文档库 最新最全的文档下载
当前位置:文档库 › Dendritic cell-based immunotherapy for cancer and relevant challenges for transfusion medicine.

Dendritic cell-based immunotherapy for cancer and relevant challenges for transfusion medicine.

Dendritic cell-based immunotherapy for cancer and relevant challenges for transfusion medicine.
Dendritic cell-based immunotherapy for cancer and relevant challenges for transfusion medicine.

Dendritic Cell–Based Immunotherapy for Cancer and Relevant Challenges for Transfusion Medicine

Ching Y.Voss,Mark R.Albertini,and James S.Malter

The encouraging results from dendritic cell–related can-cer immunotherapy have created tremendous interest for its broad clinical application.Dendritic cells are the most potent antigen-presenting cells.In cancer patients, dendritic cell production and function along with other antitumor immune defenses are compromised.Autolo-gous dendritic cells enriched and sensitized in vitro with tumor-associated antigens can effectively elicit host cel-lular immunity against cancer and result in clinical anti-tumor responses through either direct injection or ex vivo generation of antitumor T lymphocytes.In small group studies,clinical response rates have reached50% in patients with advanced stage of cancer.These cellular products caused minimal side effects and were well tolerated.The isolation and preparation of clinical grade dendritic cells have been driven by transfusion medicine specialists who are well versed in similar processes for hematopoietic stem-cell preparation.The purpose of this article is to review the mechanisms of tumor im-mune surveillance and the biology of dendritic cells rel-evant to tumor antigen presentation,sensitization,and T-lymphocyte https://www.wendangku.net/doc/aa8150289.html,rmation on tumor-asso-ciated antigens and clinical trial results with dendritic cell–based cancer immunotherapy are summarized.The potential challenges for blood banking/transfusion medicine involving both technical and regulatory issues are discussed.

?2004Elsevier Inc.All rights reserved.

S URGERY,CHEMOTHERAPY,and radiation therapy either alone or in combination have been the traditional treatments for cancer patients. The modern concept of immunotherapy was intro-duced in the1980s and led to the emergence of cytokine-based therapy.However,cytokines are only part of the potential immunotherapy arsenal, and efforts are in progress to develop cellular-based approaches,designed to activate the host immune system and defeat tumor immune escape. These involve both the ex vivo generation and infusion of activated,clonal antitumor-speci?c lymphocytes,and the in vivo stimulation and ex-pansion of endogenous antitumor-speci?c lympho-cytes by the administration of ex vivo sensitized antigen-presenting cells.The latter is referred to as a cellular-based cancer vaccine.The success of initiating immunologic antitumor surveillance de-pends greatly on appropriate tumor antigen presen-tation.The discovery of dendritic cells(DCs)as potent APC has opened new possibilities for cel-lular-based immunotherapy of cancer.The remark-able ability of DCs to take up,process,and activate naive CD4?and CD8?T lymphocytes makes them ideal candidates for cellular based cancer vaccines as well as for the ex vivo generation of speci?c autologous antitumor T lymphocytes. Promising results have been reported from clinical trials of DC-related cancer immunotherapies.The purpose of this article is to review the biology of DC relevant to antigen presentation and stimula-tion of antitumor immune responses.The potential clinical applications and challenges for transfusion medicine are also discussed.

MECHANISMS OF TUMOR-IMMUNE ESCAPE AND RATIONALE FOR DC-RELATED

IMMUNOTHERAPIES

The interest and optimism in immunotherapy of cancer are based on broadly accepted immunolog-ical principles.Foremost is the existence of tumor-speci?c immune responses in cancer patients.In immune competent individuals,there is an ongoing and vigorous immune surveillance against abnor-mal cells.Abnormal refers to the expression of non-self antigenic determinants capable of eliciting a potent T-cell response.Increased incidence of neoplasms,particularly lymphoproliferative disor-ders,has been seen in posttransplant patients on immunosuppressive therapy.1Conversely,general-ized immune stimulation can trigger antitumor re-sponses.For example,spontaneous tumor regres-sion has been reported in cancer patients after a severe infection.2A similar concept was tested From the Departments of Pathology and Laboratory Medi-cine;and Medicine,University of Wisconsin-Madison,Madi-son,WI.

Address reprint requests to James S.Malter,MD,Depart-ment of Pathology and Laboratory Medicine,Waisman Center, 509T,University of Wisconsin-Madison,1500Highland Ave-nue,Madison,WI53705.E-mail:jsmalter@https://www.wendangku.net/doc/aa8150289.html, ?2004Elsevier Inc.All rights reserved.

0887-7963/04/1803-0005$30.00/0

doi:10.1016/j.tmrv.2004.03.005

189

Transfusion Medicine Reviews,Vol18,No3(July),2004:pp189-202

over a century ago,when live bacterial cultures were given to patients with the intent of nonspe-ci?cally activating the immune system against can-cer.3A corollary to the?rst principle is that cancer cells have either abnormal genes or abnormal gene regulation leading to the production of mutant pro-teins and possibly proteins uniquely associated with cancer.In theory,tumor speci?c proteins pro-vide unique targets for an immune response.The ?nal important concept is that HLA molecules,if expressed on the tumor cell surface,will display peptides derived from most intracellular proteins. Therefore,the whole spectrum of abnormal pro-teins,irrespective of their subcellular locations, may be available for immune recognition.Thus, even mutant p53or other aberrant transcriptional control proteins could be presented and ultimately attacked.

With our greater understanding of tumor immu-nology and advances in technology,there has been increasing evidence and enthusiasm for cellular based immunotherapy of cancer.Until relatively recently,standard therapies for hematologic malig-nancies included high-dose chemotherapy fol-lowed by hematopoietic stem cell(HSC)transplant for reconstitution of the bone marrow.However, several clinical studies showed that patients with an allogeneic HSC transplant and graft-versus-host disease had higher rates of long-term survival with less relapse than those who received autologous marrow or marrow from a HLA identical donor.4 This observation suggested that graft-versus-host disease had a positive treatment impact,although with signi?cant side effects.Such experience ra-tionalized the infusion of HSC donor lymphocytes into HSC recipients with relapse.Under certain conditions,complete remission was achieved.5,6 This?nding contributed to the current treatment of relapsing leukemia posttransplant with allogeneic T lymphocytes.There is general consensus that allogeneic HSC transplantation is curative for some malignancies at least in part because of the graft-versus-tumor effects mediated by donor T cells.This shows the power of T-cell mediated antitumor immunity and the importance of the presence and recognition of tumor associated anti-gens(TAAs).The search for TAAs and antitumor-speci?c T lymphocytes is continuing.Our primi-tive understanding of TAAs may explain why some patients who are immune competent fail to “reject”tumor despite the infusion of activated T cells.

The mechanisms of tumor-immune escape are likely multiple and include cancer immuno-edit-ing,7natural selection of tumor variants,8expres-sion of Fas(Apo-1/CD95)ligand to gain immune privilege,9and the secretion of vascular endothelial growth factors that inhibit the functional matura-tion of DCs.10It is important to appreciate that a tumor large enough to be detected clinically has billions of cells,often derived from a single clone.11This“survivor”has multiplied despite tre-mendous selection pressure by host immune sur-veillance.These tumor cell variants often have limited tumor-antigen expression or loss of antigen by mutations or deletions.12Both downregulation of HLA class I expression that reduces antigen presentation as well as the secretion of inhibitory cytokines including interleukin(IL)-10and trans-forming growth factor?have been observed in tumor cells from patients receiving cancer immu-notherapy.13-15In addition,our immune system has a strong predisposition to delete self-reactive T cells to avoid autoimmunity.Therefore,T cells with high-af?nity T-cell receptors(TCRs)that cross-react with self and tumor antigens are likely to be eliminated by the host immune system.16,17 In cancer patients,antigen presentation is often compromised because of reduced DC production and function,which provides a rational for supple-mentation with ex vivo sensitized DC.Immunohis-tological studies showed immature DC resided within breast cancers,whereas mature DCs were located in the tissue surrounding the tumor.18-21 There was minimal recruitment and activation of DCs within renal cell carcinoma,22prostate can-cer,23transitional cell carcinoma,24and mela-noma.25-27This may re?ect the local production of inhibitory cytokines,which include vascular endo-thelial growth factor,IL-6,and macrophage col-ony-stimulating factor.10,28,29These data further support the“tumor immune escape”hypothesis and made DC a strong candidate for cellular-based cancer immunotherapy.

Typically,TAA-loaded DCs are used to activate T lymphocytes in vivo or ex vivo.In both situa-tions,the source materials(tumor,precursors,and T cells)are collected from the patient for in vitro processing.The goal for ex vivo production and manipulation of or T cells is to promote prolifera-tion and maturation of DC for enhanced antigen

190VOSS,ALBERTINI,AND MALTER

processing and presentation and to initiate or aug-ment clonal expansion of speci?c antitumor T cells in an environment without inhibitory in?uences from the host.Furthermore,individually custom-ized cancer immunotherapy is probably essential, given the heterogeneous nature of tumors.Cus-tomization may also reduce unintended immuno-logic side effects of treatment.

DC IDENTIFICATION AND BIOLOGY RELEVANT TO ANTIGEN PRESENTATION

AND T-CELL STIMULATION

The DC is a unique leukocyte characterized by dendritic morphology and high-density expression of human histocompatibility leukocyte antigen class II molecules(HLA-DR).As its name implies, the DC has multiple branch-like projections ex-tending from the cellular surface.DC can be clas-si?ed into myeloid or lymphoid phenotypes based on antigenic expression.30Although all DC are HLA-DR positive and lineage antigen negative (negative for CD3,CD14,CD19,CD56,and other markers of monocytes,lymphocytes,neutrophils, and macrophages),those positive for CD11c and/or CD123are subgrouped as myeloid(CD11c?, CD123low)or lymphoid(CD11c?,CD123hi). The myeloid and lymphoid DC appear to have different functional properties with the former stim-ulating Th1and the later Th2immune responses.31-33 The Th1response enhances in?ammation and cel-lular immunity characterized by secretion of IL-2, interferon(IFN)-?,and IL-12.The Th2response stimulates B cells and antibody production with secretion of IL-4,IL-5,IL-10,and IL-13.DCs derived from CD14?mononuclear cells from hu-man peripheral blood have many of the functional features of myeloid DC.30

DCs are present in virtually every tissue,where they capture antigens and migrate to secondary lymphoid organs to interact with other immune cells.30In nonlymphoid tissues,DCs are in their immature form and characterized by the abundance of intracellular HLA class II molecules.Approxi-mately0.5%to1.5%of the circulating mononu-clear cells are differentiated DCs that have a short life span in culture despite the supplementation with cytokines.34,35As such,DC precursor enrich-ment and in vitro expansion are usually performed. For example,CD34?hematopoietic stem cells separated from peripheral blood,bone marrow,or human umbilical cord blood can differentiate into DCs.DCs can also be obtained through culture of adherent mononuclear cells or immunoselected CD14?monocytes from peripheral blood.Periph-eral blood provides an accessible and convenient source,which can yield up to2?108DCs from a single1-volume cytapheresis procedure followed by in vitro culture in the presence of granulocyte/ macrophage colony-stimulating factor(GM-CSF) and IL-4.36,37These monocyte-derived DCs are predominantly myeloid type and functionally im-mature.Injection of immature DC can induce an-tigen-speci?c inhibition of effector T-cell function in humans.38Therefore,it is very important to ensure DC maturation has occurred during prepa-ration for cancer immunotherapy.Inducers of DC maturation include bacterial-derived products in-cluding lipopolysaccaride,viral double-stranded RNA,various proin?ammatory stimuli,and me-chanical stress.39LPS or tumor necrosis factor?(TNF-?)is most commonly used in culture to induce DC maturation.40High-level expression of surface HLA-DR,CD83,and CD86is associated with successful maturation.41Peripheral blood-de-rived DCs have been used safely in the majority of human clinical trials and have similar functional activities to DCs derived from other tissue sourc-es.30,42

MOLECULAR BIOLOGY OF DC AND GENE MODIFICATION APPROACHES TO IMPROVE ANTIGEN PRESENTATION FOR

T-CELL STIMULATION

The molecular basis of antigen uptake and pro-cessing by DCs are becoming better understood.A diverse range of receptors on the DC membrane are involved in capturing and internalizing anti-gens,which includes the macrophage mannose re-ceptor,DEC-205multilectin receptor,Fc?R,Fc?R (CD32,CD64),and asialoglycoprotein recep-tor.41,43,44,45Endogenous proteins are processed in the proteosome or cytosol,and resultant peptides are transported into the endoplasmic reticulum and assembled onto HLA class I molecules.HLA class II molecules primarily bind to exogenous peptides produced in phagolysosomes.The peptide-loaded HLA molecules are then redistributed from intra-cellular compartments to the plasma membrane.46 This process corresponds to DC development and functional maturation.The immature DCs are ef-?cient in the uptake and processing of antigens, whereas mature DCs are capable of effectively

191

DENDRITIC CELL IMMUNOTHERAPY FOR CANCER

presenting antigens to T lymphocytes.During DC maturation,synthesis of HLA molecules is upregu-lated,which facilitates antigen presentation to cy-totoxic lymphocytes and helper T cells.41

The HLA-peptide complex on DCs is recog-nized by the TCR.However,by themselves,HLA peptide-TCR interactions are insuf?cient to trigger T-cell activation.Costimulatory molecules CD80/ CD86and CD40found on the surface of DCs and CD28,ICOS,and signaling lymphocytic activation molecules on the surface of T cells are required for the stimulation of T cells.47Intercellular adhesion molecule-3serves as a costimulatory ligand for leukocyte adhesion glycoprotein LFA-1on DCs.48 Cell membrane processes of DC and chemokine secretion are believed to facilitate an intimate in-teraction between DC and T lymphocytes,such that an immunological synapse,with centrally lo-cated TCR HLA-peptide complex and costimula-tory molecules surrounded by a ring of stabilizing adhesion molecules is formed.49-51The signaling strength is dependent on the amount of peptide-HLA complex on DCs,the number of costimula-tory molecules,and the longevity of the synapse. To maximize antigen presentation,DCs have been engineered to overexpress essential compo-nents of the synapse or cell-activating molecules. These have included the expression or overexpres-sion of TAAs52,53;cytokines including GM-CSF, IL-12,TNF-?,and IFN-?54,55alone or in combi-nation;and costimulatory molecules.56Modi?ed DCs have shown improved antigen presentation or antitumor responses.57,58DNA-encoding B7 (CD80)has been introduced into melanoma and osteosarcoma to enhance their antigenicity.59,60 The transfected tumor cells were readily recog-nized and destroyed by reactive T cells.Impor-tantly,these reactive T cells were also protective against parental B7-negative tumor cells,59which suggested that only a portion of the tumor cells with transgenic expression of B7was suf?cient to induce an antitumor response to the entire tumor mass.

THE CHOICE OF TUMOR ANTIGENS AND

SENSITIZATION OF DCs

To initiate speci?c antitumor T-lymphocyte re-sponses,appropriate tumor antigens must be iden-ti?ed.Genomic and proteomic technology have enabled large-scale screening of protein expression patterns in various malignancies.Studies have shown that malignant cells express altered normal proteins or,more importantly,proteins uniquely associated with their phenotype.These proteins provide possible antigens to elicit a speci?c and unique antitumor T-cell immune response.61Ex-amples of identi?ed human TAAs recognized by cytotoxic T cells are summarized in Table1ac-cording to their origin or derivation.For practical purposes,a classi?cation scheme based on their potential usefulness for cancer immunotherapy has been developed.62This system made distinctions be-tween unique and shared tumor antigens,which were classi?ed under the general term TAA.An updated list of TAAs recognized by T lymphocytes is avail-able in the peptide database(www.cancerimmunity. org/peptidedatabase/tcellepitopes.htm)with de-tailed information including GeneCard links for the encoding gene and/or the parent protein,anti-Table1.Examples of Identi?ed Tumor-Associated Antigens Recognized by Cytotoxic T Lymphocytes

Viral derived tumor antigens

HPV E6and E7proteins in cervical carcinoma

EBV LMP-1and EBNA-1proteins in Hodgkin’s disease and nasopharyngeal carcinoma

Proteins encoded by point mutated genes or chromosomal rearrangements

ras in carcinomas of lung,colon,pancreas,and many

leukemias

BCR/ABL in chronic myeloid leukemia and acute

lymphoblastic leukemia

PML/RAR-?in acute promyelocytic leukemia

ret in multiple endocrine neoplasia2A and B,familiar

medullary thyroid carcinoma

myc in Burkitt lymphoma

Normal gene products selectively expressed or

overexpressed in the tumor

Telomerase in85%of tumors

Her-2/neu in breast and ovarian cancer

Normal gene products that are tissue-speci?c and expressed by the tumor

Tyrosinase,melano A,gp100,TRP-1,TRP-2in melanoma PSA in prostatic carcinoma

Normal gene products not expressed or minimally expressed in adult tissues

MAGE,BAGE,GAGE,RAGE,and NY/ESO proteins in

melanoma and other tumors

Oncofetal antigens

AFP in hepatocellular carcinoma

CEA in colorectal and pancreatic carcinoma

Differentiation antigens

CD10in B cell leukemia and lymphomas

Idiotypic proteins

Immunoglobulin molecules in B-cell lymphoma)

Minor HLA antigens expressed selectively by hematopoietic cells in allogeneic HSC recipients

192VOSS,ALBERTINI,AND MALTER

gen-expression pattern,peptide antigen sequence, chromosomal location,and mode of T-cell stimu-lation.

Theoretically,the ideal target antigens for can-cer immunotherapy are derived from proteins that are present only on tumor cells and not expressed on normal cells.These antigens must be capable of stimulating cytotoxic T lymphocytes.Candidate antigens include viral gene products in virus-asso-ciated malignancies and proteins encoded by mu-tated endogenous genes,such as bcr/abl and pml/ rar-?fusion proteins,K-ras,and N-ras.63,64Some of the mutations are unique to the tumor of an individual or restricted to very few patients.Be-cause these unique tumor antigens are not shared by the same histological tumors from other pa-tients,their value as an antigenic peptide for cancer immunotherapy in the general population is lim-ited.However,these unique tumor antigens are strictly tumor speci?c and may play an important role in the natural antitumor immune responses and in customized cancer immunotherapy for individ-ual patients.

The so-called shared tumor antigens are a subset of TAAs expressed on many independent tumors, which can be subdivided into shared tumor-spe-ci?c antigens,differentiation antigens,and overex-pressed tumor antigens.The shared tumor-speci?c antigens are of great interest because these proteins are not present in normal adult somatic tissues but are expressed by various tumor types.Testis is the only tissue in which such proteins are normally expressed.However,they cannot be presented and subsequently attacked because male germ cells do not express cell-surface HLA molecules.Thus, these proteins can be considered as tumor speci?c. Prototype antigens of this group are those encoded by the MAGE gene family,which includes MAGE-1,MAGE-3,BAGE,GAGE-1,GAGE-2, and NY-ESO-1.This group of genes frequently maps to the X chromosome,and their regulation is disrupted in malignant cells,including melanoma, sarcoma,non–small-cell lung cancers,head and neck tumors,and transitional cell carcinoma.65 These shared tumor-speci?c antigens are important targets for the development of antigen-speci?c cy-totoxic T cells for cancer immunotherapy. Another group of shared tumor antigens is the differentiation antigens that are expressed in tu-mors as well as in the normal cells from which the tumor has originated.These antigens have been best characterized in melanoma,although they are being actively investigated in many tumors includ-ing prostate cancer.The differentiation antigens can stimulate in vitro cellular immune responses. Both HLA class I–restricted CD8?immunodomi-nant epitopes and HLA class II–restricted CD4?immunodominant epitopes have been character-ized.This group comprises antigens encoded by Melan-A/MART-1,gp100/Pmel17,gp75,65pros-tate-speci?c antigen,and tyrosinase.Tumor differ-entiation antigens are not tumor speci?c,and their use as cancer immunotherapy targets may cause autoimmunity against the corresponding normal tissue(eg,pigmented cells in skin and eyes when MART-1and gp100are used).

The third group of shared tumor antigens is present in a wide variety of normal tissues but overexpressed in many types of tumors(eg,telom-erase,Her-2/neu,MUC1,and p53).Because ubiq-uitous and low-level expression of these genes occurs in normal tissues,utilization of overex-pressed tumor antigens as cancer immunotherapy targets must be carefully considered.The current suggestion is that overexpressed“self-antigens”can be useful if the autoimmune consequences of such treatment are tolerable or locally controllable or if the damaged organ is super?uous or can be readily replaced.66

The TAA classi?cation described earlier is arbi-trary.Some proteins are dif?cult to?t exactly into a speci?c group.For example,mucins are a type of proteins that can give rise to unique tumor anti-gens.In some pancreatic,ovarian,and breast car-cinomas,peptides derived from abnormally glyco-sylated cell-surface mucins can be recognized by cytotoxic T cells.However,the mucin-derived MUC1peptide(STAPPVHNV)is present in nor-mal glandular epithelium and is considered as an overexpressed shared antigen.61,67

DC can be sensitized in vitro by exposure to either crude tumor antigens(eg,whole tumor cell lysates or speci?cally de?ned tumor antigens if known and available).Whole-cell vaccines pre-pared by the fusion of DC and tumor cells can initiate effective antitumor responses.68-70Crude tumor antigens derived from whole-cell lysates are simple to prepare and contain the entire spectrum of TAAs,even those not fully characterized(eg, unique antigens from individual tumors).Theoret-ically,the simultaneous sensitization to multiple distinct protein antigens may minimize mutation-

193

DENDRITIC CELL IMMUNOTHERAPY FOR CANCER

driven tumor immune escape.Utilization of whole tumor cell antigens derived from apoptotic or irra-diated cells is also being evaluated and compared with lysates of viable tumor cells for their ef?cacy in sensitizing DC and stimulating T-cell responses. Studies in animal models showed that tumor cell lysates have equal or greater potency than apopto-tic or irradiated tumor cells in both immune priming and antitumor response.71,72However,low-fre-quency antigens may be inadequately represented in such preparation with correspondingly reduced DC sensitization and T-cell activation.

After proteins derived from malignant cells are endocytosed and processed in DCs,the resultant peptides are presented by HLA molecules.The composition of presented peptides varies based on the genetic and biochemical proclivities of an in-dividual’s DC and tumor antigenic characteristics. When tumor antigen peptides have been identi?ed, they can be used for DC sensitization.This is a more de?ned system permitting peptides to be pro-duced using good manufacturing practices(GMPs) and T-cell responses monitored by peptide-HLA tetramer staining.However,isolated peptide used without the context and orientation of the original protein may fail to fully activate T cells.Other drawbacks for using single isolated TAA peptide include increased chance for mutation-driven tu-mor immune escape and reduced ef?cacy caused by short half-life.73,74Modi?ed TAA peptides have been constructed that showed increased T-cell stimulatory activity.75For example,a carcinoem-bryonic antigen(CEA)-derived peptide(amino acids605-613)has been modi?ed by substituting as-partate for asparagine at position610,which re-sulted in increased T-cell responses against CEA in vitro.76Peptide antigenicity has also been im-proved by conjugation to the hepatitis B core pro-tein to form a virus-like particle.77Multiple pep-tides or multiple copies of the peptide can be linked to a carrier,such as keyhole limpet hemo-cyanin or?-galactosidase to prolong the half-life.77 Other strategies include using specially synthe-sized retro-inverso peptides;pseudopeptides with amide bond surrogates77;combinations of peptides capable of stimulating both cytotoxic and helper T cells,and improved delivery through receptors, liposomes,or bacterial toxin-peptide fusions.39,78 Reverse-transcriptionpolymerase chain reaction is useful to identify the expression of particular pep-tides in individual tumors for accurate targeting,79although controls for normal cell contamination must be included.In general,using generic peptides as the source of tumor antigen may not cover mutated epitopes peculiar to the patient’s own tumor.80 HUMAN CLINICAL TRIALS WITH

DC-RELATED IMMUNOTHERAPIES

OF CANCER

Human clinical trials(HCTs)using cancer vac-cines with tumor antigen-loaded DCs or the infu-sion of ex vivo–generated antitumor T cells stim-ulated by TAA-loaded DCs are ongoing.The goals have been either shrinkage of existing tumor,usu-ally in patients with advanced disease,or prophy-lactic therapy.68Applications in a wide variety of malignancies have been evaluated,including mel-anoma,advanced renal cell carcinoma,metastatic adenocarcinoma of breast and pancreas,prostatic carcinoma with metastasis,non–small-cell lung carcinoma,ovarian carcinoma,hepatocellular car-cinoma,and hematological malignancies.Repre-sentative clinical trial results are summarized in Table2.The majority of the studies are in phase I or II.The feasibility and safety of cellular-based immunotherapy have been repeatedly shown.83 In vivo cellular-immune responses speci?cally against target tumor antigens were detected by delayed-type hypersensitivity(DTH)and cytokine production in patients received TAA-loaded DC vaccines.The demonstration of in vivo immuno-genicity from these different vaccinations has pro-vided leads for ongoing clinical development.It is encouraging that some evidence of antitumor ac-tivity has been achieved in these early-to mid-phase clinical trials.80,87

Vaccination using intranodal injection of autol-ogous tumor lysate-pulsed DC was performed on 10patients with cutaneous T-cell lymphoma who were refractory to standard treatment.Tumor-spe-ci?c DTH developed in all vaccinated patients,and 5of10patients had objective clinical responses, including4of10partial remission and1of10 complete remission.The mean partial remission duration was10.5months,whereas the complete remission has lasted more than19months.91In the HCT conducted by O’Rourke et al,80patients with American Joint Cancer Committee stage IV mela-noma were vaccinated with DC sensitized by irra-diated tumor cells at ratio of4DCs to1tumor cell.

A complete priming phase of6cycles of either

0.92?106or5?106DCs were given to12

194VOSS,ALBERTINI,AND MALTER

patients by intradermal injection at 2-week inter-vals.Durable complete responses lasting an aver-age duration of more than 35months were seen in 3of 12patients,and partial responses were ob-served in 3of 12patients according to World Health Organization criteria.No signi ?cant side effects have been reported in this study.80

Considering the advanced stages of these dis-eases and current lack of alternative treatment op-tions for the majority of them,positive results in these HCTs are exciting.However,optimal dose delivery and immunization schedules are empiric.Immunologic monitoring methods predictive of clinical outcome need to be improved.Speci ?cally,rapid detection of in vivo antitumor-speci ?c immune response remains problematic.In vitro analysis of antigen-speci ?c cytotoxic T cells is currently available and includes target killing,cy-tokine production,CDR3polymorphism analysis,and tetramer staining.92,93A recent consensus con-ference held by the Society for Biologic Therapy 94suggested (1)future vaccine studies should corre-late T-cell function with clinical outcome;(2)quantitative tetramer-based assays should be com-pared with functional assays,such as enzyme-linked immunospot or ?ow cytometry analysis for cytokine production;and (3)proliferation assays are imprecise and should be de-emphasized.Mo-lecular cytokine analysis by reverse-transcription polymerase chain reaction is promising but needs validation as a surrogate for vaccine potency and clinical effect.94In summary,current results sup-port the use of a functional assay (eg,the enzyme-linked immunospot or cytokine ?ow cytometry in combination with a quantitative assay for immune monitoring).

Table 2.Representative Clinical Trials Using Dendritic Cell Related Cancer Immunotherapy

Authors/Phase of Studies

Type of Cancer

Target Antigens

Results

Adverse Effects

O ’Rourke MG et al 80

phase I/II

Stage IV melanoma Irradiated tumor cells Clinical:3/12CR*13/12PR*2,6/12PD*3

Minimal Marten A et al 81

phase I/II

Renal cell carcinoma Whole tumor cell lysate DTH:3/13Clinical:1/15PR,7/15SD*4,7/15PD

No Iwashita Y et al 82

phase I

Unresectable primary liver cancer

Whole tumor cell lysate DTH §:7/10AFP decrease:2/10Clinical:1/10PR No Pecher G et al 83

phase I/II Advanced pancreatic,breast,and papilla of Vater adenocarcinoma MUCI

DTH:3/10IFN-?secretion:4/10Clinical:1/10SD,9/10PD

No

Pinilla J et al 84

phase II Chronic myeloid leukemia

Bcr/abl peptide

DTH:14/14IFN-?secretion:11/14in CD4?,4/14in CD8?

No

Su Z et al 85

phase I Metastatic renal cell carcinoma

Tumor RNA Expansion of tumor-speci ?c T cells:6/7

No Lin CL et al 86

Nasopharyngeal carcinoma EBV peptide

T cell proliferation:9/16Clinical:2/16PR

Minimal Timmerman JM et al 87

phase I/II B-cell lymphoma

Tumor speci ?c Immunoglobulin

T cell proliferation:8/10Clinical:2/10CR,2/10PR,Minimal Stift A et al 88

phase I/II

Pancreatic,hepatocellular,cholangiocellular,and medullary thyroid carcinoma

Whole tumor cell lysate

DTH:18/20Objective

changes in tumor size and tumor markers:7/20No

Geiger ID et al 89

phase I Pediatric solid tumors:

Neuroblastoma,sarcoma,renal tumors Tumor cell lysate and KLH #DTH:7/10IFN-?secretion:6/10Clinical:1/10PR,5/10SD

No

Disis M et al 90

phase I Stage III/IV breast

carcinoma,ovarian cancer in remission

HER-2/neu peptide and Flt3ligand DTH:3/8IFN-?secretion:10/10

Minimal

Maier T et al 91

Cutaneous T-cell lymphoma

Tumor lysate and KLH

DTH:8/8IFN-?production:3/5Clinical:4/10PR,1/10CR

Minimal

Abbreviations:CR*1,complete response;PR*2,partial response;PD*3,progressive disease;SD*4,stable disease;DTH §,delayed-type hypersensitivity;KLH,immunogenic carrier protein keyhole limpet hemocyanin.

195

DENDRITIC CELL IMMUNOTHERAPY FOR CANCER

In addition to in vivo and ex vivo DC-induced stimulation and expansion of cytotoxic T cells, other strategies have also been tested in clinical trials.Instead of DC precursor collection and sen-sitization by TAA in vitro,irradiated autologous tumor cells were admixed with Calmette-Gue′rin Bacillus and injected intradermally at2sites ap-proximately10cm below the inguinal crease in both thighs.95After7days,lymphocytes were iso-lated from vaccine-primed lymph nodes,second-arily activated with anti-CD3monoclonal anti-body,and expanded in the culture medium supplemented with IL-2.The activated autologous lymphocytes were infused intravenously along with bolus https://www.wendangku.net/doc/aa8150289.html,plete responses(4/34)and partial responses(5/34)were reported in patients with stage IV renal cell carcinoma for an overall response rate of27%with no signi?cant side ef-fects.95Another variation was to isolate antimela-noma-speci?c T lymphocytes from total tumor-in?ltrating T cells(TILs)followed by clonal expansion in vitro.TILs were obtained from re-sected melanomas from13patients with advanced stage disease and screened for cytokine secretion after exposure to autologous tumor cells.Tumor reactive T cells were expanded in the culture with irradiated allogeneic feeder cells,anti-CD3anti-body,and IL-2.Reinfusion of these selected T-cell clones to patients after nonmyeloablative chemo-therapy resulted in persistent clonal T-cell repopu-lation and proliferation in vivo.More than50% reduction in tumor size including metastatic le-sions in lungs and liver was observed in6of13 patients.An18-year-old patient with extensive metastatic melanoma remained disease free for2 years after the treatment.Side effects included vitiligo in4of13patients and bilateral acute anterior uveitis in1of13patients that was relieved by administration of steroid eye drops.66The im-pressive results have drawn attention from the sci-enti?c?eld as well as from the public.96

PREPARATION OF CLINICAL GRADE

PRODUCTS FOR DC-RELATED

IMMUNOTHERAPY

There is an increasing need for the development of practical,reliable,and ef?cient methods to pro-duce large numbers of clinical grade DC.The production of DC for clinical applications must comply with good tissue practice and GMP guide-lines.39Rouard et al37has developed a closed and single-use system using elutriation with an aphere-sis device.Approximately1.8to9.3?108CD14?monocytes were harvested in less than an hour with70%to90%purity by this modi?ed leuka-pheresis procedure.A blood prime to maintain hemodynamic stability is required in children less than20kg.89Administration of mobilizing cyto-kine or other adjuvant before the procedure is not necessary.In patients with metastatic carcinomas or hematological malignancies,tumor cells can be present in the peripheral blood.In this case,the collected DC precursors may be contaminated by tumor cells.Consensus has yet to emerge over the need to remove tumor cells for this therapeutic modality.Positive or negative immunological se-lection techniques are available for further DC puri?cation or tumor cell depletion if proven to be necessary.

From isolated CD14?DC precursors,func-tional DC can be generated by a6-day culture with GM-CSF,IL-4,and further matured in the pres-ence of TNF-?or a cocktail of IL-1?,IL-6, TNF-?,and prostaglandin-E2with an average yield rate from20%to30%.36,97Optimal culture condi-tions need to be further de?ned,especially related to the type and concentration of serum supple-ments,cell purity,and cell density.98Subtle changes in culture conditions,such as different pathogens,cytokines,cocultured cell populations, or antigens,as well as the origin of the serum supplement(fetal calf serum versus human AB serum versus autologous plasma)can alter DC gene expression and function.99This interesting phenomenon is just another re?ection of the diver-sity and complexity of DC as an integrating and regulatory center for immune responses.30,100 Therefore,the in vitro conditions must be standard-ized and the outcome carefully monitored.98Cur-rently,X-VIVO15medium(Cambrex,East Ruth-erford,NJ),AIM-V serum-free medium(Gibco, BRL,Gaithersburg,MD),and RPMI-1640(Gibco, BRL)supplemented with10%allogeneic human AB serum or autologous serum have been used in cell cultures for different clinical trials.Only phar-maceutical grade cytokines can be used.The ex vivo–generated DC can be cryopreserved and re-tain82%functional viability up to24months after ?80°C freezing and storage using extracellular hydroxyethyl starch or intracellular dimethylsulf-oxide reagents.101DC precursors and lymphocytes can be cryopreserved in the same fashion.Thawed

196VOSS,ALBERTINI,AND MALTER

CD14?mononuclear cells maintained92%viabil-ity and were able to differentiate into immature and mature DC.

Sensitization of DC with tumor antigens is the next step in DC-based cancer vaccine preparation.

A standard tumor procurement protocol has been used with minimal modi?cations in published clin-ical trials.In general,tumors are obtained by sur-gical resection.After con?rmation of the diagnosis on frozen section,the sterile specimen is dissoci-ated by combinations of mechanical and enzymatic steps to create a single-cell suspension of tumor cells for culture or cryopreservation.70Irrespective of the tumor type,normal cells including?bro-blasts,endothelial cells,and lymphocytes are also present in cell suspension prepared in this fashion. Theoretically,a pure tumor cell preparation is ideal to maximize the ef?cacy of a DC vaccine and reduce the incidence of an autoimmune response. However,HCTs have shown minimal autoimmu-nity with impure antigen preparations.88,89Should greater purity be necessary,immunoselection or ?ne-needle aspiration with subsequent limiting di-lution can be performed to isolate individual tumor cell for in vitro expansion.The optimal cell-to-antigen ratios for DC sensitization remain to be established.This will likely vary depending on the type and source of antigens.With whole tumor cell lysates,the currently recommended DC to tumor cell equivalent ratio is1:1to2.5:189;with irradi-ated whole tumor cells,the ratio is4to1.80 After antigen uptake,further DC maturation is mandatory.The infusion of immature but antigen-loaded DC suppressed antitumor immunity in some recipients.38Fully mature DC show high-level expression of surface HLA class II,CD86, and CD83that can be determined by?ow cytom-etry analysis.41The tumor antigen-loaded mature DCs are then injected as a DC vaccine or used as a stimulator for ex vivo generation of antitumor T lymphocytes.According to the current protocols for DC-based cancer vaccines,1to10?106 antigen-loaded DC can be injected subcutaneously near lymph nodes or directly into lymph nodes under ultrasound guidance at weekly or monthly intervals.80The administered dose and treatment intervals have been variable in different HCTs. Studies to systematically evaluate dosing regimen with clinical outcome are needed.

Autologous T lymphocytes from peripheral blood or TIL cells can be stimulated by TAA 8loaded DC to initiate or augment antitumor re-sponses.A1:5to1:10ratio of DC to lymphocytes is usually adopted for co-culture.The stimulated lymphocytes are then given by intravenous infu-sion.The number of lymphocytes transfused has ranged from2.3to13.7?1010.66Lymphocyte preparations stimulated by impure tumor antigens will contain a mixture of T cells reactive to tumor associated or nonassociated antigenic epitopes. Present techniques for the isolation of speci?c an-titumor T cells by clonal selection through limiting dilution and screening for tumor or tumor antigen-speci?c cytokine production is time consuming, labor intensive,and clinically impractical.Tet-ramer assay by?ow cytometry can identify the presence of high-af?nity cell surface HLA mole-cules provided the antigen peptide sequence is known.This assay does not de?ne antitumor func-tionality,however.Therefore,more ef?cient and timely selection of speci?c antitumor T cells for cancer immunotherapy is sorely needed.The ro-setting of T cells to tumor cells for rapid enrich-ment of speci?c antitumor T lymphocytes is cur-rently under investigation in our laboratory.102

In addition to the technical aspects of DC col-lection,processing,storage,and administration discussed previously,appropriate donor selection, bene?t/risk evaluation,and informed consent must be addressed by both clinicians and transfusion medicine specialists.Patients with multiple my-eloma,lymphoma,and metastatic carcinoma can function as donors for autologous DC collec-tion.87,103However,patients with human immuno-de?ciency virus infection and clinically signi?cant autoimmune disease on immunosuppressive ther-apy should be excluded because of impaired cel-lular immunity.Pretreatment DTH responses against Mumps,Candida,and Trichophytin are helpful predictors of patient’s immunization poten-tial.79The patient/donor selection should also con-sider the immunogenicity of the individual tumor, which varies depending on the type and expression level of tumor antigens in the context of HLA class I,as well as the expression of the adhesion mole-cules and costimulatory factors on the tumor cells. These properties can be evaluated by immunologic and molecular techniques.For example,immuno-logical screening for HLA class I antigen expres-sion on malignant cells can help determine if the patient is a suitable candidate for T-cell–based immunotherapy because cytotoxic T cells recog-

197

DENDRITIC CELL IMMUNOTHERAPY FOR CANCER

nize TAA under the context of HLA class I mol-ecules.104Cancer patients have shown variable re-sponses to the same approach of immunotherapy regardless of identical morphological diagnosis in the same clinical stage,66which may re?ect the unique immunogenicity of the individual tu-mor.62,105-107The current tumor grading system based on histological features of the neoplasm may not provide suf?cient information to guide cancer immunotherapy.Clearly,far greater understanding of the immunology and biology of individual tu-mors is necessary to improve patient selection, prognosis,and clinical decision making.The rap-idly developing technology of gene chips and pro-teomic analysis is rede?ning the expression pro-?les of tumor with low or high immunogenicity. The experience with allogenic granulocyte or lymphocyte transfusions can be applied to cancer immunotherapy with autologous DC or T lympho-cytes.The risks for signi?cant transfusion reac-tions certainly exist.The extensive in vitro manip-ulations can introduce chemicals,foreign proteins, cytokines,shed antigens,and other exogenous ma-terials into the product.The possibility of provok-ing an autoimmune reaction is a special concern. Results from phase I/II clinical trials have,how-ever,shown minimal side effects.Even through autoantibodies(antinuclear antibodies,anti–Sjo¨g-rens Syndrome antigen,and anti–double-stranded DNA)were detected serologically in some recipi-ents,clinical autoimmune disease was rare and reversible by treatment.90Uveitis has happened occasionally in patients receiving T-cell infusion targeted at tumor differentiation antigens MART-1/Melan-A,which was controlled by steroid eye drops.66

Cost-effectiveness is a signi?cant concern.108 The potential areas to be modi?ed for reducing cost,improving feasibility,and clinical effective-ness include(1)eliminating in vitro manipulation of T cells by direct TAA-loaded DC vaccination and(2)eliminating the DC collection and culture steps by either direct injection of irradiated tumor cells with Calmette-Gue′rin Bacillus followed by T-cell collection from primed lymph nodes94or isolation of speci?c antitumor T cells from TIL.66 There are concerns with applying peptide alone directly into subcutaneous tissue without being loaded onto DC because this approach can spe-ci?cally tolerize T cells and enhance tumor growth.109Current clinical response rates,albeit in small group studies,have reached27%to50% with signi?cantly extended survival for up to2to 3years.66,80,94These results were achieved in the patients with end-stage disease who have failed other cancer treatments.As with other therapeutic interventions,early detection and treatment based on patients’immunotherapeutic potential and tu-mor immunogenicity are very likely to signi?-cantly improve the clinical outcome and overall cost-effectiveness of cellular based immunother-apy of cancer.

QUALITY ASSURANCE/QUALITY

CONTROL ISSUES Harvesting,preparation,preservation,distribu-tion,and administration of human hematopoietic stem cells(HSC)from peripheral blood,bone mar-row,and umbilical cord blood has been in clinical practice for many years.The principle of quality assurance and quality control for HSC processing should be applied to DC preparation.DC process-ing requires more extensive in vitor manipulation than HSC.Efforts have been made to create a uniform,closed DC culture system.40The Ameri-can Association of Blood Banks will release stan-dards for somatic cell laboratories with a projected implementation date of June1,2004.A single cellular therapy standards program unit will emerge from existing standards for Hematopoietic Progenitor and Cellular Product Services and Cord Blood and will be applicable to DC processing as well.110

Despite signi?cant optimism,many obstacles re-main.By its nature,each cellular-based immuno-therapy product is unique and will be manufac-tured for the treatment of a single individual.It will be time consuming,labor intensive,and expensive. Personnel training,patient-speci?c labeling,prod-uct segregation and veri?cation,and contamination prevention will be the focus of quality assurance. Specimen labeling,documentation,and tracking are essential.For products of cellular-based immu-notherapy,in-process controls,including charac-terization and functional analysis of cellular mate-rial,determination of cell number and viability, and testing for adventitious agents,will be oblig-atory.In addition,physiochemical features,includ-ing pH,storage temperature,and viscosity or cell aggregation of the product need to be assessed before the product can be released.111There are no generally available standard operating procedures

198VOSS,ALBERTINI,AND MALTER

at the present time.Well-planned clinical trials with careful and systematic data analysis will pro-vide valuable information.

A process similar to the manufacture of infec-tious disease vaccines may evolve.Licensed bio-logical products,including vaccines,must be safe, pure,potent,and manufactured consistently ac-cording to the current GMPs.Based on US Food and Drug Administration guidelines,the de?nition of safe is relatively free from harmful effect when prudently administered;pure is de?ned as rela-tively free from extraneous matter.The common principles for vaccine production and quality con-trol include the following:detailed manufacturing procedures to ensure consistency of production, de?ned compatible components,product character-ization and speci?cations,adventitious agent test-ing,examination of extraneous materials,and sta-bility of the product including genetic stability.

CONCLUSIONS

The feasibility,safety,and immunogenicity of DC-related immunotherapy for cancer have been shown in multiple clinical trials that included pa-tients with a variety of malignancies and in various clinical conditions,especially those with end-stage disease.Clinical antitumor effects including dura-ble complete responses have been achieved in small group studies.The promising results,mini-mal side effects,and improved quality of life for cancer patients make this treatment modality ex-tremely attractive when compared with conventional chemotherapy.Effective therapeutic development and implementation require a multidisciplinary collaboration.More phase III and larger-scale clin-ical trials will facilitate the development of good laboratory practices and good clinical practices, speci?cally the hospital-based manufacturing plat-form for therapeutic cellular products,optimized patient selection,dosing regimen,and monitoring parameters.From a scienti?c point of view,studies are needed to further identify and characterize TAAs and other key factors that contribute to consistent and persistent activation of antitumor T cells and increased clinical effectiveness.There will be a constant struggle between the host im-mune system and the tumor because the outgrowth of escape variants can occur during treatment.The addition of DC-based immunotherapy to conven-tional treatments is likely to promote host antitu-mor immunity and bring substantial clinical bene-?ts to more patients with cancer.

REFERENCES

1.Bates WD,Gray DW,Dada MA,et al:Lymphoprolifera-tive disorders in Oxford renal transplant recipients.J Clin Pathology56:439-446,2003

2.Drobyski WR,Qazi R:Spontaneous regression in non-Hodgkin’s lymphoma:Clinical and pathogenetic consider-ations.Am J Hematol31:138-141,1989

3.Yu Z,Restifo NP:Cancer vaccines:progress reveals new complexities.J Clin Invest110:289-294,2002

4.Chopra R,Goldstone AH,Pearce R,et al:Autologous versus allogeneic bone marrow transplantation for non-Hodgkin’s lymphoma:A case-controlled analysis of the Euro-pean Bone Marrow Transplant Group Registry data.J Clin Oncol10:1690-1695,1992

5.Kolb HJ,Schattenberg A,Goldman JM,et al:European group for blood and marrow transplantation working party chronic leukemia.Graft-verses-leukemia effect of donor lymphocyte trans-fusion in marrow grafted patients.Blood86:2041-2050,1995

6.Collins R Jr,Shpilberg O,Drobyski WR,et al:Donor leukocyte infusions in140patients with relapsed malignancy after allogeneic bone marrow transplantation.J Clin Oncol 15:433-444,1997

7.Dunn GP,Bruce AT,Ikeda H,et al:Cancer immunoedit-ing:from immunosurveillance to tumor escape.Nat Immunol 3:991-998,2002

8.Khong HT,Restifo NP:Natural selection of tumor vari-ants in the generation of“tumor escape”phenotypes.Nat Im-munol3:999-1005,2002

9.Hahne M,Rimoldi D,Schroter M,et al:Melanoma cell expression of Fas(Apo-1/CD95)ligand:Implication for tumor immune escape.Science274:1302-1304,1996

10.Gabrilovich DI,Chen HL,Girgis KR,et al:Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells.Nat Med2:1096-1103,1996

11.Unger MA,Rishi M,Clemmer VB,et al:Characteriza-tion of adjacent breast tumors using oligonucleotide microar-rays.Breast Cancer Res3:336-341,2001

12.Theobald M,Ruppert T,Kuckelkorn U,et al:The se-quence alteration associated with a mutational hotspot in p53 protects cells from lysis by cytotoxic T lymphocytes speci?c for a?anking peptide epitope.J Exp Med1188:1017-1028,1998 13.Musiani P,Modesti A,Giovarelli M,et al:Cytokine, tumor-cell death and immunogenicity:A question of choice. Immunol Today18:32-36,1997

14.Walker PR,Saas P,Dietrich PY:Role of Fas ligand (CD95L)in immune escape:the tumor cell strickes back. J Immunol158:4521-4524,1997

15.Chopin D,Barei-Moniri R,Maille P,et al:Human uri-nary bladder transitional cell carcinomas acquire the functional Fas ligand during tumor progression.Am J Pathol162:1139-1149,2003

16.Morgan DJ,Kreuwel HT,Fleck S,et al:Activation of low-avidity CTL speci?c for a self-epitope results in tumor rejection but not autoimmunity.J Immunol160:643-651,1998

199

DENDRITIC CELL IMMUNOTHERAPY FOR CANCER

17.Mantovani S,Garbelli S,Palermo B,et al:Molecular and functional bases of self-antigen recognition in long-term per-sistent melanocyte-speci?c CD8?T cells in one vitiligo pa-tient.J Invest Dermatol121:308-314,2003

18.Gabrilovich DI,Corak J,Ciernik IF,et al:Decreased antigen presentation by dendritic cells in patients with breast cancer.Clin Cancer Res3:483-490,1997

19.Gabrilovich DI,Ishida T,Nadof S,et al:Antibodies to vascular endotheial growth factor enhance the ef?cacy of can-cer immunotherapy by improving endogenous dendritic cell function.Clin Cancer Res5:2963-2970,1999

20.Bell D,Chomarat P,Broyles D,et al:In breast carci-noma tissue,immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med190:1417-1426,1999

21.Coventry BJ:CD1a positive putative tumor in?ltrating dendritic cells in human breast cancer.Anticancer Res19:3183-3187,1999

22.Troy AJ,Summers KL,Davidson PJT,et al:Minimal recruitment and activation of dendritic cells within renal cell carcinoma.Clin Cancer Res4:585-593,1998

23.Troy AJ,Davidson P,Atkinson C,et al:Phenotypic characterization of the dendritic cell in?ltrate in prostate cancer. J Urol160:214-219,1998

24.Troy AJ,Davidson PJT,Atkinson CH,et al:CD1a dendritic cells predominate in transitional cell carcinoma of bladder and kidney but are minimally activated.J Urol161: 1962-1967,1999

25.Schreiner TU,Lischka G,Schaumburg-Lever G:Lang-erhans’cells in skin tumors.Arch Dermatol131:187-190,1995 26.Garcia-Plata D,Lessana-Leibowitch M,Palangie A,et al:Immunophenotype analysis of dendritic cells and lympho-cytes associated with cutaneous malignant melanomas.Inva-sion Metastasis15:125-134,1995

27.Toriyama K,Wen DR,Paul E,et al:Variations in the distribution,frequency,and phenotype of Langerhans cells dur-ing the evolution of malignant melanoma of the skin.J Invest Dermatol100:269s-273s,1993

28.Kiertscher SM,Luo J,Dubinett SM,et al:Tumors pro-mote altered maturation and early apoptosis of monocyte-de-rived dendritic cells.J Immunol164:1269-1276,2000

29.Remmel E,Terracciano L,Noppen C,et al:Modulation of dendritic cell phenotype and mobility by tumor cells in vitro. Human Immunol62:39-49,2001

30.Hart DNJ:Dendritic cells and their emerging clinical applications.Pathology33:479-492,2001

31.Robinson S,Patterson S,English N,et al:Human pe-ripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol29:2769-2778,1999

32.Cella M,Jarrossay D,Facchietti F,et al:Plasmacytoid monocytes migrate to in?amed lymph nodes and produce large amounts of type I interferon.Nat Med8:919-929,1999

33.Ito T,Amakawa R,Inaba M,et al:Differential regulation of human blood dendritic cell subsets by IFNs.J Immunol 166:2961-2969,2001

34.Ho CSK,Munster D,Pyke CM,et al:Spontaneous generation and survival of blood dendritic cells in mononuclear cell culture without exogenous cytokines.Blood99:2897-2904, 2002

35.Fearnley DB,Whyte LF,Carnoutsos SA,et al:Monitor-ing human blood dendritic cell numbers in normal individuals and in stem cell transplantation.Blood93:728-736,1999 36.Wong EC,Maher VE,Hines K,et al:Development of a clinical-scale method for generation of dendritic cells from PBMC for use in cancer immunotherapy.Cytotherapy3:19-29, 2001

37.Rouard H,Leon A,Reys SD,et al:A closed and single-use system for monocyte enrichment:Potential for dendritic cell generation for clinical applications.Transfusion43:481-487, 2003

38.Dhodapkar MV,Steinnman RM,Krasovsky J,et al: Antigen-speci?c inhabition of effector T cell function in hu-mans after injection of immature dendritic cells.J Exp Med 193:233-238,2001

39.Nestle FO,Banchereau J,Hart D:Dendritic cells:on the move from bench to bedside.Nat Med7:761-765,2001

40.Pullarkat V,Lau R,Lee SM,et al:Large-scale monocyte enrichment coupled with a closed culture system for the gen-eration of human dendritic cells.J Immunol Methods267:173-183,2002

41.Bell D,Young JW,Banchereau J:Dendritic cells.Adv Immunol72:255-324,1999

42.Timmerman JM,Levy R:Dendritic cell vaccines for cancer immunotherapy.Annu Rev Med50:507-529,1999 43.Mahnke K,Guo M,Lee S,et al:The dendritic cell receptor for endocytosis,DEC-205,can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments.J Cell Biol151:673-684, 2000

44.Clark GJ,Angel N,Kato M,et al:The role of dendritic cells in the innate immune system.Microbes Infect2:257-272, 2000

https://www.wendangku.net/doc/aa8150289.html,nzavecchia A,Sallusto F:Regulation of T cell immu-nity by dendritic cells.Cell106:263-266,2001

46.Ferrari G,Knight AM,Watts C,et al:Distinct intracel-lular compartment involved invariant chain degradation and peptide loading of major histocompatibility complex(MHC) class II molecules.J Cell Biol139:1433-1446,1997

47.McLellan AD,Starling GC,Williams LA,et al:Activa-tion of human peripheral blood dendritic cells induces the CD86 costimulatory molecule.Eur J Immunol25:2064-2068,1995 48.Starling GC,McLellan AD,Egner W,et al:Intercellular adhesion molecule-3is a costimulatory ligand for LFA-1ex-pressed on human blood dendritic cells.Eur J Immunol25: 2528-2532,1995

49.Adema GJ,Hartgers F,Verstraten R,et al:A dendrtic cell derived C-C chemokine that preferentially attracts naive T cells.Nature387:713-715,1997

50.Sorg RV,McLellan AD,Hock BD,et al:Human den-dritic cells express functional interleukin-7.Immunobiology 198:26-38,1998

51.Rissoan M,Soumelis V,Kadowaki N,et al:Reciprocal control of T helper cell and dendritic cell differentiation.Sci-ence283:1183-1186,1999

52.Humrich J,Jenne L:Viral vectors for dendritic cell-based immunotherapy.Curr Top Microbiol Immunol276:241-259,2003

53.Tuettenberg A,Jonuleit H,Tuting T,et al:Priming of T cells with Ad-transduced DC followed by expansion with pep-tide-pulsed DC signi?cantly enhances the induction of tumor-

200VOSS,ALBERTINI,AND MALTER

speci?c CD8?T cells:Implications for an ef?cient vaccination strategy.Gene Ther10:243-250,2003

54.Mahvi DM,Burkholder JK,Turner J,et al:Particle-mediated gene transfer of granulocyte-macrophage colony-stimulating factor cDNA to tumor cells:Implication for a clin-ically relevant tumor vaccine.Hum Gene Ther7:1535-1543, 1996

55.Mahvi DM,Shi FS,Yang NS,et al:Immunization by particle-mediated transfer of the granulocyte-macrophage col-ony-stimulating factor gene into autologous tumor cells in mel-anoma or sarcoma patients:Report of a phase I/IB study.Hum Gene Ther13:1711-1721,2002

56.Loskog A,Totterman TH,Bohle A,et al:In vitro acti-vation of cancer patient-derived dendritic cells by tumor cells genetically modi?ed to express CD154.Cancer Gene Ther 9:846-853,2002

57.Satoh Y,Esche C,Gambotto A,et al:Local administra-tion of IL-12-transfected dendritic cells induces antitumor im-mune responses to colon adenocarcinoma in the liver in mice.J Exp Ther Oncol2:337-349,2002

58.Sharma S,Yang SC,Batra RK,et al:Intratumoral ther-apy with cytoking gene-modi?ed dendritic cells in murine lung cancer models.Methods Mol Med75:711-722,2003

59.Tsuji H,Kawaguchi S,Wada T,et al:Adenovirus-mediated in vivo B7-1gene transfer induces anti-tumor immu-nity against pre-established primary tumor and pulmonary me-tastasis of rat osteosarcoma.Cancer Gene Ther9:747-755,2002 60.McCarthy DO,Glowacki N,Schell K,et al:Antigenicity of huan melanoma cells transfected to express the B7-1co-stimulatory molecule(CD80)varies with the level of B7-1 expression.Cancer Immunol Immunother49:85-93,2000 61.Renkist N,Castellic C,Robbins PF,et al:A list of human tumor antigens recognized by T cells.Cancer Immunol Immunother50:3-15,2001

62.Scanlan MJ,Gure AO,Jungbluth AA,et al:Cancer/testis antigens:an expanding family of targets for cancer immuno-therapy.Immunol Rev188:22-32,2002

63.Gjertsen GC,Bjorheim J,Saeterdal I,et al:Cytotoxic CD4?and CD8?T lymphocytes,generated by mutant p21-ras (12Val)peptide vaccination of a patient,recognize12Val-dependent nested epitopes present within the vaccine peptide and kill autologous tumor cells carrying this mutation.Int J Cancer72:784-790,1997

64.Linard B,Bezieau S,Benlalam H,et al:A ras-mutated peptide targeted by CTL in?ltrating a human melanoma lesion. J Immunol168:4802-4808,2002

65.Eynde BVD,Peeters O,Backer OD,et al:A new family of genes coding for an antigen recognized by autologus cyto-lytic T lymphocytes on a human melanoma.J Exp Med182: 689-698,1995

66.Dudley ME,Wunderlich JR,Robbins PF,et al:Cancer regression and autoimmunity in patients after clonal repopula-tion with antitumor lymphocytes.Science298:850-854,2002 67.Magarian-Blander J,Ciborowski P,Hsia S,et al:Inter-cellular and intracellular events following the MHC-restricted TCR recognition of a tumor-speci?c peptide epitope on the epithelial antigen MUC1.J Immunol160:3111-3117,1998 68.Xia J,Tanaka Y,Koido S,et al:Prevention of sponta-neous breast carcinoma by prophylactic vaccination with den-dritic/tumor fusion cells.J Immunol170:1980-1986,2003 69.Galea-Lauri J,Darling D,Mufti G,et al:Eliciting cyto-toxic T lymphocytes against acute myeloid leukemia-derived antigens:Evaluation of dendritic cell-leukemia cell hybrids and other antigen-loading strategies for dendritic cell-based vacci-nation.Cancer Immunol Immunother51:299-310,2002

70.Soruri A,Fayyazi A,Neumann C,et al:Ex vivo gener-ation of human anti-melanoma autologous cytolytic T cells by dendritic cell/melanoma cell hybridomas.Cancer Immunol Im-munother50:307-314,2002

71.Kotera Y,Shimizu K,Mule J:Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s)in dendritic cell–based immunization.Cancer Res61:8105-8109, 2001

https://www.wendangku.net/doc/aa8150289.html,mbert L,Gibson GR,Maloney M,et al:Equipotent generation of protective antitumor immunity by various meth-ods of dendritic cell loading with whole cell tumor antigens. J Immunother24:232-236,2001

73.Toes RE,van der Voort EI,Schoengerger SP,et al: Enhancement of tumor outgrowth through CTL tolerization after peptide vaccination is avoided by peptide presentation on dendritic cells.J Immunol160:4449-4456,1998

74.den Boer TH,Diehl L,van Mierlo GJD,et al:Longevity of antigen presentation and activation status of APC are deci-sive factors in the balance between CTL immunity versus tolerance.J Immunol167:2522-2528,2001

75.Parmiani G,Castelli C,Dalerba P,et al:Cancer immu-notherapy with peptide-based vaccines:What have we achieved?Where are we going?J Natl Cancer Inst94:805-818, 2002

76.Fong L,Hou Y,Rivas A,et al:Altered peptide ligand vaccination with Flt3ligand expanded dendritic cells for tumor immunotherapy.Proc Natl Acad Sci U S A98:8809-8814,2001 77.Briand JP,Benkirane N,Guichard G,et al:A retro-inverso peptide corresponding to the GH loop of foot-and-mouth disease virus elicits high levels of long-lasting protective neutralizing antibodies.Proc Natl Acad Sci U S A94:12545-12550,1997

78.Zhou Y,Bosch ML,Salgaller ML:Current methods for loading dendritic cells with tumor antigen for the induction of antitumor immunity.J Immunother25:289-303,2002

79.Peterson AC,Harlin H,Gajewski TF:Immunization with Melan-A peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12induces clinical activity and T-cell responses in advanced melanoma.J Clin Oncol21:2342-2348,2003

80.O’Rourke MG,Johnson M,Lanagan C,et al:Durable complete clinical responses in a phase I/II trial using an autol-ogous melanoma cell/dendritic cell vaccine.Cancer Immunol Immunother52:387-395,2003

81.Marten A,Flieger D,Renoth S,et al:Therapeutic vac-cination against metastatic renal cell carcinoma by autologous dendritic cells:Preclinical results and outcome of?rst clinical phase I/II trial.Cancer Immunol Immunother51:637-644,2002 82.Iwashita Y,Tahara K,Goto S,et al:A phase I study of autologous dendritic cell-based immunotherapy for patients with unresectable primary liver cancer.Cancer Immunol Im-munother52:155-161,2003

83.Pecher G,Haring A,Kaiser L,et al:Mucin gene (MUC1)transfected dendritic cells as vaccine:Results of a phase I/II clinical trial.Cancer Immunol Immunother51:669-673,2002

84.Pinilla J,Cathcart K,Korontsvit T,et al:A phase II trial

201

DENDRITIC CELL IMMUNOTHERAPY FOR CANCER

of patients with CML using a multivalent BCR-ABL oncogen product fusion peptide vaccine.Proc Am Soc Clin Oncol22: 168,2002(abstr)

85.Su Z,Dannull J,Heiser A,et al:Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells.Cancer Res63: 2127-2133,2003

86.Lin CL,Lo WF,LEE TH,et al:Immunization with Epstein-Barr virus(EBV)peptide-pulsed dendritic cells induces functional CD8?T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carci-noma.Cancer Res62:6952-6958,2002

87.Timmerman JM,Czerwinski DK,Davis TA,et al:Idio-type-pulsed dendritic cell vaccine for B-cell lymphoma:Clini-cal and immune responses in35patients.Blood99:1517-1526, 2002

88.Stift A,Friedl J,Dubsky P,et al:Dendritic cell-based vaccination in solid cancer.J Clin Oncol21:135-142,2003 89.Geiger JD,Hutchinson RJ,Hohenkirk LF,et al:Vacci-nation of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand speci?c T cells and mediate tumor regression.Cancer Res61:8513-8519,2001

90.Disis ML,Rinn K,Knutson KL,et al:Flt3ligand as a vaccine adjuvant in association with HER-2/neu peptide-based vaccines in patients with HER-2/neu-overexpressing cancers. Blood99:2845-2850,2002

91.Maier T,Tun-Kyi A,Tassis A,et al:Vaccination of patients with cutaneous T-cell lymphoma using intranodal in-jection of autologous tumor-lysate-pulsed dendritic cells.Blood 102:2338-2344,2003

92.Meidenbauer N,Marienhagen J,Laumer M,et al:Sur-vival and tumor localization of adoptively transferred Melan-A-speci?c T cells in melanoma patients.J Immunol170:2161-2169,2003

93.Whiteside TL,Zhao Y,Tsukishiro T,et al:Enzyme-linked immunospot,cytokine?ow cytometry,and tetramers in the detection of T-cell response to a dendritic cell-based mul-tipeptide vaccine in patients with melanoma.Clin Cancer Res 9:641-649,2003

94.Keilholz U,Weber J,Finke JH,et al:Immunologic monitoring of cancer vaccine therapy:Results of a workshop sponsored by the society for biological therapy.J Immunother 25:97-138,2002

95.Chang AE,Li Q,Jiang G,et al:Phase II trial of autol-ogous tumor vaccination,anti-CD3-activated vaccine-primed lymphocytes,and interleukin-2in stage IV renal cell cancer. J Clin Oncol21:884-890,2003

96.Couzin J:Select T cells,given space,shrink tumors. Science297:1973-1975,2002

97.Motta MR,Castellani S,Rizzi S,et al:Generation of dendritic cells from CD14?monocytes positively selected by immunomagnetic adsorption for multiple myeloma patients en-rolled in a clinical trial of anti-idiotype vaccination.Br J He-matol121:240-250,2003

98.Cao H,Verge V,Baron C,et al:In vitro generation of dendritic cells from human blood monocytes in experimental conditions compatible for in vivo cell therapy.J Hematother Stem Cell Res9:183-194,2000

99.Kalinski P,Schuitemaker J,Hikens C,et al:Final mat-uration of dendritic cells is associated with impaired respon-siveness in IFN-r and to bacterial IL-12inducer:Ability of mature dendritic cells to produce IL-12during the interaction with Th cells.J Immunol162:3231-3236,1999

100.Banchereau J,Steinman RM:Dendritic cells and the control of immunity.Nature392:245-252,1998

101.Celluzzi CM,Welbon C:A simple cryopreservation method for dendritic cells and cells used in their derivation and functional assessment.Transfusion43:488-494,2003

102.Voss CY,Selvaggi SM,Warner TF,et al:Autologous T lymphocytes stimulated by tumor antigen-loaded dendritic cells revealed anti-melanoma activity in conjugation assay. Am J Clin Pathol120:469,1993(abstr)

103.Ratta M,Curti A,Fogli M,et al:Ef?cient presentation of tumor idiotype to autologous T-cells by CD83?dendritc cells derived from highly puri?ed circulating CD14?mono-cytes in multiple myeloma patients.Exp Hematol28:931-940, 2000

104.Campoli M,Chang CC,Ferrone S:HLA class I antigen loss,tumor immune escape and immune selection.Vaccine 20:A40-A45,2002(suppl)

105.Marincola FM,Jaffee EM,Hicklin DJ,et al:Escape of human solid tumors from T cell recognition:Molecular mech-anisms and functional signi?cance.Adv Immunol74:181-273, 2000

106.Seliger B,Maeurer MJ,Ferrone S:Antigen-processing machinery breakdown and tumor growth.Immunol Today21: 455-464,2000

107.Seliger B,Abken H,Ferrone S:HLA-G and MIC expression in tumors and their role in anti-tumor immunity. Trends Immunol24:82-87,2003

108.Salgaller ML:A manifesto on the current state of den-dritic cells in adoptive immunotherapy.Transfusion43:422-424,2003

109.Itoh T,Ueda Y,Kawashima I,et al:Immunotherapy of solid cancer using dendritic cells pulsed with the HLA-A24-restricted peptide of carcinoembryonic antigen.Cancer Immu-nol Immunother51:99-106,2002

110.Nunes E:Cellular therapy standards.AABB News July/ August:41-43,2003

111.Kielpinski G:Hospital-based manufacturing of cellula therapy products.AABB News July/August:38-40,2003

202VOSS,ALBERTINI,AND MALTER

库库尔坎金字塔

地理位置 位于墨西哥大学城以南的库库尔坎(Kukulcan),是玛雅文化前古典期晚期(公元前800年——公元前200年)中部高原文化的重要文化遗址之一,“库库尔坎”的原意是“舞蹈唱歌的地方”,或表示“带有羽毛的蛇神”。 建筑结构 “库库尔坎”金字塔是我们现在看到的早期墨西哥金字塔是一座用土筑成的 九层圆形祭坛,高29米 ,周边各宽55米多,周长250米左右,最高一层建有一座6米高的方形坛庙,库库尔坎金字塔高约30 米,四周环绕91 级台阶,加起来一共364级台阶,再加上塔顶的羽蛇神庙,共有365阶,象征了一年中的365 天。台阶的两侧宽达1米的边墙,北边墙下端,有一个带羽行的大蛇头石刻,蛇头高1.43米,长达1.80米,宽1.07米,蛇嘴里吐出一条大舌头,颇为独特。 这座古老的建筑,在建造之前,经过了精心的几何设计,它所表达出的精确度和玄妙而充满戏剧性的效果,令后人叹为观止:每年春分和秋分两天的日落时分,北面一组台阶的边墙会在阳光照射下形成弯弯曲曲的七段等腰三角形,连同底部雕刻的蛇头,宛若一条巨蛇从塔顶向大地游动,象征着羽蛇神在春分时苏醒,爬出庙宇。每一次,这个幻像持续整整3 小时22 分,分秒不差。这个神秘景观被称为“光影蛇形”。 每当“库库尔坎”金字塔出同蛇影奇观的时候,古代玛雅人就欢聚在一起,高歌起舞,庆祝这位羽毛蛇神的降临。 库库尔坎金字塔,是玛雅人对其掌握的建筑几何知识的绝妙展示,而金字塔旁边的天文台,更是把这种高超的几何和天文知识表现得淋漓尽致。 建造工艺 在没有金属工具、没有大牲畜和轮车的情况下,古代玛雅人却能够开采大量重达数十吨的石头,跋山涉水、一路艰辛地运到目的地,建成一个个雄伟的金字塔。金字塔最高的可达70米,其规模之巨大、施工难度之高,令人吃惊。 古代玛雅的金字塔和古埃及的金字塔在建筑形式上有着明显的不同。埃及的金字塔的塔顶是尖的,而玛雅金字塔却是平顶,塔体呈方形,底大顶小,层层叠叠,塔顶的台上还建有庙宇;在用途上也不一样:埃及金字塔是法老的陵墓,而玛雅的金字塔除个别外,一般是用来祭祀或观察天象的。除金字塔外,玛雅人还兴建了不少功能性强,技艺高的民用建筑,主要有:房屋(包括庙宇、府邸、民居等)、公共设施(球场、广场、集市等)、基础设施(桥梁、大道、码头、堤坝、护墙等)和水利工程(水渠、水库、水井、梯田)等。

库库尔坎金字塔位于墨西哥

库库尔坎金字塔位于墨西哥尤卡坦半岛北部,是曾经古玛雅人留下的文明遗址。 库库尔坎在玛雅文化中是带羽蛇神的意思,被誉为是太阳的化身,即太阳神。羽蛇神主宰着晨星、发明了书籍、立法,而且给人类带来了玉米,还代表着死亡和重生,也是祭司们的保护神。古典时期,玛雅“真人”手持权杖,权杖一端为精致小形、中间为小人的一条腿化作蛇身、另一端为一蛇头。到了后古典时期,出现了多种变形,但基本形态完全变了,成为上部羽扇形、中间蛇身下部蛇头的羽蛇神形象。 羽蛇神与雨季同来,而雨季又与玛雅人种玉米的时间相重合,因而羽蛇神又成为玛雅农人最为崇敬的神明。在玛雅人眼中羽蛇神与犬神有同样高的地位 在现今留存的最大的玛雅古城奇岑-伊扎,库库尔坎金字塔屹立其中。它的每个面有91级台阶,4个面象征一年四季,共364级台阶,加上塔顶的神殿共365级,象征一年365天。4个边缘分别代表春分、秋分、夏至和冬至。在金字 塔的北面两底角雕有两个蛇头。每年春分、秋分两天,太阳落山时,可以看到蛇头投射在地上的影子与许多个三角形连套在一起,成为一条动感很强的飞蛇。好像从天空中游向大地,栩栩如生。春分蛇由上至下出现,仿佛从神庙中爬出来一样,秋分则由下至上出现,像是爬进去一样。只有每年的这两天里才能看到这一奇景。所以,现在它已经成为墨西哥的一个著名旅游景点。而在当年,玛雅人可以借助这种将天文学与建筑工艺精湛地融合在一起的直观景致,准确把握农时。与此同时,也准确把握崇拜羽蛇神的时机。考古学家在玛雅神庙下方发现神秘的坑洞,进一步的考察发现,坑洞是自然形成的,延伸大约34米,深度为20米 左右。最新的消息指出,神秘下方的洞穴可连接到其他洞穴或者地下湖泊,同时具有深层次的宗教意义,在玛雅文化中处于非常重要的地位。这座寺庙名称为Kukuerkan,即库库尔坎金字塔,这是中美洲最著名的古文明遗址之一,是玛雅文明的巅峰之作。那么金字塔下方的洞穴为何会存在呢,具有何种宗教意义? 考古学家发现玛雅人在1000年前建造了金字塔,位于一个巨大的天然深坑 上,他们相信建立在深坑顶部的建筑是宗教信仰的一部分,因为库库尔坎金字塔内有一尊玛雅蛇神,或者认为是有羽毛的蛇,它是玛雅人非常崇拜的蛇神。由于蛇神需要水,因此神殿下方是一个被填满水的深坑,水流的运行由北向南。考古学家通过一种新的探测技术对神殿下方的结构进行研究,发现了深坑的存在,探测器能够探测到岩石结构走向,分辨出水流和岩石的相对位置。

2019年(春)六年级美术下册 第1课《追寻文明的足迹》说课教案 人美版

2019年(春)六年级美术下册第1课《追寻文明的足 迹》说课教案人美版 教材分析: 本课是“欣赏`评诉”领域的内容。世界文化遗产是人类进步的闪光足迹,是全世界共同的财富。通过本课的欣赏活动,让学生了解人类的智慧和壮举,了解不同历史时期的文化现象,从而引发学生对人类文化遗产的关注,激发学生的求知欲。 教学内容与目标: 认知: 1、知道什么叫文化遗产,能说出7处-10处世界文化遗产。 2、能够对世界文化遗产的保护有正确的认识。 情意: 1、让学生认识到文化遗产是人类共同的财富,增强保护文化遗产的意识和方法。 2、学习了解各个国家不同时期的文明足迹,尊重不同文化背景下的文化现象,接纳多元文 化,拓展国际视野。 能力: 1、能够运用美术知识制作宣传栏,传播世界文化遗产知识。 2、能够收集世界文化遗产的相关资料,初步认识、了解自己感兴趣的文化遗产。 教学重点与难点: 重点: 1、通过资料阅读、课上交流等途径,认识7处—10处世界文化遗产,较细致的了解2处— 3处世界文化遗产。 2、能够从文化遗产的历史背景、审美价值、社会影响、经典特征等方面,介绍2处—3处 世界文化遗产。 难点:有步骤、有层次的介绍2处—3处世界文化遗产。 学习材料: 资料、剪刀、彩纸等 教学过程: 一、了解不同背景的世界文明遗迹 1、课前将学生分成四个组:阿布辛拜勒神庙(非洲)、库库尔坎金字塔(美洲)、法隆寺 (亚洲)、奥林匹亚遗址(欧洲) 每个学生根据书中的问题,查找最下边的 一行图片资料。 (1)《掷铁饼者》、《竞技表演》是哪方面的内容?用的是什么手法? (2)阿布辛拜勒神庙建造于什么地方、什么时代、有什么特点? (3)库库尔坎金字塔的所在地、建造时间、艺术特色。说一说它和埃及金字塔有什么相同与不同之处? (4)法隆寺的建筑特点,它和中国的塔有什么相同与不同之处? 教学意图:培养学生收集信息、整理信息的能力,以及小组合作、探究的意识。 二、欣赏分析多元的世界文化遗产

(完整word版)人美版六年级美术试题

(完整word版)人美版六年级美术试题 亲爱的读者: 本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。下面是本文详细内容。 最后最您生活愉快 ~O(∩_∩)O ~

六年级美术试 一、填空。. 1、《哪吒闹海》是一幅__壁_画,作者张仃在这幅画中运用了中国传统壁画表现手法,又借鉴了构图的理念,在色彩、造型等方面都进行了成功的探索。 2、拉斯科洞窟的岩画是人类最早的绘画。 3、法隆寺是世界上最古老的木建筑之一。 4、装饰画偏重表现形式的装饰画偏重表现形式的装饰性,不强调真实光影和透视关系,注重色彩的象征性及整体的和谐,多以夸张、变形、简洁的手法,给人以明快、强烈的艺术美感。 5、农民画家敢于把牛画的艳丽,显示了他们对色彩生活丰富的想象力和对的无限热爱。 6、雕版印刷三大特点:主板线稿多块色板鬃毛刷。 7、我们曾学过纸版画对印版画粉印版画拓印版画等许多版画制作方法。 8、肌理是指由于材料的不同配列、组成和构造而使人得到的触觉质感和质地。手感触感织法性质纹理等说法都可包含在肌理之中。 9、第一部动画片是《一张滑稽面孔的幽默姿态》,第一部有声动画片是《威利号汽船》,第一部彩色动画片《白雪公主,第一部三维动画片是《玩具总动员》。 10、传统民间门神形象中取自《封神演义》的是赵公明和燃灯道人。 11、许多文化遗产是、文字、绘画、建筑、遗址、口传方式记录下来的,非物质文化遗产是不用文字以民间戏曲为主的活态文化,如各民族的文字绘画建筑遗址口传方式民间戏曲舞蹈神话传说节日礼仪刺绣玩具剪纸面花皮影等。 12、抓髻娃娃是我国北方民间剪纸中一个典型的形象,它既象征着性生命

人美版六年级美术下册教案

六年级 美术(电子备课) 于颖 目录: 六年级下册: 第1课追寻文明的足迹 第2课探访自然的器官 第3课装饰色彩 第4课装饰画 第5课彩球的设计 第6课城市雕塑 第7课各种材料来制版 第8课装饰柱 第9课精彩的戏曲 第10课戏曲人物 第11课画故事 第12课动画片的今夕 第13课拟人化的动漫形象 第14课留给母校的纪念 第15课我的成长记录 第16课剪纸中的古老记忆 第17课绣在服装上的故事

第18课复制与传播 学情分析: 本学期我教的就是六年级三个班的美术课,随着学生年龄的增长、生理、身心健康的不断发展,学生们对美术的要求有所不同,对美术知识、技能的掌握程度也不同。她们更多地追求现实的、真实的东西或喜欢目前流行的“动漫”,对此进行大量的临摹在绘画技巧上显得成熟,线条也十分流畅,但画风呆板,表现欲下降,缺少童趣。但她们对色彩有辨别能力,把握物体形状的能力很强,乐于动手,对手工制作课充满了极高的热情。对美具有了较高的欣赏能力。 这学期就是她们迈入初中的过渡时期,既要努力响应学生目前的兴趣爱好,又要深入浅出地灌输客观的美术学科理论知识,与初中知识进一步接轨,将平时教给学生的初中知识更加明朗化介绍给学生,使她们从儿童绘画到少年绘画的转型,更重视有欣赏内容与工艺设计教学,即学生的创造能力上的培养,其实就就是对儿童想象力的深化,转变为更理论性含量的创造能力。 知识要点: 该教材贴近学生的心理,符合学生的年龄特点,每课的主题都有美术带来的有趣的惊喜。六年级美术教材一共分为19课。每一课都侧重于“造型·表现”、“设计·应用”、“欣赏·评述”、“综合·探索”四个学习领域中的一个方面,同时也有不少系列的课,教学内容前后联系比较紧密,非常适合学生较深入地做一个专题。并且有些教学内容还设计成了案例学习、问题学习与项目学习,这就要求我们老师应多引导学生进行主动的探究学习,增加学生集体合作的机会。其次本册教材继续体现了人美版教材的可操作性强、贴近生活、关注美术文化的渗透与注重学生学习兴趣的培养等特点。 “造型·表现”:在教学中,让学生运用形、色与肌理等美术语言,选择合适自己的各种工具、材料,记录与表现所见所闻、所感所想的事物,发展美术创作能力,传递自己的思想与情感。 “设计·应用”:运用对比与与谐、对称与均衡、节奏与韵律等组合原理,了解一些简单的创意、设计方法与媒材的加工方法,进行设计与装饰,美化身边的环境。“欣赏·评述”:欣赏认识自然美与美术作品的材料、形式与内容等特征,通过描述、分析与讨论等方式,了解美术表现的多样性,能用一些简单的美术术语,表达自己对美术作品的感受与理解。 “综合·探索”:结合学校与社区的活动,以美术与科学课程与其她课程的知识、技能相结合的方式,进行策划、制作、表演与展示,体会美术与环境及传统文化的关系。 【授课内容】1、追寻文明的足迹 【课时建议】1课时 【教程目标】 知识与技能:知道什么叫文化遗产,能说出7-10处世界文化遗产。能够对世界文化遗产的保护有正确的认识。 过程与方法:通过资料阅读、课上交流等途径,认识了解2处-3处世界文化遗产;能够从文化遗产的历史背景、审美价值、社会影响、经典特征等方面,介绍2-3处世界文化遗产。 情感、态度与价值观:通过本课学习,认识到文化遗产就是人类共同的财富,增强保护文化遗产

科潘玛雅古迹遗址

科潘玛雅古迹遗址 科潘玛雅古迹遗址位于洪都拉斯西部边境,遗址面积数十平方公里,1980年入选《世界遗产名录》。科潘属于玛雅文明古典期(公元250—900年),为玛雅文明最盛时期。金字塔式寺庙较为精美,台顶神殿有大量浮雕。科潘是玛雅文化的学术中心,不少建筑遗址与天文、历法等学术活动有关。这里保存了玛雅文化中最长的铭刻,多达2500字,号称“象形文字的梯道”。科潘玛雅遗址是玛雅文明最重要的地区之一,有着宏大的建筑,还有丰富的象形文字,是极少数起源于热带丛林的文明的例证。这些建筑表明科潘的玛雅人有高度发展的经济和文化。 公元1839年,美国探险学家史蒂芬斯(JohnlioydStephens)和卡瑟伍德(FrederikCatherWood)受到一个古老传说的暗示,披荆斩棘,深入浓荫蔽日的雨林之中,然而,他们没有找到被巫师催眠的美丽公主,却发现了一座已荒废千年的古代城市遗址。在这座叫作科潘的旧城废墟上,高大的纪念碑被藤条缠绕,湮没在荆棘之中;雄伟的金字塔上长满了粗壮的树木,变成一座座荒丘。史蒂芬斯他们被眼前的这一切惊呆了,这些遗迹所代表的就是辉煌灿烂的玛雅文明。 玛雅文明是世界著名的古代文明之一,也是唯一诞生在热带丛林而非大河流域的文明。玛雅人具有的抽象思维能力让同时代的旧大陆文明相形见绌。他们创造了精确的数学体系和天文历法系统,以及至今仍有待我们去破译的象形文字系统。玛雅人最重视对太阳和月亮的观测,他们能算出日蚀和月蚀出现的时间,并已将七大行星都列入了研究范围。他们对金星运行周期的计算和现代科学实测结果完全一致。玛雅历法体系由"神历"、"太阳历"和"长纪年历"组成。玛雅人有一个独特的数学体系,在这个体系中,最先进的部分便是"0"这个符号的使用,它的发明和使用比欧洲大约早了800年。玛雅的数学体系的适用性和科学性,使他们能在许多科学和技术活动中解决各种难题。在世界各古代文明中,除了起源于印度的阿拉伯数字之外,玛雅数字要算是最先进的了。但非常可惜,有关玛雅数学的图书或文献一本也没有流传下来。玛雅的象形文字对现代人来说真是一部天书,它的谜底直到今天仍未解开。玛雅象形文字以近似圆形或椭圆为主,字符的线条更多地依随图形起伏变化、圆通流畅。 科潘是玛雅象形文字研究最发达的地区,它的纪念碑和建筑物上的象形文字符号书写最美、刻制最精、字数最多,例如,在科潘遗址中,有一条六七十级的梯道,用2500多块加工过的方石砌成,这是一座纪念性的建筑物,梯道建在山坡上,直通山顶的祭坛。宽10米,两侧各刻着一条花斑巨蟒,蟒尾在山丘顶部:梯道的每块方砖上都刻着象形文字,每个形文字的四周均雕有花纹,梯道共刻了2000多个象形文字符号,它是玛雅象形文字最长的铭刻,也是世界题铭学上少见的珍贵文物,由此被称为"象形文字梯道。" 不仅如此,科潘的经济与政治实力仅次于蒂卡尔而远远超过其他城邦,在文化上则完全可以和蒂卡尔并肩而立,甚至还略有超越,有学者认为科潘的重要意义决不在蒂卡尔之下,它们如双峰并立,是玛雅文明两座最伟大的灯塔。确实,从考古发掘的城市遗址看,科潘在规模上可能略逊于蒂卡尔,但美丽却有过之而无不及。据记载公元805年以后,玛雅人突然弃科潘城北迁,科潘城随之变成一片废墟。 奇琴伊察玛雅城邦遗址曾是古玛雅帝国最大最繁华的城邦。遗址拉于尤卡坦半岛中部。始建于公元514年。城邦的主要古迹有:千柱广场、武士庙及庙前的斜倚的两神石像。9层,高30米的呈阶梯形的库库尔坎金字塔以及圣井(石灰岩竖洞)和筑在高台上呈蜗形的玛雅人古

六年级美术下册--《追寻文明的足迹》说课教案(人美版)

六年级美术下册--《追寻文明的足迹》说课教案(人美版) 教材分析: 本课是“欣赏`评诉”领域的内容.世界文化遗产是人类进步的闪光足迹,是全世界共同的财富.通过本课的欣赏活动,让学生了解人类的智慧和壮举,了解不同历史时期的文化现象,从而引发学生对人类文化遗产的关注,激发学生的求知欲. 教学内容与目标: 认知: 1、知道什么叫文化遗产,能说出7处-10处世界文化遗产. 2、能够对世界文化遗产的保护有正确的认识. 情意: 1、让学生认识到文化遗产是人类共同的财富,增强保护文化遗产的意识和方法. 2、学习了解各个国家不同时期的文明足迹,尊重不同文化背景下的文化现象,接纳多元文化, 拓展国际视野. 能力: 1、能够运用美术知识制作宣传栏,传播世界文化遗产知识. 2、能够收集世界文化遗产的相关资料,初步认识、了解自己感兴趣的文化遗产. 教学重点与难点: 重点: 1、通过资料阅读、课上交流等途径,认识7处—10处世界文化遗产,较细致的了解2处—3 处世界文化遗产. 2、能够从文化遗产的历史背景、审美价值、社会影响、经典特征等方面,介绍2处—3处世 界文化遗产. 难点:有步骤、有层次的介绍2处—3处世界文化遗产. 学习材料: 资料、剪刀、彩纸等 教学过程: 一、了解不同背景的世界文明遗迹 1、课前将学生分成四个组:阿布辛拜勒神庙(非洲)、库库尔坎金字塔(美洲)、法隆寺(亚 洲)、奥林匹亚遗址(欧洲)

每个学生根据书中的问题,查找最下边的 一行图片资料. (1)《掷铁饼者》、《竞技表演》是哪方面的内容?用的是什么手法? (2)阿布辛拜勒神庙建造于什么地方、什么时代、有什么特点? (3)库库尔坎金字塔的所在地、建造时间、艺术特色.说一说它和埃及金字塔有什么相同与不同之处? (4)法隆寺的建筑特点,它和中国的塔有什么相同与不同之处? 教学意图:培养学生收集信息、整理信息的能力,以及小组合作、探究的意识. 二、欣赏分析多元的世界文化遗产 1、教师讲述关于拉斯科岩画的故事. (1)这幅画表现的什么?让你联想到什么? (2)猜猜当时的人用什么工具创作的? (3)他们为什么要画这些壁画? 2、2008年8月8日在北京将要发生一件非常重要的事情,是什么?有谁知道这界奥运会是 第几届?第一届奥运会在哪里召开的?这个国家在哪个洲? (1)教师介绍希腊奥运之城. (2)请学生代表介绍查找到的关于《竞技表演》、《掷铁饼者》的资料 小结:古代的建筑、雕塑和体育已经完美的结合了,说说你还知道奥运会的那些项目?书中还有哪些建筑在欧洲? 3、学生介绍有关阿布辛拜勒神庙资料. 小结:由此我们知道建筑、雕塑和宗教也有着亲切的联系,你还知道埃及有什么建筑?他们是哪个洲的文明遗迹?说说埃及金字塔和库库尔坎金字塔有什么不同?在美洲还有什么文明遗迹,请你说说. 4、对于美洲古代文明遗迹你有什么感想? 5、法隆寺的建筑特点,它和中国的塔有什么相同与 不同之处?书中还有哪个是亚洲的建筑? 6、亚洲还有什么文明遗迹? 教学意图:

奇琴伊查库库尔坎金字塔英文介绍

The stepped pyramids, temples, columned arcades, and other stone structures of ChichénItzá were sacred to the Maya and a sophisticated urban center of their empire from A.D. 750 to 1200. Viewed as a whole, the incredible complex reveals much about the Maya and Toltec vision of the universe—which was intimately tied to what was visible in the dark night skies of the Yucatán Peninsula. The most recognizable structure here is the Temple of Kukulkan, also known as El Castillo. This glorious step pyramid demonstrates the accuracy and importance of Maya astronomy—and the heavy influence of the Toltecs, who invaded around 1000 and precipitated a merger of the two cultural traditions. The temple has 365 steps—one for each day of the year. Each of the temple’s four sides has 91 steps, and the top platform makes the 365th. Devising a 365-day calendar was just one feat of Maya science. Incredibly, twice a year on the spring and autumn equinoxes, a shadow falls on the pyramid in the shape of a serpent. As the sun sets, this shadowy snake descends the steps to eventually join a

库库尔坎金字塔

库库尔坎金字塔 库库尔坎金字塔 库库尔坎金字塔在墨西哥尤卡坦半岛北部,有座著名的古建筑称为库库尔坎金字塔,是曾经的古代玛雅人留下的文明遗址。库库尔坎在玛雅文中是带羽毛之神蛇的意思,被誉为是太阳的化身。 基本认识 地理位置 位于墨西哥大学城以南的库库尔坎(Kukulcan),是玛雅文化前古典期晚期(公元前800年——公元前200年)中部高原文化的重要文化遗址之一,“库库尔坎”的原意是“舞蹈唱歌的地方”,或表示“带有羽毛的蛇神”。 建筑结构 “库库尔坎”金字塔是我们现在看到的早期墨西哥金字塔是一座用土筑成的九层圆形祭坛,高29米 库库尔坎金字塔 ,周边各宽55米多,周长250米左右,最高一层建有一座6米高的方形坛庙,库库尔坎金字塔高约30 米,四周环绕91 级台阶,加起来一共364级台阶,再加上塔顶的羽蛇神庙,共有365阶,象征了一年中的365 天。台阶的两侧宽达1米的边墙,北边墙

下端,有一个带羽行的大蛇头石刻,蛇头高1.43米,长达1.80米,宽1.07米,蛇嘴里吐出一条大舌头,颇为独特。这座古老的建筑,在建造之前,经过了精心的几何设计,它所表达出的精确度和玄妙而充满戏剧性的效果,令后人叹为观止:每年春分和秋分两天的日落时分,北面一组台阶的边墙会在阳光照射下形成弯弯曲曲的七段等腰三角形,连同底部雕刻的蛇头,宛若一条巨蛇从塔顶向大地游动,象征着羽蛇神在春分时苏醒,爬出庙宇。每一次,这个幻像持续整整3 小时22 分,分秒不差。这个神秘景观被称为“光影蛇形”。每当“库库尔坎”金字塔出同蛇影奇观的时候,古代玛雅人就欢聚在一起,高歌起舞,庆祝这位羽毛蛇神的降临。库库尔坎金字塔,是玛雅人对其掌握的建筑几何知识的绝妙展示,而金字塔旁边的天文台,更是把这种高超的几何和天文知识表现得淋漓尽致。[1] 建造工艺 库库尔坎金字塔资料图(5张) 在没有金属工具、没有大牲畜和轮车的情况下,古代玛雅人却能够开采大量重达数十吨的石头,跋山涉水、一路艰辛地运到目的地,建成一个个雄伟的金字塔。金字塔最高的可达70米,其规模之巨大、施工难度之高,令人吃惊。古代玛雅的金字塔和古埃及的金字塔在建筑形式上有着明显的不同。埃及的金字塔的塔顶是尖的,而玛雅金字塔却是平顶,塔体呈方形,底大顶小,层层叠叠,塔顶的台上还建有庙宇;在用途上也不一样:埃及金字塔是法老的陵墓,而玛雅的金字塔除个别外,一般是用来祭祀或观察天象的。除金字塔外,玛雅人还兴建了不少功能性强,技艺高的民用建筑,主要有:房屋(包括庙宇、府邸、民居等)、公共设施(球场、广场、集市等)、基础设施(桥梁、大道、码头、堤坝、护墙等)和水利工程(水渠、水库、水井、梯田)等。 历史溯源 玛雅文化的历史

玛雅遗址的建筑历史详细介绍

玛雅遗址的建筑历史详细介绍 蒂卡尔是玛雅文明的文化和人口中心之一。这里最早的纪念碑建造于公元前四世纪。城市在玛雅古典时期——大约公元200年到公元850年左右,达到顶峰。 蒂卡尔的历史可以追溯到公元前1世纪,起先她只是个二流城邦,奉北部城邦米拉多为盟主,蒂卡尔可能从公元二世纪开始奉行与中美洲当时的大国提奥提华坎友好的政策,并取得成功使自己国力大涨,从而成为玛雅世界最强大的城邦之一。 公元292年,Balam Ajaw(传统上译为“Decorated Jaguar”,被装饰过的美洲虎)继位为蒂卡尔国王,开始了强大的蒂卡尔王朝。在一块刻有他形象的石碑上记录有公元292年7月8日的日期。这个时间也通常被历史学家当作玛雅古典文明的开始之日。 公元360年,Chak Toh Ich’ak I 美洲虎之爪一世(Jaguar Paw I)为国王之时,蒂卡尔空前强大,“美洲虎之爪一世”的弟弟“吸烟的青蛙”于公元378年1月16日征服邻邦乌夏克吞(Uaxactun),并成为乌夏克吞的君主。

美洲虎之爪一世以后的蒂卡尔国王叫做Nun Yax Ayin,(King Curl-Nose 蜷鼻王) 是一个来自提奥提华坎的贵族,于379年继位,蜷鼻王虽来自提奥提华坎,但却也是个地道的蒂卡尔国王,保持着蒂卡尔的强大与繁荣。 公元411年至公元456年,Siyah Chan K'awil II 暴风雨天空二世(Stormy Sky II) 为国王。从美洲虎之爪一世到暴风雨天空二世的一百年间是蒂卡尔历史上第一个强大的时期。 此后蒂卡尔以北的城邦卡拉克穆尔强大,蒂卡尔出现了一个衰落时期,直到公元7世纪,Hasaw Chan K’awil 阿赫卡王(双月,巧克力领主Double Moon or Lord Chocolate 682年-734年在位),蒂卡尔重新强大,打败卡拉克穆尔,使得蒂卡尔重新成为玛雅中部地区的霸主。以后是Yik’in Chan Kawil 雅克金王(734年-766年在位)和Yax Nuun Ayiin II 奇坦王(Chitam 768年-790年在位),在这一百年间是蒂卡尔第二次鼎盛时期。蒂卡尔壮丽的遗迹主要也是这三位国王在位期间筑成。 奇坦王之后,与同一时期其他玛雅城邦一样,蒂卡尔迅速衰落,已知可考的最后一位国王是Jasaw Chan K'awiil II (869年-889年在位) 在这之后,没有建造什么主要的纪念碑。一些宫

人美版六年级下册美术练习题

六年级美术练习题 一、填空1、《哪吒闹海》是一幅有民族气派的现代(壁画),画家(张仃)在画中运用了传统壁画的表现手法,又借鉴了现代装饰画的理念,在(构图)(色彩)(造型)等方面都进行了成功的探索,(构图)新颖、色彩绚丽,颇有(旋转感)和装饰意趣。 2、《拉斯科洞窟的岩画》被称为“史前的卢浮宫”,产生于1.5万年前的旧石器时代,这是人类最早的绘画。是用蕨草、羽毛等工具,木炭、矿砂等颜料画成的。书中画的是(马)。 3、墨西哥的《库库尔坎金字塔》与埃及金字塔不同,埃及金字塔外表的四个面是(平)的,顶端是(尖)的;《库库尔坎金字塔》外表呈(阶梯)形,塔顶是(平)的,是羽蛇神庙,它产生于2000多年前的玛雅文明,由9层晒台91级台阶组成。 阿布辛拜勒神庙前的拉美西斯二世雕塑始建于公元前1300年——公元前1233年。它是埃及最强大的国王拉美西斯二世时期建造的。 4、日本的《法隆寺》建于1400年前,是最古老的木建筑,它与中国传统的塔造型相近,但比中国的塔纤秀、飘逸一些,檐翼宽大,塔顶尖细。 5、奥林匹克运动会起源于公元前776年古希腊的运动竞赛,由古希腊的一个地名奥林匹亚而得名。古希腊雕塑是世界雕塑史上的一座丰碑,健美的运动员,造型高度写实,姿态优雅,容貌端正,反映古希腊人对美的追求。(掷铁饼者公元前450年、竞技表演公元前510年)哈夫拉金字塔埃及公元前2500年、巨石阵英国公元前3100-公元前1100年、毛阿伊石像智利公元700-800年、比萨斜塔意大利1173-1350年、圣瓦西里大教堂俄罗斯1561年。 6、世界第一峰是珠穆朗玛峰,海拔8844.43米,藏语中,其含义是(圣母)的意思。尼泊尔人称它是(“萨加玛塔峰”),意思是“摩天峰”。 7、《巨人之路》位于英国,它的四万根石柱,完全是(大自然)的杰作。 大堡礁位于澳大利亚东北部,由2900个珊瑚礁组成,是世界七大自然奇景之一。 自然美是一个整体,天空、大地、山峦、河流、树木……构成了和谐之美。自然美不是精致的,而是动态的,有四季、气候、生命的变化……我们可以亲身感受他们的芬芳、声音、冷暖……自然美的特征有a 自然本身的质地、材料、色彩、形状等。B 自然偏重于形式。C 自然具有联想性等。 维多利亚瀑布非洲津巴布韦,加兰巴国家公园非洲刚果民主共和国,科罗拉多大峡谷美洲美国,罗斯格拉西亚雷斯冰川国家公园莫雷罗冰川美洲阿根廷,马埃谷地自然保护区非洲塞舌尔,乌卢鲁国家公园的艾尔斯巨石大洋洲澳大利亚吴哥古迹柬埔寨亚洲、科罗拉多大峡谷美国美洲

世界著名旅游景点介绍(doc 18页)(精美教案)

世界著名旅游景点一览秘鲁印加遗址——Machu Picchu – Peru 20世纪初,人们传说在秘鲁安第斯山脉的崇山峻岭中有一座神秘的古城。西班牙人在长达300年的殖民统治期间对它一无所知,秘鲁独立后100年间也无人涉足。400多年的时光,只有翱翔的山鹰一睹古城的雄姿。它就是今天的马丘比丘印加遗址。

墨西哥玛雅古迹——Chichen Itza - Mexico 奇琴伊察玛雅城邦遗址曾是古玛雅帝国最大最繁华的城邦。遗址拉于尤卡坦半岛中部。始建于公元514年。城邦的主要古迹有:千柱广场,它曾支撑巨大的穹窿形房顶。可见此建筑物之大。武士庙及庙前的斜倚的两神石像。9层高30米的呈阶梯形的库库尔坎金字塔。以及圣井(石灰岩竖洞)和筑在高台上呈蜗形的玛雅人古天文观象台,称“蜗台”。

印度泰姬陵——Taj Mahal 泰姬陵是莫卧儿王朝第五代君主沙杰罕为宠姬泰吉·玛哈尔修筑的陵墓,整个建筑通体用白色大理石砌成,外形端庄华美,无懈可击,寝宫门窗及围屏都用白色大理石镂雕成菱形带花边的小格,墙上用翡翠、水晶、玛瑙、红绿宝石镶嵌着色彩艳丽的藤蔓花朵,光线所至,光华夺目,璀璨有如天上的星辉。几百年来,不知有多少文人墨客为泰姬陵折腰,写下无数

动人的诗篇。但是当你真正站在她面前时,才会深深体会到,泰姬陵之美,原来是任何文字都无法书写的。绝代有佳人,遗世而独立。俏立于亚穆纳河畔那个洁白晶莹、玲珑剔透的身 影,秀眉微蹙,若有所思。 好望角——Cape Town 非洲西南端的岬角。1488年葡萄牙航海家迪亚士在寻找欧洲通向印度的航路时到此,因多风暴,取名风暴角。但从此通往富庶的东方航道有望,故改称好望角。苏伊士运河通航前,来往于亚欧之间的船舶都经过好望角。现特大油轮无法进入苏伊士运河,仍需取此道航行。好望角多暴风雨,海浪汹涌,位于来自印度洋的温暖的莫桑比克厄加勒斯洋流和来自南极洲水域

人美版六年级美术下册《追寻文明的足迹》

《追寻文明的足迹》创新教案 学习目标: 1能够收集世界文化遗产的相关资料,初步认识、了解自己感兴趣的文化遗产。 2通过本课学习,认识到文化遗产是人类共同的财富,增强保护文化遗产的意识及方法。 3学习了解各个国家不同时期的文明足迹,尊重不同文化背景下的文化现象,接纳多元文化,拓展国际视野。 教学重、难点: 重点:1通过资料阅读、课上交流等途径,认识7处~10处世界文化遗产,较细致地了解2处~3处世界文化遗产;2能够从文化遗产的历史背景、审美价值、社会影响、经典特征等方面,介绍2处~3处世界文化遗产。 难点:有步骤、有层次地介绍2处~3处文化遗产。 课前准备: 教师:文化遗产高清组图,视频资料等; 学生:搜集感兴趣的文化遗产资料(格式不限)。 教学过程: 一、我们一起来了解一下奥运会的发祥地——希腊。 1、欣赏图片,了解奥林匹亚遗址及有关奥运会知识。 希腊属于欧洲,首都是雅典。奥林匹亚是奥林匹克运动的发祥地。这里气候宜人,景色优美,到处都是橄榄树、桂树和柏树。古奥运会起源于公元前776年,终止于公元394年,共举行293届,绵延1170年。1896年4月6日至15日,第一届现代奥运会终于在雅典隆重举行。奥林匹克运动从此开始了一个崭

新的纪元。现代奥林匹克运动会虽然改在各国轮流举行,但仍然沿用这一名称,并且在这里点燃各届奥运会的圣火。奥林匹亚有世界上最古老的运动场。 2、欣赏《掷铁饼者》,了解相关内容。 在古代奥运会上获一次冠军者,可以在运动场墙壁上镌刻自己的名字;三次夺冠,雕塑家就会找上门来,为你塑像。我们看到的《掷铁饼者》就是这样一尊雕塑,它属于圆雕作品。大家看到这尊雕塑有什么感受? 刻画的是一名强健的男子掷铁饼的过程。在作品中创造了一个出色的健美而又富于力感的运动员形象。 雕塑选择的是将铁饼摆到最高点、即将抛出的一刹那,有着强烈的“引而不发”的吸引力。虽然是一件静止的雕塑,但艺术家把握住了从一种状态转换到另一种状态的关键环节,达到了使观众心理上获得“运动感”的效果,成为后世艺术创作的典范。这尊雕像被认为是“空间中凝固的永恒”,直到今天仍然是代表体育运动的最佳标志。 此雕塑由米隆创作于约公元前450年,被公认为体育运动和健美体魄的象征。这是雕刻家从实际生活中观察得来的真实形象。我们看到的大理石雕复制品,高约152厘米,罗马国立博物馆、梵蒂冈博物馆、特尔梅博物馆均有收藏,原作为青铜材质。 3、欣赏《竞技表演》。 《竞技表演》也是一座以表现奥林匹克运动为内容的雕塑作品,它属于浮雕。从图片上大家可以看出哪些内容?(一些运动员的动作,各种运动项目。)从这些人物的表现上你感觉这些运动员身体素质怎样?(非常健美,有力量的感觉。)这座浮雕通过表现竞技场上的运动员们在精神上与肉体上的坚强有力和美感,向我们传达出生命的健美、庄重与和谐,给我们带来美的享受。 二、了解其它世界文化遗产。

相关文档
相关文档 最新文档