体系建设等,这些都能够预防和挽救交通事故带来的死亡威

计算方法教学大纲-致远学院-上海交通大学

上海交通大学致远学院2014年秋季学期 《随机过程》课程教学说明 一.课程基本信息 1.开课学院(系):致远学院 2.课程名称:《随机过程》(Stochastic Processes) 3.学时/学分:64学时/4学分 4.先修课程:概率论 5.上课时间:周二、四,3-4节课 6.上课地点:中院207 7.任课教师:韩东(donghan@https://www.wendangku.net/doc/a07947065.html,) 8.办公室及电话:数学楼1206,54743148-1206 9.助教:张登(zhangdeng@https://www.wendangku.net/doc/a07947065.html,) 10.Office hour:周四下午3-5点,数学楼1206 二.课程主要内容(中英文) 随机过程是定量研究随机现象(事件)统计规律的一门数学分支学科。学习《随机过程》的主要目的是:了解、认识随机现象的统计性质;知道如何构造随机模型并且能计算和分析随机事件随时间发生变化的的概率及其相关性质。《随机过程》主要包括:Poisson过程、Markov过程、鞅过程、Bronian 运动、随机分析基础(Ito积分与随机微分方程)、平稳过程等。 Stochastic Processes are ways of quantifying the dynamic relations of sequences of random events. It is a branch of mathematics. The main content of this course includes: General theory of stochastic processes; Poisson process and renewal theorems; Martingales; Discrete-time Markov Chains; Continuous-time Markov Chains; Brownian motion; Introduction to stochastic analysis; Stationary processes and ARMA models. 第一章概率论精要 主要内容:概率公理化,全概率公式和Bayes 公式,随机变量及其数字特征、条件期望、极限定理。重点与难点:条件期望和极限定理。 第二章随机过程的基本概念 主要内容:随机过程的定义、随机过程的存在性、随机过程的数字特征。 重点与难点:随机过程的存在性。 第三章Poisson 过程 主要内容:Poisson过程的定义及性质,首达时间与其间隔的分布,Poisson过程的极限定理。 重点与难点:首达时间间隔与Poisson过程的关系。 第四章Markov过程

概率统计分布表(常用)

. 标准正态表 x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 .

全国交通事故统计

中国历年交通事故死亡人数官方统计 交通事故已成为“世界第一害”,而中国是世界上交通事故死亡人数最多的国家之一。从二十世纪八十年代末中国交通事故年死亡人数首次超过五万人至今,中国(未包括港澳台地区)每年交通事故50万起,因交通事故死亡人数均超过10万人,已经连续十余年居世界第一。 2009年,中国汽车保有量约占世界汽车保有量的百分之三,但交通事故死亡人数却占世界的百分之十六。而酒后驾车为导致交通事故的主要罪魁之一。 中国历年交通事故死亡人数官方统计 2001年全国道路交通事故死亡10.6万人。 2001年全国公安交通管理部门共受理道路交通事故案件75.5万起,事故共造成10.6万人死亡,平均每天因交通事故死亡的人数已达300人(注:每5分钟有一人死于交通事故),直接经济损失30.9亿元。(来源:中国新闻社) 2002年全国道路交通事故死亡10.9万人 2002年,中国共发生道路交通事故77.3万起,造成10.9万人死亡、56.2万人受伤,直接经济损失33.2亿元。(来源:中国新闻网) 2003年全国道路交通事故死亡10.4万人 2003年全国公安部门共受理一般以上道路交通事故667507起,这些事故造成104372人死亡,直接经济损失33.7亿元。去年,在机动车增长1674万辆、道路增加4.6万公里的情况下,全国交通事故起数、死伤人数出现了10年以来的首次下降,其中“非典”期间事故下降明显。(来源:京华时报) 2004年全国道路交通事故死亡9.4万人 2004年中国道路交通事故死亡人数达9.4万人,居世界第一。驾驶员是道路交通安全最重要的影响因素。2004年因驾驶员因素导致的交通事故占总数的89.8%,造成的死亡人数、受伤人数分别占到了总数的87.4%和90.6%。(来源:新华网) 2005年全国道路交通事故死亡98738人 2005年,全国共发生道路交通事故450254起,造成98738人死亡、469911人受伤,直接财产损失18.8亿元。(来源:新华社) 2006年,全国共发生道路交通事故378781起,造成89455人死亡、431139人受伤,直接财产损失14.9亿元。万车死亡率为6.2。

大学概率论与数理统计必过复习资料试题解析(绝对好用)

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4) 3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5) (6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式: (4) Bayes公式: 7.事件的独立 性:独立(注意独立性的应用)第二章随机变量与概率分 布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对 任意, 2.连续随机变量:具有概率密度函数,满足(1)(2); (3)对任意, 4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,; (6)为连续函数,且在连续点上, 5.正态分布的 概率计算以记标准正态分布的分布函数,则有(1);(2);(3) 若,则;(4)以记标准正态分布的上侧分位 数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导 数,,若不单调,先求分布函数,再求导。第三章随机向量 1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有 (1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布 且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关 于右连续;(3);(4),,;(5);(6)对 二维连续随机向量, 6.随机变量的独立性独立(1) 离散时独立(2)连续时独立(3)二维正态分布独立,且 7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续 时, ;,; (3) 二维时, (4); (5);(6);(7)独立时, 2.方差(1)方差,标准差(2); (3);(4)独立时, 3.协方差 (1);;;(2)(3);(4)时, 称不相关,独立不相关,反之不成立,但正态时等价;(5) 4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律 3.中心极限定理(1)设随机变量独立同分布, 或,或

近三年全国交通事故统计和解析

附件1 2009年全国共发生道路交通事故23.8万起,造成67759人死亡、275125人受伤,直接财产损失9.1亿元,与2008年同期相比,分别下降10.1%、7.8%、9.8%和10.7%。 2008年,全国共发生道路交通事故265204起,造成73484人死亡、304919人受伤,直接财产损失10.1亿元。与2007年相比,分别下降19%、10%、25%、15%、39%。 中国每5分钟有一人因车祸死亡,每一分钟有一人因车祸伤残,每天死亡280多人,每年死亡10万多人,汽车数量占世界1.9%,车祸死亡人数占世界15%,且每年增加4.5%。自1899年发生第一起有记录车祸以来,全球车祸累计死亡3000万人,超过第二次世界大战死亡人数。所以每个人都必须珍重生命,注意安全。 截至2010年3月,全国机动车保有量约1.92亿辆,全国机动车驾驶人约2.05亿人,中国已经大踏步进入“汽车时代”。但是,值得社会关注并亟待采取有效措施的是,有数据显示,儿童因道路交通事故导致的儿童伤害和死亡率在1985~1999年的15年间增长了81%。目前我国每年有超过1.85万名的14岁以下儿童死于交通安全事故,每天,至少有19名15岁以下的中国孩子因道路交通意外而死亡;77人因道路交通伤害而受伤。少年儿童交通事故死亡率居全球首位,是欧洲的2.5倍、美国的2.6倍。 2010年,全国共接报道路交通事故3906164起,同比上升35.9%。其中,涉及人员伤亡的道路交通事故219521起,造成65225人死亡、254075人受伤,直接财产损失9.3亿。与去年相比,事故起数减少18839起,下降7.9%;死亡人数减少2534人,下降3.7%;受伤人数减少21050人,下降7.7%;直接财产损失增加1196.7万元,上升1.3%。发生一次死亡3人以上道路交通事故1244起,同比减少32起,发生一次死亡5人以上道路交通事故269起,同比增加8起;发生一次死亡10人以上特大道路交

上海交通大学计算方法作业答案.docx

P50-1 %%牛顿插值多项式 function [ c, d] = newpoly ( x,y ) %这里X为n个节点的横坐标所组成的向量,y为纵坐标所组成的向量。%c为所求的牛顿插值多项式的系数构成的向量。 n=length(x); d=zeros (n, n); d(: , l)=y*; for j=2 : n for k= j : n d(k, j) = (d(k, j-1) - d (k-l z j-1)) / (x(k)-x(k-j + l)); end end c = d (n, n); for k=(n-1) : - 1 : 1 c =conv (c z poly (x (k))); m=length (c); c (m) =c (m) + d (k, k); end >> X ==0.2 : 0.2 :1 ; >> y =[ 0.98,0.92,0.81,0.64,0.38]; >> c= newpoly(x, y ) c =-0.5208 0.8333 -1-1042 0.1917 0.9800 % %三次样条插值 x=[0.2,0.4,0.6,0.8,1.0]; y=[0.98, 0.92z 0.81,0.64,0.38]; x0 = [0.2,0.28,1.0,1.08]; pp=csape(x A y, 1 variational1); %%三次样条函数表达式 disp(pp?coefs); -1-3393-0.0000-0.24640.9800 0 ?4464-0.8036-0.40710.9200 -1.6964-0.5357-0.67500.8100 2.5893-1.5536-1.09290.6400

科学计算-致远学院-上海交通大学

上海交通大学致远学院计算机班 《科学计算》教学大纲 一、课程基本信息 课程名称(中文):科学计算 课程名称(英文):Scientific Computing 课程代码:MA235 学分 / 学时:3学分 / 48学时 适用专业:致远学院计算机班 先修课程:数学分析,线性代数 后续课程:相关课程 开课单位:理学院数学系计算与运筹教研室 Office hours: 每周四14:00—16:00,地点:数学楼1204 二、课程性质和任务 科学计算的兴起是20世纪最重要的科学进步之一,其核心主要为利用计算机高效求解来源于科学研究和工程设计中的各类问题。随着高性能计算机的飞速发展,科学计算在国民经济与国防建设的许多重要领域都取得很大成功,因此,实验、理论、计算被公认为科学与工程领域中不可或缺的三大基本研究方法。本课程的主要任务是通过算法设计、理论分析和上机实算“三位一体”的教学方法,使学生能掌握科学计算领域算法设计的一些基本方法和基本原理,能对算法进行有效的收敛性、稳定性和复杂度分析,进一步提升同学们利用计算机解决实际问题的能力。本课程将着重介绍插值与逼近、数值积分与数值微分、非线性方程与线性方程组的数值解法,简要介绍矩阵的特征值与特征向量计算和常微分方程初值问题数值解法等内容。本课程重视实践环节建设,学生要做一定数量的大作业。 三、教学内容和基本要求 1 绪论 1.1计算机数值计算基本原理 1.2 误差的基本概念与估计 1.3 避免算法失效的基本原则

1.4 MATLAB语言简介 2 函数的多项式插值与逼近 2.1 函数插值与逼近问题的提法 2.2 Lagrange插值方法 2.3 Newton插值方法 2.4 Hermite插值方法 2.5 分段低次多项式插值 2.6 最佳平方逼近 2.7 正交多项式 2.8 变分原理简介 2.9 函数拟合的正则化方法 3 数值积分与数值微分 3.1 数值积分概论 3.2 Newton-Cotes公式 3.3 复化求积公式 3.4 Romberg求积公式与自适应求积方法3.5 Gauss求积公式 3.6 数值微分 4 非线性方程求根 4.1 方程求根与二分法 4.2 不动点迭代法及其收敛性 4.3 迭代收敛的加速算法 4.4 Newton法及收敛性分析

概率统计分布表常用

标准正态表 x 0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842

全国历年道路交通事故统计数据

年份事故起数死亡人数受伤人数直接财产损失万车死亡率10万人口死亡率1951 5922 852 5159 137.64 0.15 1952 4702 675 4026 101.81 0.12 1953 8744 1200 7255 153.65 0.20 1954 8467 917 5762 102.46 0.15 1955 9249 955 5463 94.18 0.16 1956 11332 1126 6364 95.91 0.18 1957 14980 1219 6789 96.75 0.19 1958 26938 3009 13259 174.33 0.46 1959 37126 4901 19038 232.61 0.73 1960 33634 5762 18637 257.46 0.87 1961 22358 4436 14355 184.83 0.67 1962 21238 3908 14879 157.58 0.58 1963 19212 2648 10789 101.34 0.38 1964 18157 2253 10490 81.60 0.32 1965 20967 2382 11949 79.53 0.33 1966 27367 3466 17639 102.18 0.46 1967 29264 5728 18517 172.48 0.75 1968 1969 1970 55437 9654 37128 227.63 1.16 1971 69975 11331 52119 229.19 1.33 1972 77465 11849 58738 205.21 1.36 1973 71192 13215 53827 37666779 196.45 1.48 1974 81672 15599 66498 44704449 198.51 1.72 1975 91606 16862 71776 51363635 183.86 1.82 1976 101878 19441 81908 55673377 156.62 2.07 1977 112222 20427 84779 62953015 145.45 2.15 1978 107251 19096 77471 56412909 120.20 1.98 1979 117848 21856 80855 53742835 119.62 2.24 1980 116692 21818 80824 49602939 104.47 2.21 1981 114679 22499 79546 50837376 95.85 2.25 全国历年道路交通事故统计数据 1982 103777 22164 71385 48594796 85.32 2.81 1983 107758 23944 73957 58358392 84.35 2.33 1984 118886 25251 79865 73363944 42.99 2.43 1985 202394 40906 136829 158676425 62.39 3.89 1986 295136 50063 185785 240180000 61.12 4.70 1987 298147 53439 187399 279389380 50.37 4.94 1988 276071 54814 170598 308613669 46.05 5.00 1989 258030 50441 159002 335984528 38.26 4.54 1990 250297 49271 155072 363548114 33.38 4.31 1991 264817 53292 162019 428359749 32.15 4.60

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布 摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。 关键词:二项分布;Poisson 分布;正态分布;定义;性质 一、二项分布 二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生 这种分布的重要现实源泉是所谓的伯努利试验。 (一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布) 1.泊努利试验 在许多实际问题中,我们感兴趣的是某事件A 是否发生。例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。 为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = () q p A P =-=1。 2.泊努利分布 定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数, 则??? ? ??ξp q 10 ~,称ξ服从参数为)10(<

《概率统计》公式、符号汇总表

《概率统计》公式、符号汇总表及各章要点 (共3页) 第一章 均独立。 与与与此时独立与B A B A B A B P A P AB P B A B P AB P B A P ,,);()()( ) ()()( (1)?=?= ) () ()()( )()()()()( )3() (1)( )()( A B )()()( )()()()()( )()()()( )2(11A P B P B A P A B P B P B A P B P B A P A P A P A P B P A P AB P A P B A P A P A B P B P B A P AB P AB P B P A P B A P i i i n n ?= ?++?=-=-?-=-?=?=-+= 第二、三章 一维随机变量及分布:X , i P , )(x f X , )(x F X 二维随机变量及分布:),(Y X , ij P , ),(y x f , ),(y x F *注意分布的非负性、规范性 (1)边缘分布:∑ = j ij i p P ,? +∞ ∞ -= dy y x f x f X ),()( (2)独立关系:J I IJ P P P Y X =?独立与 或)()()(y f x f y x f Y X =, ),,(1 1n X X 与),,(21n Y Y 独立),,(1 1n X X f ?与),,(21n Y Y g 独立 (3)随机变量函数的分布(离散型用列表法) 一维问题:已知X 的分布以及)(X g Y =,求Y 的分布-------连续型用分布函数法 二维问题:已知),(Y X 的分布,求Y X Z +=、{}Y X M ,max =、{}Y X N ,min =的分布- ? ? +∞ ∞ -+∞ ∞ --=-= dy y y z f dx x z x f z f Z ),(),()( M 、N 的分布---------连续型用分布函数法 第四章 (1)期望定义:离散:∑= i i i p x X E )( 连续:?? ? +∞∞ -+∞ ∞-+∞ ∞ -= = dxdy y x xf dx x xf X E ),()()( 方差定义:)()(]))([()(2 2 2 X E X E X E X E X D -=-= 离散:∑-=i i i p X E x X D 2 ))(()( 连续:? +∞ ∞ --= dx x f X E x X D X )())(()(2

华东交通大学2015-2016学年《计算方法》期末复习(2)答案

,420420001???? ? ??-华东交通大学2015—2016学年第二学期复习(B 卷) 试卷编号: ( A )卷 计算方法 课程 课程类别:必修 考试日期: 月 日 开卷(范围:计算方法教材前三章) 题号 一 二 三 四 五 六 七 八 … 总分 累分人 签名 题分 25 25 25 25 25 25 25 25 25 100 得分 注意事项:1、本试卷共 页,总分 100 分,考试时间 50 分钟。 2、考试结束后,考生不得将试卷和草稿纸带出考场。 考场纪律:1、学生应试时必须携带学生证,以备查对,学生必须按照监考老师指定的座位就坐。 2、除答卷必须用的笔、橡皮及老师指定的考试用具外,不得携带任何书籍、笔记、草稿纸等。 3、答卷时不准互借文具(包括计算器)。题纸上如有字迹不清等问题,学生应举手请监考教师解决。 4、学生应独立答卷,严禁左顾右盼、交头接耳、抄袭或看别人答卷等各种形式的作弊行为,如有违反,当场取消其考试资格,答卷作废。 5、在规定的时间内答卷,不得拖延。交卷时间到,学生须在原座位安静地等候监考教师收卷后,方可离开考场。 ★向量和矩阵范数 一、求向量( )T 4,2,1= x 的1,2和∞-范数. 求、1A 、∞A .2 A 二、设A = 承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。

三、已知A =??? ? ? ??-010110004,求、1A 、∞A .2A 则1A = 4 ∞A = 4 ;2||||A = 4 ; 四、已知矩阵A , ? ?? ???=3.01.05.06.0A , 计算、1A 、∞A .2 A 121.1,0.8,0.827853,0.842615F A A A A ∞==== 五、设10099,9998A ?? = ??? 计算A 的条件数()(),2,p cond A P =∞. ** 1 9899-98999910099-100A A A A --????=?== ? ?-???? 矩阵A 的较大特征值为198.00505035,较小的特征值为-0.00505035,则 1222 ()198.00505035/0.0050503539206cond A A A -=?== 1 ()19919939 601c o n d A A A -∞∞ ∞ = ?=?= ★雅可比、高斯-赛德尔迭代法 一、用高斯-塞德尔方法解方程组 ??? ??=++=++=++22 52182411 24321321321x x x x x x x x x 取()()00,0,0T X =,迭代四次(要求按五位有效数字计算). 答案:迭代格式 ??? ??? ???--=--=--=++++++)222(51) 218(41)211(41)1(2)1(1)1(3)(3)1(1)1(2) (3)(2)1(1k k k k k k k k k x x x x x x x x x k )(1k x ) (2 k x )(3 k x 0 0 0

相关文档
相关文档 最新文档