文档库 最新最全的文档下载
当前位置:文档库 › 第三章第四节二次函数

第三章第四节二次函数

第三章第四节二次函数
第三章第四节二次函数

第三章函数

第四节二次根式

玩转河南8年中招真题(2008~2015年) 命题点1 二次函数的图象与性质(高频)

1. (2013河南8题3分)在二次函数y=-x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()

A. x<1

B. x>1

C. x<-1

D. x>-1

2. (2011河南11题3分)点A(2,y1)、B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1________y2(填“>”、“<”或“=”).

3. (2014河南12题3分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2,则线段AB的长为__________.数图象与性质

4. (2015河南12题3分)已知点A(4,y1),B(2,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是______________.

【拓展猜押1】已知点A(a-2b,2-4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为________.

【中招变式1】(2013河南8题)已知二次函数y=-x2+2bx+1,当x<1时,y的值随x 值的增大而增大,则参数b的取值范围是()

A. b≥-1

B. b≤-1

C. b≥1

D. b≤1

【中招变式2】(2011河南11题)点A(-2,y1)、B(2,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1____y2(填“>”、“<”或“=”).

【中招变式3】(2014河南12题)已知抛物线y=x2+bx+c与x轴交于A、B两点,与y 轴交于点C,若A点的坐标为(-2,0),抛物线的对称轴为直线x=2,则△ABC的面积为

________.

命题点2 二次函数解析式的确定(高频)

(2012河南5题3分)在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线的解析式是()

A. y=(x+2)2+2

B. y=(x-2)2-2

C. y=(x-2)2+2

D. y=(x+2)2-2

【拓展猜押2】若二次函数过点(0,1),且与x轴交于点A(3,0),B(-1,0),则该二次函数的解析式为____________.

命题点3 二次函数与一元二次方程之间的关系(近8年未考查)

命题点4 二次函数与几何图形综合题(高频)

1. (2015河南23题11分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C 为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC 于点F.点D,E的坐标分别为(0,6),(-4,0),连接PD,PE,DE.

(1)请直接写出抛物线的解析式;

(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值.进而猜想:对于任意一点P,PD与PF的差为定值.请你判断该猜想是否正确,并说明理由;

(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.

2. (2014河南23题11分)如图,抛物线y =-x 2+bx +c 与x 轴交于A (-1,0),B (5,0)

两点,直线y =-3

4x +3与y 轴交于点C ,与x 轴交于点D .点P 是x 轴上方的抛物线上一动

点,过点P 作PF ⊥x 轴于点F ,交直线CD 于点E .设点P 的横坐标为m .

(1)求抛物线的解析式; (2)若PE =5EF ,求m 的值;

(3)若点E ′是点E 关于直线PC 的对称点,是否存在点P ,使点E ′落在y 轴上?若存在,请直接写出....

相应的点P 的坐标;若不存在,请说明理由.

第2题图

,【拓展猜押3】如图,已知抛物线y =ax 2+bx +3经过A (-3,0),B (1,0)两点,与y 轴交于点C ,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .

(1)求该抛物线的解析式;

(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;

(3)若E 是线段AD 上的一个动点(E 与A ,D 不重合),过E 点作平行于y 轴的直线交抛物线于F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S .

①求S 与m 的函数关系式;

②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标;若不存在,请说明理由.

拓展猜押3题图

3. (2010河南23题11分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,

0)三点.

(1)求抛物线的解析式;

(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S 关于m的函数关系式,并求出S的最大值;

(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

第3题图

4. (2013河南23题11分)如图,抛物线y =-x 2+bx +c 与直线y =1

2x +2交于C ,D 两

点,其中点C 在y 轴上,点D 的坐标为(3,7

2).点P 是y 轴右侧的抛物线上一动点,过点P

作PE ⊥x 轴于点E ,交CD 于点F .

(1)求抛物线的解析式;

(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由;

(3)若存在点P ,使∠PCF =45°,请直接写出....

相应的点P 的坐标.

第4题图

命题点5 二次函数的实际应用(近8年未考查)

【答案】

命题点1 二次函数的图象与性质

第1题解图

1. A 【解析】本题是根据二次函数的增减性求x 的取值范围,通常有两种方法:一是画出函数图象;二是根据函数的性质直接解答.在y =-x 2+2x +1中,因为a =-1<0,对

称轴为直线x = -b 2a =-2

2×(-1)=1,如解图,若y 随x 的增大而增大,则是对称轴左

侧的图象,所以x <1.

2. < 【解析】分别把x 1=2,x 2=3代入到函数解析式y =x 2-2x +1中,求出y 1=1,y 2=4,所以y 1

3. 8 【解析】本题考查抛物线图象及性质,∵抛物线是轴对称图形,∴与x 轴的交点A 、B 关于对称轴x =2对称,又∵点A (-2,0)到对称轴的距离为4,∴点B 到对称轴的距离也为4,故点B 的坐标为(6,0),所以线段AB =8.

4. y 2<y 1<y 3 【解析】本题考查二次函数图象及其性质.

方法一:∵ A (4,y 1)、B (2,y 2)、C (-2,y 3)在抛物线y =(x -2)2-1上,∴y 1=3,y 2

=5-42,y 3=15.∵5-42<3<15,∴y 2<y 1<y 3.

方法二:设点A 、B 、C 三点到抛物线对称轴的距离分别为d 1、d 2、d 3,∵y =(x -2)2-1的对称轴为直线x =2,∴d 1=2,d 2=2-2,d 3=4,∵2-2<2<4,且a =1>0,∴y 2<y 1<y 3.

方法三(最优解):∵y =(x -2)2-1,∴对称轴为直线x =2,∴点A (4, y 1)关于x =2的对称点是(0,y 1),∵-2<0<2且a =1>0,∴y 2<y 1<y 3.

命题点2 二次函数解析式的确定

B 【解析】根据平移的特点,有y =(x -2)2-4+2=(x -2)2-2.

命题点3 二次函数与一元二次方程之间的关系 命题点4 二次函数与几何图形综合题

1. 解:(1)抛物线的解析式为:y =-1

8

x 2+8.(3分)

【解法提示】由题意设抛物线解析式为y =ax 2+c ,∵正方形OABC 的边长为8, ∴点A (-8,0)、C (0,8),

∴?????0=a ·(-8)2+c 8=c ,解得??

???a =-1

8c =8

,抛物线解析式为y =-1

8x 2+8.

(2)对于任意一点P ,PD 与PF 的差为定值,这个猜想是正确的. 理由如下:

设P (x ,-18x 2+8),则PF =8-(-18x 2+8)=1

8

x 2.(4分)

第1题解图

过点P 作PM ⊥y 轴于点M ,则

PD 2=PM 2+DM 2=(-x )2+[6-(-18x 2+8)]2=164x 4+12x 2+4=(1

8

x 2+2)2,

∴PD =1

8

x 2+2,(6分)

∴P D -PF =18x 2+2-1

8x 2=2,故猜想正确.(7分)

(3)好点共11个.(9分)

∵当点P 运动时,DE 的大小不变,∴PE 与PD 的和最小时,△PDE 的周长最小, ∵PD -PF =2,∴PD =PF +2,∴PE +PD =PE +PF +2, ∴当P ,E ,F 三点共线时,PE +PF 最小,

此时,点P ,E 的横坐标为-4,将x =-4代入y =-1

8

x 2+8,得y =6,

∴P 点坐标为(-4,6),此时△PDE 周长最小,且△PDE 的面积为12,点P 恰为“好点”, ∴△PDE 周长最小时点P 的坐标为(-4,6).(11分) 【解法提示】如解图,过P 作PN ⊥AO 于点N ,由题知,

S △PDE =S 梯形PNOD -S △PNE -S △DOE =12(PN +OD )·ON -12PN ·NE -12DO ·OE =12×(-18x 2+8+6)·(-x )-12×(-18x 2+8)(-4-x )-12·6·4 =-14x 2-3x +4=-1

4

(x +6)2+13

由于-8≤x ≤0,可得4≤S ≤13,所以S 的整数值有10个.由图象可知,当S =12时,对应的“好点”有2个,所以“好点”共有11个.

2. 解:(1)∵抛物线y =-x 2+bx +c 与x 轴交于A (-1,0),B (5,0)两点.

∴?????0=-(-1)2

-b +c 0=-52+5b +c ,∴?????b =4c =5, ∴抛物线的解析式为y =-x 2+4x +5.(5分)

(2)∵点P 的横坐标为m ,∴P (m ,-m 2+4m +5),E (m ,-3

4m +3),F (m ,0).

∵点P 在x 轴上方,要使PE =5EF ,点P 应在y 轴右侧, ∴0

∴PE =-m 2+4m +5-(-34m +3)=-m 2+19

4m +2.(4分)

分两种情况讨论:

①当点E 在点F 上方时,EF =-3

4

m +3.

∵PE =5EF ,∴-m 2+194m +2=5(-3

4

m +3),

即2m 2-17m +26=0,解得m 1=2,m 2=13

2

(舍去);(6分)

②当点E 在点F 下方时,EF =3

4

m -3.

∵PE =5EF ,∴-m 2+194m +2=5(3

4

m -3),

即m 2-m -17=0,解得m 3=

1+692,m 4=1-69

2

(舍去);

∴m 为2或1+69

2.(8分) 第2题解图

(3)点P 的坐标为P 1(-12,11

4

),P 2(4,5),P 3(3-11,211-3).(11分)

【解法提示】假设存在,作出示意图如解图, ∵E 和E ′关于直线PC 对称,∴∠E ′CP =∠ECP . 又∵PE ∥y 轴,∴∠EPC =∠E ′CP =∠PCE ,∴PE =EC . 又∵CE =CE ′,∴四边形PECE ′为菱形.

过点E 作E M ⊥y 轴于点M ,

∴△CME ∽△COD ,∴OD EM =CD CE ,∴CE =|5

4m |.

∵PE =CE ,∴-m 2+194m +2=54m 或-m 2+194m +2=-5

4

m (-1

解得m 1=-1

2

,m 2=4,m 3=3-11,m 4=3+11(舍去),

∴可求得点P 的坐标为P 1(-12,11

4),P 2(4,5),P 3(3-11,211-3).

3. 解:(1)设抛物线的解析式为y =ax 2+bx +c (a ≠0),则有

????

?16a -4b +c =0c =-44a +2b +c =0

,解得?

????a =1

2b =1

c =-4,

∴抛物线的解析式为y =1

2

x 2+x -4.(3分)

(2)过点M 作MD ⊥x 轴于点D .设M 点的坐标为(m ,n ),

则AD =m +4,MD =-n ,n =1

2

m 2+m -4,

第3题解图

∴S =S △AMD +S 梯形DMBO -S △ABO =12(m +4)(-n )+12(-n +4)(-m )-12×4×4 =-2n -2m -8

=-2(1

2m 2+m -4)-2m -8

=-m 2-4m (-4

∴S 最大值=4ac -b 2

4a

=4.(7分)

(3)满足题意的Q 点的坐标有四个,分别是:(-4,4),(4,-4),(-2+25,2-25),(-2-25,2+25).(11分)

4. 解:(1)如解图①,

第4题解图①

直线y =12x +2与y 轴相交的点C 的坐标是(0,2),由于抛物线与直线y =1

2

x +2交于C 、

D 两点,把C 、D 两点坐标代入抛物线解析式,得出方程组?

???

?c =2-32

+3b +c =72, 解得?????b =72

c =2

∴抛物线的解析式是y =-x 2+7

2

x +2.(3分)

(2)当m 的值为1,2或3+17

2时,以O 、C 、P 、F 为顶点的四边形是平行四边形.(分)

理由如下:

∵PF ∥OC ,且以O 、C 、P 、F 为顶点的四边形是平行四边形,

∴PF =OC =2,

∴将直线y =1

2x +2沿y 轴向上平移2个单位之后得到的直线,与抛物线y 轴右侧的交

点,即为所求之交点.

第4题解图②

由解图②可以直观地看出,这样的交点有3个.

将直线y =12x +2沿y 轴向上平移2个单位,得到直线y =1

2

x +4,

联立???y =1

2x +4y =-x 2

+7

2x +2

解得x 1=1,x 2=2,∴m 1=1,m 2=2;(7分)

将直线y =12x +2沿y 轴向下平移2个单位,得到直线y =1

2x ,

联立?

??

y =12

x y =-x 2+72

x +2,

解得x 3=3+172,x 4=3-17

2时(在y 轴左侧,不合题意,舍去),

∴m 3=3+7

2

.

当m 的值为1,2或3+17

2

时,以O 、C 、P 、F 为顶点的四边形是平行四边形.(9分)

(3)符合条件的点P 的坐标为(12,72)或(236,13

18

).(11分)

【解法提示】设点P 的横坐标为m ,则P (m ,-m 2+72m +2),F (m ,1

2

m +2).

第4题解图③

如解图③所示,过点C 作CM ⊥PE 于点M ,则CM =m ,EM =2,

∴FM =EF -EM =1

2m ,

∴tan ∠CFM =2. 在Rt △CFM 中, 由勾股定理得:CF =

52

m . 过点P 作PN ⊥CD 于点N ,则PN =FN ·tan ∠PFN =FN ·tan ∠CFM =2FN . ∵∠PCF =45°,∴PN =CN ,

而PN =2FN ,∴FN =CF =5

2

m ,PN =2FN =5m ,

在Rt △PFN 中,由勾股定理得:PF =FN 2+PN 2=5

2

m .

∵PF =y p -y F =(-m 2+72m +2)-(1

2

m +2)=-m 2+3m ,

∴-m 2+3m =52m ,整理得:m 2-1

2

m =0,

解得m =0(舍去)或m =1

2

∴P (12,72

);

同理求得,另一点为P (236,13

18

).

∴符合条件的点P 的坐标为(12,72)或(236,13

18

).

命题点5 二次函数的实际应用

【拓展猜押1】(0,10) 【解析】将点A 的坐标代入二次函数的解析式中,则有2-4ab =(a -2b )2+4(a -2b )+10,∴(a +2)2+(2b -2)2=0,∴由两个非负数和为0,则每个非负数为0,得a +2=0,2b -2=0,解得a =-2,b =1,所以A (-4,10),抛物线解析式化为顶点式为y =(x +2)2+6,所以抛物线的对称轴为x =-2,则点A (-4,10)关于直线x =-2的对称点的坐标可设为(x 0,10),∴x 0+(-4)

2=-2,∴x 0=0,则所求的对称点的坐标为

(0,10).

【中招变式1】C 【解析】∵二次函数y =-x 2+2bx +1中a =-1<0,∴抛物线的开口向下,在对称轴的左侧,y 随x 的增大而增大,根据题意可得抛物线的对称轴为x =-

2b

2×(-1)

=b ,当x <1时,y 的值随x 值的增大而增大,∴b ≥1.

【中招变式2】> 【解析】二次函数y =x 2-2x +1的对称轴为x =-b

2a =--22=1,

开口向上,点A (-2,y 1)在对称轴左侧,距离对称轴3个单位,点B (2,y 2)在对称轴右侧,距离对称轴1个单位,根据二次函数开口向上,点在对称轴两侧,与对称轴距离越大的函数值越大,故y 1>y 2.

【中招变式3】48 【解析】根据题意可得抛物线的对称轴为x =-b

2=2,∴b =-4,

根据抛物线的对称性可得点B 的坐标为(6,0),∴AB =6-(-2)=8,将b =-4,A (-2,0)代入y =x 2+bx +c 可得0=(-2)2+(-4)×(-2)+c ,解得c =-12,∴点C 的坐标为(0,-

12),∴OC =12,∴S △ABC =12AB ·OC =1

2×8×12=48.

【拓展猜押2】y =-13x 2+2

3

x +1 【解析】本题考查了利用待定系数法求二次函数解

析式,设解析式为y =ax 2+bx +c ,由题意,将点A (3,0),B (-1,0),(0,1)代入解析式,

联立?????9a +3b +c =0a -b +c =0,c =1解得a =-13,b =23,c =1,∴该二次函数的解析式为:y =-13x 2+23

x +

1.

【拓展猜押3】解:(1)将A 、B 点分别代入抛物线解析式得:?

????9a -3b +3=0a +b +3=0,

解得:?

????a =-1b =-2,

∴抛物线的解析式为:y =-x 2-2x +3;

(2)∵y =-x 2-2x +3,令x =0得y =3,∴C (0,3).

拓展猜押3题解图①

∵△PBC 的周长为:PB +PC +BC ,BC 是定值, ∴当PB +PC 最小时,△PBC 的周长最小.

如解图①,点A 、B 关于对称轴l 对称,连接AC 交l 于点P ,则点P 为所求的点. ∵AP =BP ,

∴△PBC 周长的最小值是:PB +PC +BC =AC +BC . ∵A (-3,0),B (1,0),C (0,3), ∴AC =32,BC =10.

∴△PBC 周长的最小值是:32+10. (3)如解图②,

拓展猜押3题解图②

①∵抛物线=-x 2-2x +3的顶点D 坐标为(-1,4),A (-3,0), 设直线AD 解析式y =kx +b ,

将A 、D 点分别代入得:?????k =2

b =6,

∴直线AD 的解析式为:y =2x +6. ∵点E 的横坐标为m ,

∴E (m ,2m +6),F (m ,-m 2-2m +3), ∴EF =-m 2-2m +3-(2m +6)=-m 2-4m -3. ∴S =S △AEF +S △DEF

=12EF ·AG +12EF ·GH =12EF ·AH

=12×(-m 2-4m -3)×2

=-m 2-4m -3;

②S =-m 2-4m -3=-(m +2)2+1,

∴当m =-2时,S 取最大值,最大值为1.此时点E 的坐标为(-2,2).

二次函数和三角形面积的综合

二次函数与三角形面积的综合 寻找类 1、重点:中考压轴题的重点在于寻找分析问题,解决问题的思路和方法。能应对这部分题 的关键需要熟练几部分知识点:(1)二次函数与一次函数,反比例函数的解析式(2)勾股定理(3)四边形(4)相似三角形和三角形全等(5)锐角三角函数(6)轴对称和中心对称(7)求交点的方法(8)知识的综合运用 2、难点:寻找联系是这部分内容的一个关键所在,也是一个难点。尤其是遇到二次函数与 三角形面积的综合题的解题思路。运用面积求坐标等等的合理运用,以及运用的重要因素在哪里? 3、易错点:面积中涉及求面积的方法,坐标漏找或错找,坐标与线段长度之间的联系,坐 标在不在二次函数的图像上。这些都是在考试中容易失分的地方。 4、切入点:例如:根据已有条件求坐标,首先要想到平面直角坐标系与锐角三角函数的联 系,尤其是正切的运用。这样直观的可以求出坐标(前提必须建立直角三角形),如果不是直角三角形可以想法构建直角三角形,这是求坐标的最好方法,此方法不通的情况下可以运用勾股定理进行求解,很少运用相似求。掌握了求解方法再做题的时候就知道如何下手了。而次部分求面积的时候要先找到点的坐标的具体位置以及如何通过面积求坐标。 5.求面积常用的方法 a.直接法b。简单的组合c。面积不变同底等高或等底等高的转换 d.相似 e.三角函数f。找面积的最大最小值利用二次函数的性质 (1)直接法若题已经给出或能由已知条件推出个边的长度并且通过坐标能找到对应的

的高,那么三角形的面积能直接用公式算出来。 此题中的三角形的面积就能直接求出。 (2)通过简单的重新组合就能求出面积。 第6题 (2009年贵州安顺市)27、(本题满分12分) 如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。

2019中考数学专题汇编全集 二次函数与特殊三角形判定

第24题 二次函数综合题 类型1 二次函数与特殊三角形判定 1. 已知二次函数y =ax 2+bx -3a (a >0)经过点A (-1,0)、C (0,3),与x 轴交于另一点B ,抛物线的顶点为D . (1)求此二次函数解析式; (2)连接DC 、BC 、DB ,求证:△BCD 是直角三角形; (3)在对称轴右侧的抛物线上是否存在点P ,使得△PDC 为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由. 第1题图 (1)解:∵二次函数y =ax 2+bx -3a 的图象经过点A (-1,0)、C (0, 3), ∴根据题意,得?????a -b -3a =0-3a =3 , 解得?????a =-1b =2 , ∴抛物线的解析式为y =-x 2+2x +3; (2)证明:由y =-x 2+2x +3=-(x -1)2+4得,点D 的坐标为(1,4),点B 的坐标为(3,0), 如解图,过点D 作DE ⊥x 轴于点E ,过点C 作CF ⊥DE 于点F , ∵D (1,4),B (3,0),C (0,3),

∴OC =OB =3,DE =4,BE =2,CF =DF =1, ∴CD 2=CF 2+DF 2=2,BC 2=OC 2+OB 2=18,BD 2=DE 2+BE 2=20, ∴CD 2+BC 2=BD 2, ∴△BCD 是直角三角形; 第1题解图 (3)解:存在. 抛物线y =-x 2+2x +3对称轴为直线x =1. i )如解图,若以CD 为底边,则P 1D =P 1C , 设点P 1的坐标为(x ,y ),根据勾股定理可得P 1C 2=x 2+(3-y )2,P 1D 2=(x -1)2+(4-y )2, ∴x 2+(3-y )2=(x -1)2+(4-y )2, 即y =4-x . 又∵P 1(x ,y )在抛物线y =-x 2+2x +3上, ∴4-x =-x 2+2x +3, 即x 2-3x +1=0, 解得x 1=3+52,x 2=3-52<1(舍去), ∴x =3+52,

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

二次函数综合(动点与三角形)问题方法与解析

二次函数综合(动点与三角形)问题 一、知识准备: 抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常见的基本形式。 (1)抛物线上的点能否构成等腰三角形; (2)抛物线上的点能否构成直角三角形; (3)抛物线上的点能否构成相似三角形; 解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。 二、例题精析 ㈠【抛物线上的点能否构成等腰三角形】 例一.(2013?地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c 经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)求△ABC的面积; (3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标. 分析:(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式; (2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算; (3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论, ①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案. 解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点, ∴可得A(1,0),B(0,﹣3), 把A、B两点的坐标分别代入y=x2+bx+c得:,

解得:. ∴抛物线解析式为:y=x2+2x﹣3. (2)令y=0得:0=x2+2x﹣3, 解得:x1=1,x2=﹣3, 则C点坐标为:(﹣3,0),AC=4, 故可得S△ABC=AC×OB=×4×3=6. (3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意: 讨论: ①当MA=AB时,, 解得:, ∴M1(﹣1,),M2(﹣1,﹣); ②当MB=BA时,, 解得:M3=0,M4=﹣6, ∴M3(﹣1,0),M4(﹣1,﹣6), ③当MB=MA时,, 解得:m=﹣1, ∴M5(﹣1,﹣1), 答:共存在五个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)使△ABM为等腰三角形. 点评:本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解. ㈡【抛物线上的点能否构成直角三角形】 例二.(2013)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c 的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.

二次函数压轴题专题及答案

2016年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M 的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m 的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.

(完整版)初中数学二次函数综合题及答案

二次函数题 选择题: 1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y= 2 1 x 2 -6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则 c b a + =c a b + =b a c + 的值是( ) A -1 B 1 C 21 D -2 1 8、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( ) A B C D 二填空题: 13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。 16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c =-2的根为————————————。 17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=x 2 +bx+c ,其图象对称轴为直线x=1,且经过点(2,﹣). (1)求此二次函数的解析式. (2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积. 1 —1 0 x y y x -1 x y y x y x y

二次函数与三角形

二次函数与三角形 抛物线与三角形的结合是抛物线与平面几何结合生成综合性问题的一种重要形式,这类问题以抛物线为背景,探讨是否存在一些点,使其能构成某些特殊图形,有以下常见的形式:(1)抛物线上的点能否构成特殊的线段; (2)抛物线上的点能否构成特殊的角; (3)抛物线上的点能否构成特殊三角形; (4)抛物线上的点能否构成全等三角形、相似三角形; 这类问题把抛物线性质和平面图形性质有机结合,需综合运用待定系数法、数形结合、分类讨论等思想方法。 1、如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D. (1)求抛物线的解析式; (2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标; (3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t 为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

2、如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=x2+bx+c经过A、C两点,与x轴的另一个交点是点D,连接 BD. (1)求抛物线的解析式; (2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标; (3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值. 3、已知函数2 3 2 2 y kx x =-+(k是常数)

二次函数和三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P( x1,y),Q(x2,y) x 1x 2 x 2 (1) 线段对称轴是直线 (2)AB 两点之间距离公式:PQ(x1x2 ) 2( y1 y2 )2 中点公式:已知两点P x 1 , y 1 x1 x 2 , y 1y2 ,Q x2 ,y 2,则线段 PQ的中点 M为22。 Q P G O 2 、两直线的解析式为y k 1 x b 1 与y k 2 x b2 如果这两天两直线互相垂直,则有k1k21 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1L2 :y=k2x+b2 (1)当 k1=k2, b1≠b2,L1∥ L2 (2)当 k1≠ k2,,L1 与 L2 相交 (3)K1×k2= -1时,L1 与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于 45°。判定: 具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三 角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。

判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是 60°的等腰三角形是等 边三角形。 总结:( 1)已知 A、B 两点,通过“两圆一线”可以找到所有满足条件的等腰三角形,要求 的点(不与 A、B 点重合)即在两圆上以及两圆的公共弦上 (2)已知 A、B 两点,通过“两线一圆” 可以找到所有满足条件的直角三角形,要求的点(不与A、B 点重合)即在圆上以及在两条与直径 AB垂直的直线上。 (二)关于等腰三角形找点(作点)和求点的不同, 1、等腰三角形找点(作点)方法:以已知边为边长,作等腰三角形,运用两园一线法,在图 上找出存在点的个数,只找不求。 2、等腰三角形求点方法:以已知边为边长,在抛物线或坐标轴或对称轴上找点,与已知点构 成等腰三角形,先设所求点的坐标,然后根据两点间的距离公式求出三点间的线段长度,然后分 顶点进行讨论, 如:已知两点 A、B,在抛物线上求一点 C,使得三角形 ABC 为等腰三角形 解法:这是求点法:先运用两点间的距离公式分别求出线段AB BC AC的长度, 第二步,作假设,(1)以点 A 为顶点的两条腰相等,即AB=AC(2)以点B为顶点的两条腰相等,即 BA=BC ( 3)以点 C为顶点的两条腰相等,即CA=CB 第三步,根据以上等量关系,求出所求点的坐标 第四步进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。 如:已知两点 A、 B,在抛物线上求一点C,使得三角形 ABC 为等腰三角形 解法:这是求点法:先运用两点间的距离公式分别求出线段AB BC AC的长度, 第二步,作假设,(1)以点 A 为顶点的两条腰相等,即 AB=AC (2)以点 B 为顶点的两条腰相等,即 BA=BC (3)以点 C 为顶点的两条腰相等,即CA=CB 第三步,根据以上等量关系,求出所求点的坐标 第四步,进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。 (三)关于直角三角形找点和求点的方法 1、直角三角形找点(作点)方法:以已知边为边长,作直角三角形,运用两线一园法,在图 上找出存在点的个数,只找不求。所谓的两线就是指以已知边为直角边,过已知边的两个端点分 别作垂线与抛物线或坐标轴或对称轴的交点,就是所求的点;一圆就是以已知边为直径,以已知 边的中点作圆,与抛物线或坐标轴或对称轴的交点即为所求的点。 2、具体方法 ( 1) k1 k21; (2)三角形全等(注意寻找特殊角,如 30°、 60°、 45°、 90 °) (3)三角形相似;经常利用一线三等角模型 (4)勾股定理; 当题目中出现了特殊角时,优先考虑全等法三、二 次函数的应用:

2020年初三数学二次函数经典练习全集

1.一跳水运动员从米高台上跳下,他的高度h(单位:米)与所用的时间t(单位:秒)的关系为h=-5(t-2)(t+1),你能帮助该运动员计算一下他跳起来后多长时间达到最大高度?最大高度是多 少米? 2.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2 )与长x 之间的函数关系式,并指出自变量的取值范围. 3.已知二次函数y=ax 2 +bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式. 4.求经过A(0,-1)、B(-1,2),C(1,-2)三点且对称轴平行于y 轴的抛物线的解析式. 5.已知二次函数为x =4时有最小值-3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式. 6. 已知抛物线经过点(-1,1)和点(2,1)且与x 轴相切. (1)求二次函数的解析式; (2)当x 在什么范围时,y 随x 的增大而增大; (3)当x 在什么范围时,y 随x 的增大而减小. 7.已知122 12 ++-=x x y (1)把它配方成y =a(x-h)2 +k 形式; (2)写出它的开口方向、顶点M 的坐标、对称轴方程和最值; (3)求出图象与y 轴、x 轴的交点坐标; (4)作出函数图象; (5)x 取什么值时y >0,y <0; (6)设图象交x 轴于A ,B 两点,求△AMB 面积. 8.在长20cm ,宽15cm 的矩形木板的四角上各锯掉一个边长为xcm 的正方形,写出余下木 板的面积y(cm 2 )与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围. 9.已知二次函数y=4x 2 +5x +1,求当y=0时的x 的值. 10.已知二次函数y=x 2 -kx-15,当x=5时,y=0,求k . 12.已知二次函数y=ax 2+bx +c 中,当x=0时,y=2;当x=1时,y=1;当x=2时,y=-4,试求a 、b 、c 的值. 13.有一个半径为R 的圆的内接等腰梯形,其下底是圆的直径. (1)写出周长y 与腰长x 的函数关系及自变量x 的范围; (2)腰长为何值时周长最大,最大值是多少? 14.二次函数的图象经过()()()4,2,4,0,0,4--C B A 三点: ① 求这个函数的解析式 ② 求函数图顶点的坐标 ③ 求抛物线与坐标轴的交点围成的三角形的面积。 15.如图,抛物线y=x 2 +bx+c 与x 轴的负半轴相交于A 、B 两点,与y 轴的正半轴相交于C 点,与双曲线y= x 6 的一个交点是(1,m),且OA=OC.求抛物线的解析式. 16.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P 从点O 开始沿OA 边向点A 以l 厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以l 厘米,秒的速度移动.如果P 、Q 同时出发,用t(秒)表示移动的时间(0≤t≤6),那么 (1)设△POQ 的面积为y ,求y 关于t 的函数解析式; (2)当△POQ 的面积最大时,将△POQ 沿直线PQ 翻折后得到△PCQ,试判断点C 是否落在直线AB 上,并说明理由; (3)当t 为何值时,△POQ 与△AOB 相似. 17、水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.

人教版初中数学二次函数解析

人教版初中数学二次函数解析 一、选择题 1.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,﹣2)都是“整点”.抛物线y =mx 2﹣4mx +4m ﹣2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m <2 【答案】B 【解析】 【分析】 画出图象,利用图象可得m 的取值范围 【详解】 ∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0, ∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2. 由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意. ①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2. 由y =0得x 2﹣4x +2=0.解得12120.622 3.42 x x ==- ≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意. 则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意. ∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】 答案图1(m =1时) 答案图2( m =时) ②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意. 将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12 .

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

初中数学二次函数课件及练习题

第二课时 一、教学目标 1. 使学生会用描点法画出二次函数k h x a y +-=2 )(的图像; 2. 使学生知道抛物线k h x a y +-=2 )(的对称轴与顶点坐标; 3.通过本节的学习,继续培养学生的观察、分析、归纳、总结的能力; 4.通过本节的教学,继续向学生进行数形结合的数学思想方法的教育,同时向学生渗透事物间互相联系、以及运动、变化的辩证唯物主义思想; 5.通过本节课的研究,充分理解并认识到二次函数图像可运动变化的和谐美,通过数学思维的审美活动,提高对数学美的追求。 二、教学重点 会画形如k h x a y +-=2 )(的二次函数的图像,并能指出图像的开口方向、对称轴及顶点坐标。 三、教学难点:确定形如 k h x a y +-=2 )(的二次函数的顶点坐标和对称轴。 4.解决办法: 四、教具准备 三角板或投影片 1.教师出示投影片,复习2 2 2 )(,,h x a y k ax y ax y -=+==。 2.请学生动手画1)1(2 1 2-+- =x y 的图像,正好复习图像的画法,完成表格。 3.小结k h x a y +-=2 )(的性质??? ?? ??平移顶点坐标对称轴开口方向 4.练习 五、教学过程 提问:1.前几节课,我们都学习了形如什么样的二次函数的图像? 答:形如2 2 2 )(,h x a y k ax y ax y -=+==和。(板书) 2.这节课我们将来学习一种更复杂的二次函数的图像及其相关问题,你能先猜测一下

我们将学习形如什么样的二次函数的问题吗? 由学生参考上面给出的三个类型,较容易得到:讨论形如k h x a y +-=2 )(的二次函数的有关问题.(板书) 一、复习引入 首先,我们先来复习一下前面学习的一些有关知识.(出示幻灯) 请你在同一直角坐标系内,画出函数222)1(2 1 ,121,21+-=--=-=x y x y x y 的图像,并指出它们的开口方向,对称轴及顶点坐标. 这里之所以加上画函数2)1(2 1 +- =x y 的图像, 是为了使最后通过图像的观察能更全面一些,也更直观一些,可以同时给出图像先沿y 轴,再沿x 轴移动的方式,也可以给出图像 先沿x 轴再沿y 轴移动的方式,使这部分知识能更全面,知识与知识之间的联系能更清晰、 更具体. 画这三个函数图像,可由学生在同一表中列值,但是要根据各自的不同特点取自变量x 的值,以便于学生进行观察.教师可事先准备好表格和画有直角坐标系的小黑板,由一名同 学上黑板完成,其他同学在练习本上完成,待同学们基本做完之后加以总结,然后再找三名 同学,分别指出这三个图像的开口方向、对称轴及顶点坐标,填入事先准备好的表格中. 然后提问:你能否在这个直角坐标系中,再画出函数1)1(2 1 2-+- =x y 的图像? 由于前面几节课我们已经画了不少二次函数的图像,学生对画图已经有了一定的经验, 同时可在画这个图时,把这些经验形成规律,便于学生以后应用. (l )关于列表:主要是合理选值与简化运算的把握,是教学要点.在选值时,首先要考虑的是函数图像的对称性,因此首先要确定中心值,然后再左,右取相同间隔的值;其次,选值时尽量选取整数,便于计算和描点. 在选取x 的值之后,计算y 的值时,考虑到对称性,只需计算中心值一侧的值,另一侧由对称性可直接填入,但一定要保证运算正确. (2)关于描点:一般可先定顶点(即中心值对应的点,然后利用对称性描出各点,以逐步提高速度.) (3)关于连线:特别要注意顶点附近的大致走向。最后画的抛物线应平滑,对称,并符合抛物线的特点. 由学生在上面的练习中所列的表中填上这个函数及其对应值,然后画出它的图像,同样 找一名同学板演. 学生画完,教师总结完之后,让学生观察黑板上画出的四条抛物线,提问: (1)你能否指出抛物线1)1(2 1 2-+- =x y 的开口方向,对称轴,顶点坐标?

二次函数与三角形最大面积3种求法

))))))))) 二次函数与三角形最大面积的3种求法 一.解答题(共7小题) 21.(2012?广西)已知抛物线y=ax+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3). (1)求抛物线的解析式; (2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的 坐标;若不存在,请说明理由. 茂名)如图,抛物线与x轴交于点A和点B,与y2.(2013?轴交于点C,已知点B的坐标为(3,0). (1)求a的值和抛物线的顶点坐标; (2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;(3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理

由. 3.(2011?茂名)如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C (5,0),抛物线对称轴l与x轴相交于点M. (1)求抛物线的解析式和对称轴; (2)点P在抛物线上,且以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由.). ))))))))) ,)5,0,0),C((黔西南州)如图,在平面直角坐标系xOy中,已知抛物线经过点A0,4),B (1.4(2012?.x轴相交于点M抛物线的对称轴l与)求抛物线对应的函数解析式和对称轴;(1为顶点的四边形的四条边的长度为四个连续的PM、)上的一点,若以A、O、(2)设点P为抛物线(x>5 的坐标;正整数,请你直接写出点P的面积最大?若存在,请你求NAC,使△,探索:在直线AC下方的抛物线上是否存在一点N(3)连接AC N的坐标;若不存在,请说明

(名师整理)最新数学中考专题冲刺《二次函数动点成特殊三角形问题》压轴真题训练(含答案)

冲刺中考《二次函数动点成特殊三角形问题》压轴专题 1.如图,在平面直角坐标系中,二次函数y =- 1 3 x2+bx+c的图象与坐标轴交于A,B, C三点,其中点A的坐标为(-3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ. (1)填空:b=________,c=________; (2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由; (3)在x轴下方的二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由. 第1题图 解:(1)1 3 ,4; 【解法提示】∵二次函数y=-1 3 x2+bx+c与x轴交于A(-3,0),B(4,0), ∴ b c= b c= --+ ? ? ? -++ ?? 330 16 40 3 ,解得 b= c= ? ? ? ?? 1 3 4 , 1

(2)可能是,理由如下: ∵点P在AC上以每秒1个单位的速度运动, ∴AP=t, ∵点Q在OB上以每秒1个单位的速度运动,∴OQ=t, ∴AQ=t+3, ∵∠PAQ<90°,∠PQA<90°, ∴若要使△APQ是直角三角形,则∠APQ=90°, 在Rt△AOC中,OA=3,OC=4, ∴AC=5, 如解图①,设PQ与y轴交于点D, 第1题解图① ∵∠ODQ=∠CDP,∠DOQ=∠DPC=90°, 2

2018年中考数学二次函数压轴题集锦(50道含解析)

1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC. (1)请直接写出二次函数y=ax2+x+c的表达式; (2)判断△ABC的形状,并说明理由; (3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标; (4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标. 2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N). 已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2). (1)求d(点O,△ABC); (2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围; (3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围. 3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1). (1)求线段AB的长; (2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点 H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;

(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由. 4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C. (1)求抛物线的解析式; (2)过点A的直线交直线BC于点M. ①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标; ②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.

人教版初中数学二次函数图文解析

人教版初中数学二次函数图文解析 一、选择题 1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( ) A .a +c =0 B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2 C .当函数在x <110 时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n < 2a 【答案】C 【解析】 【分析】 根据二次函数的图象和性质对各项进行判断即可. 【详解】 解:∵函数经过点M (﹣1,2)和点N (1,﹣2), ∴a ﹣b +c =2,a +b +c =﹣2, ∴a +c =0,b =﹣2, ∴A 正确; ∵c =﹣a ,b =﹣2, ∴y =ax 2﹣2x ﹣a , ∴△=4+4a 2>0, ∴无论a 为何值,函数图象与x 轴必有两个交点, ∵x 1+x 2=2a ,x 1x 2=﹣1, ∴|x 1﹣x 2|=>2, ∴B 正确; 二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣ 2b a =1a , 当a >0时,不能判定x < 110时,y 随x 的增大而减小; ∴C 错误; ∵﹣1<m <n <0,a >0, ∴m +n <0, 2a >0, ∴m +n <2a ;

∴D正确, 故选:C. 【点睛】 本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键. 2.二次函数y=x2+bx的对称轴为直线x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是() A.0<t<5 B.﹣4≤t<5 C.﹣4≤t<0 D.t≥﹣4 【答案】B 【解析】 【分析】 先求出b,确定二次函数解析式,关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,﹣1<x<4时﹣4≤y<5,进而求解; 【详解】 解:∵对称轴为直线x=2, ∴b=﹣4, ∴y=x2﹣4x, 关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,∵﹣1<x<4, ∴二次函数y的取值为﹣4≤y<5, ∴﹣4≤t<5; 故选:B. 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.抛物线y=-x2+bx+3的对称轴为直线x=-1.若关于x的一元二次方程-x2+bx+3﹣t=0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是() A.-12<t≤3B.-12<t<4 C.-12<t≤4D.-12<t<3 【答案】C 【解析】 【分析】 根据给出的对称轴求出函数解析式为y=-x2?2x+3,将一元二次方程-x2+bx+3?t=0的实数根看做是y=-x2?2x+3与函数y=t的交点,再由﹣2<x<3确定y的取值范围即可求解. 【详解】 解:∵y=-x2+bx+3的对称轴为直线x=-1, ∴b=?2, ∴y=-x2?2x+3,

二次函数和三角形最大面积的3种求法

WORD格式整理版 二次函数与三角形最大面积的3种求法 一.解答题(共7小题) 1.(2012?广西)已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).(1)求抛物线的解析式; (2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标; (3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由. 2.(2013?茂名)如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标 为(3,0). (1)求a的值和抛物线的顶点坐标; (2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等; (3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由. 3.(2011?茂名)如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴l与x轴相交于点M. (1)求抛物线的解析式和对称轴; (2)点P在抛物线上,且以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由.

4.(2012?黔西南州)如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M. (1)求抛物线对应的函数解析式和对称轴; (2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由. 5.(2013?新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3). (1)求抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由; (3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标. 6.(2009?江津区)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.

相关文档
相关文档 最新文档