文档库 最新最全的文档下载
当前位置:文档库 › 高速动车组防脱落底板的结构设计

高速动车组防脱落底板的结构设计

高速动车组防脱落底板的结构设计
高速动车组防脱落底板的结构设计

10.16638/https://www.wendangku.net/doc/af8069883.html,ki.1671-7988.2019.07.059

高速动车组防脱落底板的结构设计

贾惠臻

(青岛四方庞巴迪铁路运输设备有限公司工程部,山东青岛266111)

摘要:针对高速动车组车身轻量化的要求,文章介绍了一种具有防脱落结构的轻型铝合金底板,结合底板的设计要求,进行结构分析,并对底板结构进行强度计算,通过振动冲击试验验证这种防脱落底板的可靠性。

关键词:底板结构;铝焊接;防脱落;应力水平;静强度;疲劳强度;振动冲击

中图分类号:U465 文献标识码:A 文章编号:1671-7988(2019)07-178-03

Structural Design of High-speed EMU Anti-shedding Bottom Cover

Jia Huizhen

( Engineering EMU, Bombardier Sifang Transportation Ltd., Shandong Qingdao 266111 )

Abstract:In order to meet the requirement of light weight of high-speed EMU body, this paper introduces a kind of light- type aluminium alloy bottom cover with anti-shedding structure. According to the design requirements of the bottom plate, analyses the structure, calculates the strength of bottom plate, verify the reliability of the anti-shedding bottom cover by shock and vibration tests.

Keywords: Bottom cover structure;Aluminium welding; Anti-shedding;Stress level; Static strength; Fatigue strength; Vibration and shock

CLC NO.: U465 Document Code: A Article ID: 1671-7988(2019)07-178-03

前言

随着我国高速铁路迅猛发展,列车运行速度的不断提升,动车组轻量化、可靠性、舒适性、安全性的要求更加严格。为减小空气阻力和保护车下设备,动车组设有车下设备舱,底板作为设备舱的主要组成部分,位于车下设备正下方,具备防石击、密封等功能。

目前国内底板设计多选用钢质或铝型材,重量较大。时速250公里动车组对底板结构进行优化,减轻重量,采用螺栓连接并增加了防脱装置。本文从三维设计、强度计算、振动冲击试验三方面分析底板结构并验证其可靠性。1 底板的设计要求

1.1 强度要求及空气动力学性能要求

底板应能保护车下设备,强度及刚度应满足实际运用需要,承受舱内负压及正常运行过程中由于压力波而导致的全部空气动力载荷。

1.2 耐振动和冲击

底板应能承受动车组运行中的各种振动和冲击,在运行速度范围内不会出现谐振现象,振动和冲击性能符合IEC 61373标准。

1.3 具备防脱落功能

用于底板安装的紧固件应有防松功能,经常拆卸的底板应采用多次可拆卸结构,便于拆装并可重复使用,并具有防脱落结构。

作者简介:贾惠臻,毕业于哈尔滨工业大学,工学学士。职称:工程师。就职于青岛四方庞巴迪铁路运输设备有限公司。现任工程部车外设计工程师,主要负责动车组外部产品的研发工作。

178

车身安全结构的秘密 爱唯欧整车拆解汇总

如何确保小型车在碰撞事故中对乘员提供尽可能多的安全保护是始终困扰工程技术人员的一道难题,由于受先天“体型”的限制,小型车往往需要在车身安全结构以及被动安全系统上做出更多的努力。 一辆车出厂后,车身表面有车身覆盖件,坐入车内,所能看到和摸到的则是内部装饰件,而夹在它们中间而且往往也是消费者很难看到的白车身则是一辆车的骨架,更形象的说,它就类似于支撑人体的骨骼。车上的零部件都是或直接或间接的安装在白车身上,而且它的结构设计也决定了车辆在碰撞时的安全性能。我们就通过对爱唯欧这款小型车进行拆解,来看看车身结构以及相关零部件在设计上是如何保证乘员安全的。 ●车身安全设计理念 当层层剥去它的“皮肤”和“肉体”后,车身骨架便清晰的浮现在眼前。其实对于小型车来说,由于车身相对较短,所以就需要车头和车尾的溃缩吸能区在碰撞后出现溃缩变形的同时也要保持有一定的刚性,也就是相对要“坚硬”一些,这样则不至于使得碰撞对乘

员舱造成破坏。当然,如果吸能区过于“坚硬”,那么碰撞时的能量最终则会转移到乘员身上,对其造成巨大伤害,所以如何平衡好“软”与“硬”的关系,往往是车身设计中一个很棘手的问题。 除此之外,如何在一点受到撞击后,将这种能量传递给整个车身,也就是分散可溃缩车身设计同样会起到很大的作用,特别是溃缩区相对狭小的小型车就显得尤为重要。在溃缩区用尽这种极端碰撞情况下,高强度的乘员舱则是对车内乘员的最后保障,对乘员舱的设计就是要足够“坚硬”以防止任何物体对乘员舱的侵入。明白这两个道理后,我们就更容易理解车身的设计的缘由了。 ●双前防撞梁同时具有行人保护设计

两道车身纵梁从前防撞梁一直贯穿至车尾,这两根纵梁可谓是整个车身的“中流砥柱”,它一方面起到支承车身的作用,另外当车辆发生纵向碰撞时,用来分散撞击能量和抵御车身的变形。

地下室底板设计综述

地下室底板设计综述 地下室底板设计综述 摘要:对地下室底板的计算方法和设计技巧进行了分析归纳 关键词:无梁楼板,有限元法,等代框架法 中图分类号: S611 文献标识码: A 文章编号: 地下室底板相对于一般的楼板受力比较复杂,其计算方法没有统一单一的计算方法。作用在底板面上的荷载包括板自重、装修层重量、固定设备、均布活荷载,地下水浮力,在高层建筑当中,地下室埋深比较深,往往地下水浮力对底板的设计起控制作用。 目前广泛采用的底板结构形式主要有两种:梁板式和无梁平板式。梁板式结构传力途径明确,易于掌握,但施工较为困难。无梁平板式受力比较为复杂,但易于施工。 一、梁板式底板的计算: 进行结构设计时,根据地下水浮力对基础梁、底板进行设计,根据柱底轴力及单桩承载力对承台进行设计,基础梁、底板配筋与承台配筋是分别计算的。目前工程实践中常规做法是将基础梁、底板钢筋与承台钢筋分别按计算结果进行配置。 1.1荷载取值 计算时程序要求输入恒、活荷载标准。在设计时不能简单的把自重和水浮力荷载作为恒载和活载输入程序。可以把自重荷载和水浮力荷载进行荷载等效组合求得输入程序的恒荷载和活荷载值[1],也可以较为简单的把自重荷载和水浮力荷载组合设计值除以1.2取值作 为恒荷载,活荷载取值0作为输入程序的荷载参数[2]。框架柱输入承台尺寸,并考虑梁、柱重叠部分作为刚域计算,可减小梁断面及配筋。 1.2求解计算 梁板式地下室底板可采用 SATWE等程序按一层框架结构进行计算。 二、无梁板的计算问题:

2.1计算方法 1、经验系数法:运用经验系数法必须满足下列的条件①活荷载为均布荷载,且不大于恒载的 3 倍;②每个方向至少有 3 个连续跨; ③任一区格内的长边和短边之比不应大于 1.5;④同一方向上的最大跨度与最小跨度之比不应大于1.2; 2、等代框架法,等代框架法的做法是,将无梁楼盖结构沿纵、横柱列方向划分为纵向和横向的等代梁,与柱子形成等代框架。 经验系数法和等代框架法是在电算发展之前的一种实用分析方 法[3]: 1)从无梁楼板中选择一个具有代表性的三维计算单元,把这个三维的计算单元简化为一个二维的梁柱框架结构,该结构即为等效框架。如下图所示: 图1:等代框架计算模型 当无梁楼板结构体系满足经验系数法的限制条件时,上图中的等代梁端负弯矩和等代梁跨中弯矩可以直接给出。这即为经验系数法。 2)将等效框架求得到的框架支座弯矩和跨中弯矩分配给柱上板带和跨中板带。 图2:柱上板带和跨中板带内力分配 3)根据所求得的内力进行截面设计; 3、有限元计算方法,适用面较广。现在采用较多的有限元软件有 PKPM 的SlabCAD 和和其他有限元分析软件,其中SlabCAD有限元分析结果能够得到板的内力和精确的计算配筋值,方便工程师进行结构设计,《地下室结构选型与设计优化》对利用SlabCAD有限元来分析地下室底板进行了简单的叙述[4]。需要注意的是,在 SlabCAD 的后处理中查看节点内力及配筋,因为考虑了柱子和剪力墙的刚度,柱子内部或者剪力墙内部的刚度相对楼板很大,使有些房间边界和柱子中心处内力和配筋都极大,截面配筋设计中应酌情调整。

地下室结构设计

地下室结构设计问题探讨 摘要:结合工程实例,从安全技术以及经济的优化角度,对地下室结构设计的计算方法以及构造措施等进行深入分析,结合笔者的多年设计体会,提出地下室结构设计的一些设计要点,希望为同类工程设计提供指导性的借鉴。 小清新:地下室;结构设;地下室底板;地下室顶板 1地下室结构平面设计 地下室工程涉及的专业极为复杂,高层建筑的地下室结构设计,需综合考虑防火、使用功能、人防要求、设备用房及管道、坑道、排水、通风、采光等各专业的配合。例如地下室的长度超过设计规定的长度时,需要与结构专业配合,确定是否设置变形缝,通常应尽可能少设或不设变形缝,因为设置变形缝会使得变形缝处的防水处理变得复杂。设计人员可以通过设置后浇带和合理使用混凝土外加剂或地上设缝、地下不设缝等方式,达到不设缝的目的。若地下室过长,依靠设置后浇带的方法难以解决,设计时可合理地调整平面,通过分割地下室,用较窄的通道相连,以满足使用及管道相连的要求,而将变形缝设置在通道处,这样可以使接缝较少且处于受力较小处,便于补救。在结构设计时应合理地设置采光通风井,若采光井位置设计不当,也会影响地下室的结构稳定功能。 2 地下室外墙结构设计 地下室的外墙是结构设计的重点,应按水、土压力验算外墙抗裂。在设计时应注意以下要求: (1)荷载。地下室外墙所承受的荷载分为水平荷载和竖向荷载。竖向荷载包括上部及地下室结构的楼盖传重和自重,水平荷载包括室外地面活载、侧向土压力、地下水侧向压力和人防等效静荷载。在实际工程设计中,竖向荷载及风荷载或地震作用产生的内力一般不起控制作用,墙体配筋主要由垂直墙面的水平荷载产生的弯矩确定,而且通常不考虑与竖向荷载组合的压弯作用,仅按墙板弯曲计算弯曲的配筋。 (2)地下室外墙截面设计时,土压力引起的效应为永久荷载效应。地下室外墙承受的土压力宜取静止土压力,静止土压力宜由试验确定。当不具备试验条件时,砂土可取0.34~0.45,黏性土可取0.5~0.7。水位稳定的水压力按永久荷载考虑,分项系数可取1.2;水位急剧变化的水压力按可变荷载考虑,分项系数宜取1.3。有人防要求的地下室外墙的永久荷载分项系数,当其效应对结构不利时取1.2,有利时取1.0;抗爆等效静荷载分项系数取1.0。 (3)地下室外墙的配筋计算。实际设计时,配筋的计算,对于带扶壁柱的外墙,不是根据扶壁柱的尺寸大小进行计算,而是均按双向板计算配筋;扶壁柱则按地下室结构的整体电算分析结果进行配筋,不按外墙双向板传递荷载验算扶壁柱配筋。根据外墙与扶壁柱变形协调的原理,这种设计将使得外墙竖向受力筋配筋不足、扶壁柱配筋偏少、外墙的水平分布筋则有富余量。 (4)地下室底板标高的设计。地下室底板标高变化处仅设1根梁,梁宽甚至小于底板的厚度,梁内仅靠两侧箍筋传递板的支座弯矩难以满足要求。地面层开洞位置(如楼梯问)外墙顶部无楼板支撑,计算模型和配筋构造均应与实际相符。 3地下室防水设计 地下室防水设计是一项十分重要的工作,甚至是决定地下室设计成败的关键。在防水设计时,应根据工程的性质、使用要求和重要性等合理确定防水等级,根据防水等级确定防水层数。无论防水等级为几级,地下室混凝土都应采用结构自防水混凝土,防水混凝土的抗渗等级应根据水头高度与混凝土壁的厚度比确定,不得人为地自行降低。根据防水等级的要求,建筑的地下室仅设l 道防水混凝土是不能满足要求的,一般应做卷材防水。在选用防水卷材时,应考虑到地下室环境恶劣、无法更换的特点,尽量选用耐久性好的卷材。防水卷材在

地下车库结构设计及计算实例(技术部)

地下车库结构设计及计算实例 [摘要] 本文通过上海某楼盘地下车库的结构设计计算实例,参考了国内相应的规范和规程,并比较与分析了不同的车库顶板以及基础设计技术指导文件。 [关键词] 地下室外墙。无梁楼盖。梁板式楼盖。筏板。抗冲切。抗剪。抗浮。地基承载力本工程为上海某楼盘独立地下车库,地下一层,上部设绿化覆土带。车库顶板采用无梁楼盖加柱帽结构,基础采用独立柱基加抗水板的做法。以下为该地下车库的设计计算分析过程:一、抗浮验算 由于本工程为一层独立地下室,因此该地下车库需要进行局部抗浮计算,取单个混凝土柱子进行验算。 水浮力= 其中,γ取。为地下室底板标高至地下水位标高之间的距离。为单根柱子所属底板面积。 抗浮力∑() 其中,为顶板上覆土重荷载(包括地下水自重)。为顶板自重荷载。为底板自重荷载。为底板上素砼面层荷载。为柱自重。为顶板柱帽重。为底板柱帽重。(如有底板外挑压土自重应考虑进行) 分别根据上海市工程建设规范《地基基础设计规范》[](以下简称《规范》)条以及《高层建筑筏形与箱形基础技术规范》[]的条规定,满足 ≤∑ 即无须设置抗拔桩。(取为综合考虑有关规范规定所选取的经验值) 二、地基承载力验算 以基底持力土层的抗剪强度指标计算地基承载力(考虑深度修正),并以此计算值作为本次设计的地基承载力设计值。 根据《规范》求得=()+ + 上部荷载作用下地基净反力为∑=应小于,(∑为基本组合)则地基承载力满足要求。 三、地下室外墙计算 地下室外墙计算简图见下图,取外墙单位长度为计算单元。

首先应求出土压应力、: =(++)+=+ + 其中静止土压力系数=-,为地面荷载,一般取,γ为无地下水土体重度,γ为土体饱和重度,γ为水重度。(、为设计值) 根据《建筑结构静力计算手册》[] 关于单跨梁的内力计算内容算得最大正弯矩 [] 。然后根据《混凝土结构计算手册》 查得。 接下来应验算外墙裂缝宽度,取正负弯矩中较大值进行验算。 根据《混凝土结构设计规范》[] (以下简称《砼规范》)求得 = ,其中,为最大弯矩的准 永久值。 应用《砼规范》)得 = 。 应用《砼规范》) 求裂缝间纵向受拉钢筋应变不均匀系数: 应用《砼规范》)求最大裂缝宽度: = - 。 = ( + )。 按最不利考虑,当 时,(为纵向受拉钢筋合力点至截面受压合力点的距离,且不大于)。 则受弯构件表面处的最大裂缝宽度为: ()() ,该值应小于。 四、车库顶板结构选型及计算 车库顶板结构形式目前主要有传统的梁板式结构和无梁楼盖结构等。梁板式结构的优点是施工工艺较为成熟,现代地下车库空间较大,柱距也较大,采用一般梁板式结构时,由于梁截面高度大,机电管道需要在梁下通行,从而加大了对层高的要求。而无梁楼盖是一种双向受力

汽车前后防撞梁设计地的要求的要求规范

汽车前后防撞梁设计规范 一、目的: 指导汽车前后防撞梁总成设计;提供汽车前后防撞梁总成设计的思路。 二、范围: 该规范适应于M1类车辆汽车前后防撞梁的设计。主要介绍了汽车开发过程中汽车前后防撞梁总成的作用及在整车中的影响。首先对汽车前后防撞梁在整车中的功能进行了概述,尤其是对汽车前后防撞梁碰撞性能做了详细的描述;同时对汽车前后防撞梁总成设计要点作了描述;最后对汽车前后防撞梁的加工制造性作了阐述。 三、规范性引用文件: 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 11551-2003 乘用车正面碰撞时的乘员保护 GB 17354-1998 汽车前、后端保护装置 GB 20072-2006 乘用车后碰撞燃油系统安全要求 C-NCAP 中国新车评估程序2012版 四、汽车前后防撞梁总成主要功能 1、汽车前后防撞梁总成功能概述 汽车前后防撞梁总成,是车身第一次承受撞击力的装置,也是车身中的一个重要构件,其功能主要有: a. 保护保险杠在低速碰撞过程中尽量不要破裂或者发生永久变形。 b. 保护车身骨架前后端纵梁在行人保护或者可维修性碰撞时不发生永久变形或者破裂。 c. 在100%正面高速碰撞、后面高速碰撞时起到第一次的吸能作用,在偏置碰撞中不仅起到第一次吸能作用,还能起到碰撞过程中均衡传递受力的作用,防止车身左右两侧受力不均。 2、汽车前后防撞梁总成碰撞性能概述 前防撞梁总成碰撞性能 前防撞梁总成的碰撞性能主要需满足低速碰撞和高速碰撞两个部分的法规要求。其中, 低速碰撞需满足的法规要求为:GB17354-1998 汽车前、后端保护装置。高速碰撞需满足的法规要求为:GB11551-2003 乘用车正面碰撞时的乘员保护; C-NCAP标准,需满足其100%正面碰撞和40%偏置碰撞要求。 3、低速碰撞对前防撞梁设计的性能要求 低速碰撞的国家标准GB l7354—1998规定的正撞速度为4km/h,车角碰撞速度为2.5 km/h,对车身的要求就是车身本体、前防撞梁和吸能盒等不能有

高速滚动轴承保持架自由振动特性研究

收稿日期:2000203202 作者简介:周延泽(1964-),男,河北海兴人,在职博士生,100083,北京. 高速滚动轴承保持架自由振动特性研究 周延泽 王春洁 陆 震 (北京航空航天大学机械工程及自动化学院) 摘 要:通过对航空发动机主轴承保持架自由振动的计算分析,表明:保持 架不存在小于751.12H z 的固有频率;在整体按圆环的规律振动的同时,过梁和侧梁存在弯曲、剪切等局部振型;由于保持架的转动,存在不相等且与转动速度相关的前后行波频率,保持架可能共振的频率数目增多,而保持架又受到多种周期性的干扰,高速转动时更易激发共振,造成破坏,因此在设计中必须对保持架的振动问题给予重视. 关 键 词:滚动轴承;保持架;自由振动中图分类号:TH 133.33+4文献标识码:A 文章编号:100125965(2001)0520596204 保持架作为滚动轴承的组成元件,将滚动体沿圆周均匀地分开.在一般用途的轴承中,由于转速较低,保持架都能够满足工作要求.但是在航空发动机主轴承中,由于工作条件苛刻,转速高,对保持架也提出了较高的要求,特别是其动力特性直接影响到滚动轴承的性能和寿命.空军某机型主轴球轴承就曾多次发生过因保持架疲劳断裂造成的轴承失效,因此在设计中需要对保持架的动力学性能进行较为精确的计算和估计.国外在这方面的研究主要关注的是保持架的运动与不稳定性问题 [1]~[4] ,国内的研究比较少,对于其振动方 面的研究则鲜见报道. 航空发动机主轴承保持架一般为整体结构,为增大轴承承载能力和减轻重量,滚动体较多,滚动体间的距离较小,因而保持架结构柔性较大易变形;由于沿圆周方向质量不均匀,变形沿周向也不均匀;高速旋转的保持架类似于圆环,有圆环平面内的振动,同时有在垂直于环的平面内弯曲与扭转振动;由于采用套圈导引,因此变形受到限制,为约束振动,在振动分析中必须考虑相应的约束条件;激发振动的因素很多,其中球、套圈对保持架的冲击碰撞是直接因素,且规律比较复杂.保持架的各种振动将引起动应力,从而影响到其疲劳寿命,为此有必要对其振动特性进行研究.本文用有限元法对保持架在自由状态下的自由振动特性进行了研究. 1 保持架的自由振动 1.1 计算模型 以某航空发动机主轴球轴承为例进行计算分析.轴承参数为:内孔直径90mm ,滚动体数14,滚 动体直径22.225mm ,保持架材料为青铜合金,弹性模量E =1.05×1011Pa ,泊松比0.33. 有限元动力分析程序很多,本文采用Alg or (有限元计算程序)程序计算.考虑到保持架的形状及局部振型,有限元模型网格划分较密,共分为1008个8节点三维块单元,2296个节点.保持架在工作过程中,由外圈引导转动,计算中取自由边界条件. 本文计算了其前50阶自由振动的频率及相应的振动模态,由此可以研究其共振、变形及应力状态. 1.2 自由振动模态 保持架是圆环类零件,其振动具有环类零件振动[5]的特征,将计算结果进行归纳,其振动模态主要有以下几类. 1)环平面内的弯曲振动,即环平面内保持架沿圆周方向规则变形,如图1所示为周向波数n 分别为2,3,4时的模态.表1是计算得到的部分面内弯曲振动频率.因为保持架在圆环平面内的弯曲刚度较小,所以振动频率较低,因而在实际应用中也比较容易被激发,研究也最多.这种弯曲振   2001年10月第27卷第5期北京航空航天大学学报 Journal of Beijing University of Aeronautics and Astronautics October 2001V ol.27 N o 15

地下室底板无梁楼盖的设计

浅谈地下室底板无梁楼盖的设计 【摘要】本文结合理论、规范和工程实例,总结地下室底板无梁楼盖设计的一般步骤。【关键词】地下室底板无梁楼盖PKPM-SLABCAD 前言:地下室在民用建筑中应用越来越广泛(特别是高层建筑),一般用作地下商场、停车场以及人防设施。在多雨的广东地区,地下室底板经常承受水浮力作用,防水抗渗要求地下室底板板厚比较厚,板厚不少于250mm, 无梁楼盖是由楼板、柱和柱帽组成的板柱结构体系,楼面荷载直接由板传给柱及柱下基础。无梁楼盖的特点是板厚比较厚,楼盖比较重,有利于提高结构的抗浮能力,在施工方面,采用无梁楼盖结构形式有省砖模、楼面钢筋绑扎方便,设备安装方便等优点,从而大大提高了施工速度。因此,无梁楼盖在地下室底板的应用越来越广泛了,本文主要针对地下室底板无梁楼盖的设计,结合结构设计软件08版PKPM-SLABCAD,谈谈自己的一些设计心得。 一.由抗渗等级、设防水位、地下室侧壁壁厚初步定底板板厚 1.由地下室的埋置深度确定防水混凝土的设计抗渗等级,根据《地下工程防水技术规程》第4.1.4条 表4.1.4 防水混凝土设计抗渗等级 2.由地下室的设防水位确定水头高度H1,H1=设防水位标高-底板板底标高 3.侧壁与底板(基础)连接,底板(基础)视为侧壁的固定支承时,底板(基础)的厚度必须大于池壁,可根据地基的土质情况取1.2~1.5倍侧壁厚度,并将底板(基础)外挑;当侧壁与底板板厚一样时,底板可视为侧壁的弹性支座,对于外墙为悬臂式挡土墙,一般都按底板为池壁的固定支承,故相应部份的底板板厚需为侧壁厚度的1.2~1.5倍。 工程实例: 工程概况:某工程位于中山东区,一层地下室车库,室外地面标高-0.100m,地下室底板板面标高-3.300m,设防水位为-0.300m.楼梯间在首层±0.00m处无楼板,楼梯间外墙为悬臂构件。 暂定底板板厚300mm。 工程埋置深度H约为(-0.100)-(-3.3-0.300)=3.5m,根据表4.1.4,底板的防水抗渗等级为P6; 水头高度H1=(-0.300)-(-3.3-0.300)=3.3m,根据表1,H1/t≤10,t≥330mm,暂取板厚t=350mm 楼梯间外墙的计算模型为一端固端一端由的悬臂构件,通过构件计算得楼梯间外墙的合理壁

高速铁路动车组简介

高速铁路动车组简介 (一)牵引动力及牵引方式比选 1、高速列车应采用电力牵引 内燃牵引和电力牵引两种牵引种类 列车速度从100km/h增加到300km/h时,运行阻力约增加5倍,此时牵引列车的总功率则为100km/h时的15倍电力牵引更适宜高速列车的牵引 内燃牵引是很难实现的 主要原因如下: (1)目前我国功率最大的DF8内燃机车标称功率为2720kw,柴油-发电机组总重为30.87t,柴油机组平均每千瓦功率金属消耗量为11.35kg/kw。而电力机车以 SS3为例,机车功率为4320kw,主变压器重12.4t,平均每千瓦功率金属消耗量为 2.87kg/kw。因此牵引动力装置在轴重和轴数维持一样的条件下,电力牵引可实现更大的牵引功率。 (2)内燃牵引若实现高速牵引则必须提高柴油机功率,必然会增加柴油发电机组及辅助系统重量,最终会导致机车轴重或轴数增加。轴重的增加对高速列车的运行是极其有害的,它增大了轮对对钢轨的冲击力,易导致钢轨的折断,并增加了轨道线路的养护维修工作量和维修费用。若为了维持轴重不增加而增加轴数,如采用C0-C0式转向架或B0-B0-B0式转向架,或组合式机车,使转向架复杂,不利于机车的高

速运行。 (3)大功率柴油机的噪音及排放的废气对环境造成严重的污染,影响旅行的舒适度,同时由于机车燃料油的储备有限,列车不能长距离行驶,需换挂机车或在站上补充燃料及水,增加了列车辅助作业时间。 电力牵引由于牵引功率的增加,对列车的质量影响很小,易实现大功率牵引,所以高速列车最佳的牵引方式为电力牵引。 2、高速铁路宜采用动车组 目前我国铁路基本上采用机车牵引旅客列车的输送方式,机车和旅客列车分别整备,机车在车站联挂列车后出行,机车只在规定的交路范围内运行。这种运行方式有以下缺点: (1)机车按规定交路行驶,中途须换挂机车,辅助作业时间延长,从而使旅行时间延长。而动车组本身在运行中不需更换牵引动力,有效地压缩了运行时间。 (2)列车出入始发(终到)站时通过车站咽喉区每开行一对旅客列车,则占用咽喉次数达6次,造成咽喉区能力紧张。若采用动车组,只用咽喉次数仅2次,极大的缓解了咽喉区的通过能力。 (3)采用动车组可以避免部分机车的单机走行以节省能源的消耗。

地下室结构设计要点

地下室结构设计要点 随着城市地上用地面积的紧张,地下空间的利用率越来越高,为有效地利用城市地下空间,需注意以下几方面的内容。 地下室抗浮设计问题 地下室因为地下水的原因,在施工过程中易出现整体上浮,造成梁、板、柱出现大量裂缝渗水等现象,造成了重大的安全隐患和财产损失。因此地下室的抗浮设计的重要性可想而知,应引起足够重视。地下室的抗浮设计基本上可分为三种情况考虑。 1.地下室未施工完毕或地下室施工完毕便停止降水,这时即便地上结构层数较多,但因上部结构层还没有施工,恒载还没有施加,地下室的自重无法抵抗地下水的浮力。这种情况下应对地下室进行施工阶段的抗浮验算,并采取相关的抗浮措施。 2.地下水位较高,且地下室埋深较大、地上结构层数较少。这种情况下,结构自重不足于抵抗地下水的浮力,需对整体结构进行抗浮验算。 3.结构自重可以抵抗地下水的浮力,但是地下室底板也需进行抗浮设计。 GB50007—2011《建筑地基基础设计规范》规定,岩土工程勘察报告应提供用于计算地下水浮力的设计水位。对重要工程抗浮设计水位的确定,应进行水文实验,并经专家论证后确定。 地下室抗浮措施,一般有两种方法“压”和“拉”。“压”即采取增加自重的方法来抗浮要求,一般有加厚地下室底板,增加地下室覆土厚度等,这种方法由于增加了地下室深度,经济效益并不理想。“拉”即采用抗拔桩、抗浮锚杆,抗拔桩是利用桩身摩擦力和桩自身重量来抵抗水浮力,桩型一般选择灌

注桩,抗拔力不大的情况下也可采用预制桩,除了验算正向荷载的桩数外,还要验算兼作抗拔的桩数,此处不再累述;抗浮锚杆是在底板和土层之间的拉杆,锚杆直径一般150~200mm,锚杆桩局限性比较大,不适用于底板下为淤泥、卵石及砂土层,当底板下有坚硬土层时,是一种比较简单又经济的抗浮措施。 地下室防水设计问题 地下工程防水是一项非常重要的系统性工程,涉及设计、施工、材料选择等诸多方面内容。设计是地下工程防水的基础,必须控制裂缝产生及限制裂缝的最大宽度,因此,对于结构防水的要求及所处环境,强化地下室结构自防水能力,并用动态的观点从材料的耐久性、材料的适应性以及不同防水材料之间的相容性的全局选择适用的防水材料,按照设计要求施工,才能有效提高地下结构防水的可靠性和耐久性。 1.结构自防水设计 结构自防水是根本防线。当有防水要求时混凝土抗渗等级应根据地下水最大水头与防水混凝土厚度的比值按规范确定,且不应小于0.6MPa。近年来,许多地下工程采用补偿收缩混凝土和纤维混凝土作地下室的结构自防水材料,进一步提高了地下结构的抗裂防渗功能。我国目前混凝土外加剂和高性能混凝土技术已基本普及,混凝土质量已大大提高,这是地下结构自防水的保证。 2.附加防水层设计 地下工程中单独采用结构自防水的做法是欠妥的,目前市场上过于夸大外加剂(如减水剂、早强剂、微膨胀剂等)的作用。在地下工程中,由于

中国铁路动车组列车知识大全

中国铁路动车组列车知识大全 动车组 把动力装置分散安装在每节车厢上,使其既具有牵引力,又可以载客,这样的客车车辆便叫做动车。而动车组就是几节自带动力的车辆加几节不带动力的车辆编成一组。带动力的车辆叫动车,不带动力的车辆叫拖车组.动车组技术源于地铁,是一种动力分散技术。一般情况下,我们乘坐的普通列车是依靠机车牵引的,车厢本身并不具有动力,是一种动力集中技术。而采用了“动车组”的列车,车厢本身也具有动力,运行的时候,不光是机车带动,车厢也会“自己跑”,这样把动力分散,更能达到高速的效果。作为一种适合铁路中短途旅客运输的现代化交通工具,动车组的分类有多种:按照传动类型,可分为电动车组和内燃动车组;按照动力形式,可分为动力集中型和动力分散型;按照传动方式,又可划分为电传动和液力传动两种类型。由于动车组可以根据某条线路的客流量变化进行灵活编组,可以实现高密度小编组发车以及具有安全性能好、运量大、往返不需掉转车头、污染小、节能、自带动力等优点,受到国内外市场的青睐,被誉为21世纪交通运输的“新宠儿”。内燃动车组通常两端是动力车,部分带客室。国内常见的动车组都是这一类的,如神州号,四方厂、唐山、戚厂、长客的动车。电力动车组分为动力集中型和分散型,两年前的DDJ1和蓝箭就是动力集中型。而春城号和中原之星是动力分散型。通常的电力动车组都要由客车厂家、使用单位和株厂或株所联合研制。 【动车组分类】 按照动力排布:动力集中,动力分散 按照用途:客运,货运(比如日本M250,法国TGV行邮),特殊用途(轨道检测等) 按照性能:高性能,低性能。 【牵引方式】 动车组有两种牵引动力的分布方式,一种叫动力分散,一种叫动力集中。 动力分散电动车组的优点是,动力装置分布在列车不同的位置上,能够实现较大的牵引力,编组灵活。由于采用动力制动的轮对多,制动效率高,且调速性能好,制动减速度大,适合用于限

地下车库结构设计及计算实例

w 地下车库结构设计及计算实例 [摘要] 本文通过上海某楼盘地下车库的结构设计计算实例,参考了国内相应的规范和规程,并 比较与分析了不同的车库顶板以及基础设计方案。 [关键词] 地下室外墙;无梁楼盖;梁板式楼盖;筏板;抗冲切;抗剪;抗浮;地基承载力 本工程为上海某楼盘独立地下车库,地下一层,上部设绿化覆土带。车库顶板采用无梁楼 盖加柱帽结构,基础采用独立柱基加抗水板的做法。以下为该地下车库的设计计算分析过程: 一、抗浮验算 由于本工程为一层独立地下室,因此该地下车库需要进行局部抗浮计算,取单个混凝土柱 子进行验算。 水浮力 F w = w hA 其中,γ取 10KN/m 2 ;h 为地下室底板标高至地下水位标高之间的距离;A 为单根柱子所属 底板面积。 抗浮力∑G=(G 1+G 2+G 3+G 4)A+F 1+F 2+F 3 其中,G 1 为顶板上覆土重荷载(包括地下水自重); G 2 为顶板自重荷载;G 3 为底板自重荷载; G 4 为底板上素砼面层荷载;F 1 为柱自重;F 2 为顶板柱帽重;F 3 为底板柱帽重。(如有底板外挑压 土自重应考虑进行) 分别根据上海市工程建设规范《地基基础设计规范》[1] DGJ08-11-2010(以下简称《规范》) 12.3.2 条以及《高层建筑筏形与箱形基础技术规范》[2] JGJ6-2011 的 5.5.4 条规定,满足 1.05F ≤∑G 即无须设置抗拔桩。(取 1.05 为综合考虑有关规范规定所选取的经验值) 二、地基承载力验算 以基底持力土层的抗剪强度指标计算地基承载力(考虑深度修正),并以此计算值作为本次 设计的地基承载力设计值。 根据《规范》5.2.3-1 求得 f d = (1/ 2) N r r b + N q q 0 d + N c c C d 上部荷载作用下地基净反力为 ∑ N / A = w dh 应小于 f d ,(∑N 为基本组合)则地基承载力 满足要求。 三、地下室外墙计算 地下室外墙计算简图见下图,取外墙单位长度为计算单元。

高速铁路动车组空调故障的应急处置

高速铁路动车组空调故障的应急处置 1.动车组全列空调故 (1)动车组发生故障停车后,若空调装置出现故障超过20 min,CRH2型动车组允许打开车门通风;CRH1、CRH3、CRH5型动车组若空调装置故障超过20 min,且应急通风功能失效或无法满足要求,也允许打开车门通风。 (2)列车长要及时向旅客通报情况并致歉,组织乘务员积极做好服务工作,帮助受阻旅客妥善解决临时困难,稳定旅客情绪,避免激化矛盾。 (3)为保证旅客的人身安全,同时根据动车组乘务人员的配置情况,打开站台侧4~8扇车门,并在车门处安装防护网,由列车长组织乘警、列车员、餐车工作人员及随车保洁员负责值守,严禁旅客自行下车。 (4)动车组故障不能及时排除,需救援或自动力运行时,允许打开列车部分车门,在固定好防护网的情况下限速运行,具体要求为:CRH1、CRH5型车限速60 km/h,通过高站台时限速40 km/h;CRH2、CRH3型车限速70 km/h。同时,相关乘务工作人员要及时向铁路局、铁路总公司汇报情况。 (5)需要组织旅客下车或换乘其他列车时,原则上在车站站台进行。车站应当与列车一起组织旅客乘降。必须在区间组织旅客下车或换乘时,须经铁路局主管运输副局长批准,同时要做好安全防护,以防发生意外。CRH2、CRH3型动车组若停靠在500 mm及以下站台或区间,需组织旅客通过应急梯下车。 (6)动车组增加搭载应急备品。CRH1、CRH2、CRH3、CRH5型车每组新增加8套防护网,每组CRH2、CRH3型车应急梯增加为4个。防护网存放位置:CRH1型存放在厨房储物柜内,CRH2型存放在3号车一位端的备品柜内,CRH3型在4号车厨房存储柜对面的储物柜内,CRH5型车存放在1号车或8号车的备品柜内。防护网存放在备品柜内的由车辆部门保管,存放在储物柜内的运行中由客运

高速铁路动车乘务实务课程标准

《高速铁路动车乘务实务》课程标准 一、管理信息 二、课程性质 三、课程目标 (一)能力目标 1、熟练使用CRH各型动车组车内基础、服务设备;熟悉中国标准动车组车内环境及特点; 2、熟练使用移动补票机完成相应作业;熟练使用站车无线交互系统手持终端设备完成相应作业; 3、能够正确进行列车运输收入进款管理,正确处理票务问题; 4、能够根据情况正确编制客运记录;能够根据情况正确拍发电报 5、能够按标准完成列车长及客运乘务员的始发、途中、终到乘务作业; 6、能够按标准完成列车长及乘务员接待服务 7、能建立学习型、自控型乘务组; 8、能判定旅客列车易发生的路风问题 (二)知识目标

1、认知CRH各型动车组车门、车窗、座椅、乘务室、卫生、照明、乘客信息系统。 2、了解列车移动补票机中的补票类型及操作步骤;了解站车无线交互系统的功能与基本操作。 3、了解铁路运输票据的使用规定、运输收入事故处理办法、越站处理、误乘、误购处理、车票丢失处理等。 4、了解客运记录的编制原则、方法及范围;了解铁路电报含义、分级、拍发权限、范围等。 5、掌握列车长、客运乘务员始发、途中、终到的作业流程及标准 6、掌握列车长、客运乘务员接待礼仪程序和标准 7、了解铁路路风管理的意义 (三)素质目标 1、具备良好的语言、文字表达能力和与人沟通能力。 2、具有良好的服务意识和较强的应变能力。培养严谨、认真的职业作风; 2、具有良好的思想政治素质和职业道德; 3、良好的团队协作精神; 4、认真踏实的工作作风; 5、独立分析问题和解决问题的能力,自我学习和发展的能力。 四、学习领域结构与学时分配

五、学习情境设计

浅析地下室结构设计

浅析地下室结构设计 关键词:地下室结构设计;结构平面设计;抗震设计 论文摘要:随着高层建筑的飞速发展,其建筑设备用房、地下消防水池和汽车停车位多功能都应用在地下室,因此在高层建筑设计中,地下室结构设计难点繁多、意义重大。文章分析了地下室结构设计中的难点问题,并针对性提出了优化设计的方案。 一、地下室结构设计难点概述 地下室工程涉及的专业极为复杂,在建筑的地下室结构设计时,需综合考虑防火、使用功能、人防要求、设备用房及管道、坑道、排水、通风、采光等各专业的配合。对于具有大底盘地下室的高层建筑群体而言,塔楼部分一般在使用阶段不会存在抗浮问题,但裙房及纯地下室部分经常会有抗浮不满足要求的问题。而且由于实际地下室抗浮设计中往往只考虑正常使用极限状态,对施工过程和洪水期重视不足,因而也会造成施工过程中由于抗浮不够而出现局部破坏,加上地下室防水工程是一项系统性工程,涉及设计、施工、材料选择等诸多方面因素,因此造成了地下室结构设计难点繁多,一般来讲概括起来为:(1)结构平面设计;(2)抗震设计;(3)地下室抗浮、抗渗设计;(4)外墙结构设计。 二、建筑工程地下室结构优化设计 (一)结构平面设计 在高层建筑的地下室结构设计时,需综合考虑防火、使用功能、人防要求、设备用房及管道、坑道、排水、通风、采光等各专业的配合。例如地下室的长度超过设计规定长度时,需要与结构专业配合,确定是否设置变形缝,通常应尽可能少设或不设变形缝,因为设置变形缝会使得变形缝处的防水处理变得复杂。设计人员可以通过设置后浇带和合理使用混凝外加剂或地上设缝、地下不设缝等方式,达到不设缝的目的。 (二)抗震设计 一般来讲地下室抗震设计中较为常见的问题为:多层建筑中半地下室埋深不够,房屋层数包括半地下室层已达8层,层数和总高度超过要求,违反GB50011-2001第7.1.2条。地下室顶板为上部结构嵌固端,地下室一层抗震等级定为三级,而上部结构为二级,按 GB50011-2001第6.1.3条地下室也应为二级。 若地下室设计不当,对其整体的抗震性能会产生较大的影响。根据施工图审查要点,一般来讲,对于半地下室的埋深要求应大于地下室外地面以上的高度,才能不计算其层数,总高度才能从室外地面算起。地下室的墙柱与上部结构的墙柱应协调统一。对地下室顶板室内外板面标高变化处,当标高变化超过梁高范围时则形成错层,应采取一定的措施进行处理,否则不应作为上部结构的部位。相关规范明确规定,作为上部结构部位的地下室楼层的顶楼,盖应采用梁板结构,地下室顶板为无梁楼盖时不应作为上部结构的部位。结构计算应向下计算至满足要求的地下室楼层或底板,但剪力墙底部加强区层数应从地面往上计算,并应包括地下层。 (三)地下室抗浮、抗渗设计

动车组运用

动车组运用 高速铁路动车组列车由牵引动力(机车)和运输载体(客车车底)一体化构成,与既有铁路旅客列车的机车和客车车底的运用与管理是分离的特点有很大区别。 (1)动车组运用的特点。 ①提高了运营效率。牵引动力和运输载体的管理合二为一,缩短了换挂机车的作业时间,既有利于提高列车的旅行速度,又减少了工作环节,提高了工作效率。 ②改变了整备和维修体系。高速铁路动车组列车采用新的整备和维修体系,提高了整备和维修作业质量,缩短了整备和维修作业时间,成为高速铁路高质量、高可靠、高效率运营的一项重要特点。 ③实现了动车组运用与整备维修一体化。动车组的运用和整备维修计划是统一编制、统筹安排的,这使运载设备的运用和管理从常规铁路的分散化走向集中化,使动车组摆脱既有铁路客车车底的固定运用方案模式,采用更为高效的运用方案。(2)动车组运用的方案。根据动车组运用与整备维修一体化的思想,动车组运用的方案主要有以下三种: ①固定运行区段的使用方式。这种方式与既有铁路客车车底的运用方式一致,动车组只在固定的区段内往返运行。 ②不固定运行区段的使用方式。不固定运行区段的使用方式以全线(或高速线路网)为系统,通过统筹考虑动车组的使用与维修来安排动车组的运用。 ③半固定运行区段的使用方式。半固定运行区段的使用方式是指一些动车组采用固定运行区段的使用方式,而其余动车组采用不固定运行区段的使用方式。(3)动车组运用计划的构成。动车组运用计划主要由动车组周转计划、动车组分配计划和动车组检修计划构成。 ①动车组周转计划。动车组周转计划主要规定按什么顺序担当列车,并不规定具体的动车组。 ②动车组分配计划。动车组分配计划指定具体的动车组担当周转计划中的具体交路,保证每个交路由质量良好的动车组完成。

地下室结构设计要点

地下室结构设计要点,重点,漏点 地下室如果设计不当,对整体抗震性能会产生较大影响,一般对于半地下室的埋深要求应大于地下室外地面以上的高度,才能不计其层数,总高度才能从室外地面算起。地下室的墙柱与上部结构的墙柱要协调统一。地下室顶板室内外板面标高变化处,当标高变化超过梁高范围时则形成错层,未采取措施不应作为上部结构的嵌固部位,规范明确规定作为上部结构嵌固部位的地下室楼层的顶楼盖应采用梁板结构,地下室顶板为无梁楼盖时不应作为上部结构嵌固部位。结构计算应往下算至满足嵌固端要求的地下室楼层或底板,但剪力墙底部加强区层数应从地面往上算,并应包括地下层。 存在的常见问题如:半地下室埋深不够,房屋层数包括半地下室层已达8层,层数和总高度超过要求,违反GB50011-2001第7.1.2条。地下室抗震等级为三级,而上部结构为二级,按GB50011-2001第6.1.3条地下室一层也应为二级等问题。 2. 荷载取值与组合 地下室外墙受弯及受剪计算时,土压力引起的效应为永久荷载效应,可变荷载效应控制的组合时,土压力的荷载分项系数取1.2;永久荷载效应控制的组合时,其荷载分项系数取1.35。对于地面活荷载,同样应乘侧压力系数,许多设计中计算不对,HiStruct注,水压力若取最高水平,则一般按恒载设计,分项系数的取值可参考地下水池设计规范。地下室底板的强度计算时,根据《建筑结构荷载规范》(GB50009-2001)第3.2.5条板、覆土的自重的荷载分项系数取1.0。抗浮计算时,板、覆土的自重的荷载分项系数应取为0.9[此条可参考新建筑结构荷载规范]。地下室外墙的土压力应为静止土压力,根据土性的不同分别采用不同的计算方法,粘性土采用水土合算,砂性土采用水土分算。 如果地下室顶部没有房屋,是空旷场地,其荷载是否要考虑平时消防车荷载或大于消防车的可能荷载,实际中比较取起控制作用的荷载作为设计依据。另如某工程设计在-1.55m标高处一层平面是地下室顶板,活载只考虑4.5KN/m2,未计覆土荷载,消防车荷载。地下车库活载取值6.0KN/m2,不满足GB50009-2001第4.1.1条,未考虑消防车荷载,或者施工过程中和使用过程中可能出现的载重车荷载,与消防车荷载比较取大值。HiStruct注,尚应考虑施工堆载10kN/m2。 3. 外墙计算模型 地下室外墙配筋计算:有的工程外墙配筋计算中,凡外墙带扶壁柱的,不区别扶壁柱尺寸大小,一律按双向板计算配筋,而扶壁柱按地下室结构整体电算分析结果配筋,又未按外墙双

高速铁路动车组列车脱轨事故应急处置

高速铁路动车组列车脱轨事故应急处置 发生高速铁路动车组脱轨事故后,随车机械师应立即短接邻线轨道电路,司机应立即报告列车调度员或车站值班员,列车调度员或车站值班员接到报告后应立即扣停后续列车和邻线列车,通知已进入区间的后续列车和邻线列车停车。1.报告内容 (1)事故发生的年、月、日、时、分。 (2)事故发生地点(线路名称、行别、区间、公里、米、停车位置)。 (3)列车车次、型号、编组、总重、计长及关系人姓名。 (4)人员伤亡情况及动车组、线路损坏等情况。 (5)事故概况及初步原因判断。 (6)应当立即报告的其他情况。 列车调度员根据司机或车站报告情况,向值班主任报告,值班主任按规定向应急领导小组及有关成员单位通报,根据事故等级和应急领导小组指示,启动相应的应急预案。 2.现场救援协调配合 (1)调度所按照救援响应程序立即设置区间封锁标识或发布封锁区间和救援出动命令,并命令就近车站救援队人员立即赶赴现场,负责处置救援工作;同时负责运输组织调整,安排起复救援所需的机车车辆,为救援工作提供运输条件保证。向沿线车站发布列车晚点原因、时间及预计晚点时间。 (2)客运部门负责妥善安置事故中受伤的旅客,收集、清理、看守旅客携带物品,并做好旅客的安抚、疏散、转运工作。 (3)机务部门负责制定救援起复方案并组织实施。 (4)供电部门负责现场照明和电力供应,根据救援需要组织对事故现场接触网的拆除和恢复工作,确保人身安全。

(5)工务部门负责组织足够的人力、物力,尽快抢修恢复线路,配合救援列车做好救援起复工作。 (6)电务部门负责现场通信保障及信息传输工作,负责组织电务设备修复。(7)车辆部门负责配合救援列车做好车辆起复和检查工作。 (8)劳卫部门迅速组织开展现场卫生防疫处置工作,并联系地方医疗机构,实施紧急医疗救护。 (9)公安部门负责现场警戒,组织现场勘查和调查,收集有关资料、可疑物。(10)安监部门负责组织和协调事故调查处理工作。 (11)宣传部门负责组织协调新闻报道和舆论引导工作。 3.拉复起复法 动车组轮对脱轨后距基本轨距离具备拉复条件,且车辆未颠覆,线路基本条件良好时,应采用拉复法进行救援起复作业。动车组两端车辆脱轨,救援起复时,原则上不进行动车组解编;动车组中部车辆或动车组在道岔、桥梁、隧道内脱轨,救援起复时,应根据实际情况,将妨碍救援的其他车辆解编后进行起复作业。 4.顶复起复法 动车组轮对脱轨后距基本轨距离不具备拉复条件但距离较小,且车辆未颠覆、线路基本条件良好时,或在桥梁上、隧道内和其他不适用拉复法和吊复法救援的环境下,应采用顶复法进行救援起复作业。 5.吊复起复法 动车组轮对脱轨距基本轨距离较大或车辆倾斜、颠覆,不能实施拉复、顶复作业时,应采用吊复法进行救援起复作业。 事故救援要以拉复为主,顶复为辅,合理采用吊复法。

某地下室底板结构设计

某地下室底板结构设计 陈真 (广东博意建筑设计院有限公司,广东省佛山市 528312) 摘要:本文通过对某常见的地下室底板结构型式进行分析,给出了底板厚度的计算方法,并给出了底板的配筋方法。关键词:底板;地下室;底板厚度;底板配筋 中图分类号:TU318+.2 文献标识码:A 1 工程概况 清远某单层车库(图1)总建筑面积977.8m2,属非人防车库,车库底板标高-4.800m,顶板标高-1.100m,顶板覆土800厚,地下水位标高-2.300m。地下室底板承受水浮力作用,水浮力在底板板面的荷载为25kN/m2。柱距大部分为8.1m×8.1m。底板混凝土强度为C30,钢筋强度选用HRB400。 图1 某车库底板平面图 2 确定底板厚度 底板厚度主要由抗冲切强度验算确定。本工程底板计算过程如下: 基础的尺寸为2.8m×2.8m,底板厚度初步取h=280mm。底板保护层厚度c=40mm,底板的有效高度h0=280-46=234mm,底板的最不利冲切面如图2所示,冲切面与底板板面的夹角为45o。水浮力在底板板面的荷载F浮=25kN/m2。 柱网为8.1m×8.1m,所以一个基础的最大受荷面积A=8.1×8.1=65.61m2,冲切破坏锥体范围的面积A’=2.8×2.8=7.84m2。 《混凝土结构设计规范》GB50010-2010[1]图6.5.1中: q=F浮-h×(25-10) =25-0.28×(25-10) =20.8kN/m2。 最大受荷面积内柱所承受的轴向压力标准 收稿日期:2016-04-27 作者简介:陈真(1983-),男,硕士,E-mail:306553757@https://www.wendangku.net/doc/af8069883.html, 值为N=qA=20.8×65.61=1364.69kN。 局部荷载设计值 l F: kN A q N F l 18 . 1622 ) 84 .7 8. 20 69 . 1364 ( 35 .1 )' ( 35 .1 = ? - ? = ? - ? = 计算截面的周长 m u: m h b h a u m 264 . 10 ) 234 .0 8.2( 2 ) 234 .0 8.2( 2 ) ( 2 ) ( 2 = - ? + - ? = - ? + - ? = 上式中,a为承台的长,b为承台的宽。 由《混凝土结构设计规范》GB50010-2010[1]式(6.5.1-2)及式(6.5.1-3)得: 1 2 2.1 4.0 2.1 4.0 1 = + = + = s β η 728 .0 264 . 10 4 234 .0 40 5.0 4 5.00 2 = ? ? + = + = m s u h α η 所以728 .0 2 = =η η。 由《混凝土结构设计规范》GB50010-2010[1]式(6.5.1-1)得: kN F kN h u f R l m t h 18 . 1622 20 . 1750 234 10264 728 .0 43 .1 1 7.0 7.0 = > = ? ? ? ? ? = =η β 满足要求,故底板厚取280mm。

相关文档