文档库 最新最全的文档下载
当前位置:文档库 › 无功补偿的有关问题

无功补偿的有关问题

无功补偿的有关问题
无功补偿的有关问题

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

电网的无功补偿—

摘要 电压是电能质量的重要指标之一,网损是电力企业的一项重要综合性技术经济指标。长期以来电力系统网络损耗问题比较突出,而无功补偿是降低线损的有效手段。随着电力系统负荷的增加,对无功功率的需求也日益增加。在电网中的适当位置装设无功补偿装置成为满足电网无功需求的必要手段。 本文从无功补偿的现实意义出发,分析了无功补偿的必要性和经济效益。简单介绍了目前无功补偿研究的现状,探讨无功补偿的原理并对主要的几种无功补偿方式进行了简要的分析,给出本文设计用于并联电容器组补偿方式的智能低压无功补偿装置的研究任务。装置采用ATT7022A检测电网运行参数,减少了CPU运算量,提高电网参数辨识的精度,并可以简化系统软件设计。系统以Atlmega64处理器为控制核心,采用功率因数控制和电压限制相结合的方式工作,并给出采用永磁真空开关在特定电压相角投切电容器的方法,有效解决了电容器投切过程中在线路上产生涌流的缺点,并设有多种保护措施,保护系统可靠、稳定运行。装置还设计了友好的人机接口和通讯接口,使用方便。 关键词:无功补偿、并连电容器、ATT7022A、Atlnega64

ABSTRACT V oltage is one of important quality index of electric power system. Power loss is an important synthesis technical and economic index of power companies. In the past several years, the problem of power loss is very serious. However, reactive compensation is an effective method to save power loss .Due to increasing loads of electric power system, demand of reactive power was also increasing. It became necessary means that reactive power compensation devices were installed in proper position of electric network. This thesis considers the significance of reactive Power compensation and analyses the indispensability and economic benefits of reactive Power compensation. The development status of reactive power compensation is briefly introduced. Principles of reactive power compensation are explained. Several primary reactive power compensation solutions are discussed. This thesis proposed an intelligent low voltage reactive compensation control scheme and implemented device for shunt capacitor compensation. An ATT7022A is adopted to detect the power grid operation information to reduce the calculation volume of CPU and enhance the precision of power grid parameter identification. This also simplifies design work of the software. ATMEGA64 is utilized as the main process unit and method combining power factor control and voltage limitation is used as the system working mode. Specific voltage phase is determined to switching shunt capacitor via permanent magnetic vacuum synchronous switch. Thus the surge produced during the traditional capacitor switching method is greatly diminished. It provides diverse protect measures to ensure the stability and reliability. It bears friendly human machine

负荷计算及无功补偿

第三章 负荷计算及无功补偿 广东省唯美建筑陶瓷有限公司 刘建川 3.1 负荷曲线与计算负荷 负荷曲线(load curve )是指用于表达电力负荷随时间变化情况的函数曲线。在直角坐标糸中,纵坐标表示负荷(有功功率和无功功率)值,横坐标表示对应的时间(一般以小时为单位) 日负荷曲线 年负荷曲线 年每日最大负荷曲线 年最大负荷和年最大负荷利用小时数 3.1.2 计算负荷 计算负荷是按发热条件选择电气设备的一个假定负荷,其物理量含义是计算负荷所产生的恒定温升等于实际变化负荷所产生的最高温升。通常将以半小时平均负荷依据所绘制的负荷曲线上的“最大负荷”称为计算负荷,并把它作为按发热条件选择电气设备的依据。 3.2 用电设备额定容量的确定 3.2.1 用电设备的一作方式 (1)连续工作方式 在规定的环境温度下连续运行,设备任何部份温升不超过最高允许值,负荷比较稳定。 (2)短时运行工作制 (3)断续工作制 用电设备以断续方式反复进行工作,其工作时间与停歇时间相互交替。取一个工作时间内的工作时间与工作周期的百分比值,称为暂载率,即 *100%%100%0 t t T t t ε==+ 暂载率亦称为负荷持续率或接电率。根据国家技术标准规定,重复短暂负荷下电气设备的额定工作周期为10min 。吊车电动机的标准暂载率为15%、25%、40%、60%四种,电焊设备的标准暂载率为50%、65%、75%、100%,其中草药100%为自动焊机的暂载率。 3.2.2 用电设备额定容量的计算 (1)长期工作和短时工作制的设备容量 等于其铭牌一的额定功率,在实际的计算中,少量的短时工作制负荷可忽略不计。 (2)重复短时工作制的设备容量 ○ 1吊车机组用电动机的设备容量统一换算到暂载率为ε=25%时的额定功 率,若不等于25%,要进行换算,公式为:2Pe Pn ==Pe 为换算到ε=25%时的电动机的设备容量 εN 为铭牌暂载率

无功补偿容量计算

无功补偿容量计算 Prepared on 22 November 2020

一、无功补偿装置介绍 现在市场上的无功补偿装置主要分为固定电容器组、分组投切电容器组、有载调压式电容器组、SVC和SVG。下面介绍下各种补偿装置的特点。 1)固定电容器组。其特点是价格便宜,运行方式简单,投切间隔时间长。但它对于补偿变化的无功功率效果不好,因为它只能选择全部无功补偿投入或全部无功补偿切出,从而可能造成从补偿不足直接补偿到过补偿,且投切间隔时间长无法满足对电压稳定的要求。而由于光照强度是不停变化的,利用光伏发电的光伏场发出的电能也跟着光伏能力的变化而不断变化,因此固定电容器组不适应光伏场的要求,不建议光伏项目中的无功补偿选用固定电容器组。 2)分组投切电容器组。分组投切电容器组和固定电容器组的区别主要是将电容器组分为几组,在需要时逐组投入或切出电容器。但它仍然存在投切间隔时间长的问题,且分的组数较少,一般为2~3组(分的组数多了,投资和占地太大),仍有过补偿的可能。因此分组投切电容器组适用于电力系统较坚强、对相应速度要求较低的场所。 3)有载调压式电容器组。有载调压式电容器组和固定电容器组的区别主要是在电容器组前加上了一台有载调压主变。根据公式Q=2πfCU2可知,电容器组产生的无功功率和端电压的平方成正比,故调节电容器组端电压可以调节电容器组产生的无功功率。有载调压式电容器组的投切间隔时间大大缩短,由原来的几分钟缩短为几秒钟。且有载调压主变档位较多,一般为8~10档,每档的补偿无功功率不大,过补偿的可能性较小。因此分组投切电容器组适用于电力系统对光伏场要求一般的场所。

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

配电网无功补偿方式

配电网无功补偿方式 合理的无功补偿点的选择以及补偿容量的确定,能够有效地维持系统的电压水平,提高系统的电压稳定性,避免大量无功的远距离传输,从而降低有功网损。而且由于我国配电网长期以来无功缺乏,造成的网损相当大,因此无功功率补偿是降损措施中投资少回收高的有效方案。配电网无功补偿方式常用的有:变电站集中补偿方式、低压集中补偿方式、杆上无功补偿方式和用户终端分散补偿方式。 配电网无功补偿方案 1 变电站集中补偿方式 针对输电网的无功平衡,在变电站进行集中补偿(如图1的方式1),补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是改善输电网的功率因数、提高终端变电所的电压和补偿主变的无功损耗。这些补偿装置一般连接在变电站的10kV母线上,因此具有管理容易、维护方便等优点。 为了实现变电站的电压控制,通常采用无功补偿装置(一般是并联电容器组)结合变压器有载调压共同调节。通过两者的协调来进行电压/无功控制在国内已经积累了丰富的经验,九区图便是一种变电站电压/无功控制的有效方法。然而操作上还是较为麻烦的,因为由于限值需要随不同运行方式进行相应的调整,甚至在某些区上会产生振荡现象;而且由于实际操作中变压器有载分接头的调节和电容器组的投切次数是有限的,而在九区图没有相应的判断。因此,现行九区图的调节效果还有待进一步改善。 2 低压集中补偿方式 在配电网中,目前国内较普遍采用的无功补偿方式是在配电变压器380V侧进行集中补偿(如图1的方式2),通常采用微机控制的低压并联电容器柜,容量在几十至几百千乏左右,根据用户负荷水平的波动投入相应数量的电容器进行跟踪补偿。它主要目的是提高专用变用户的功率因数,实现无功补偿的就地平衡,对配电网和配电变的降损有积极作用,同时也有助于保证该用户的电压水平。这种补偿方式的投资及维护均由专用变用户承担。目前国内各厂家生产的自动补偿装置通常是根据功率因数来进行电容器的自动投切。就这种方案而言,虽然有助于保证用户的电能质量,但对电力系统并不可取。虽然线路电压的波动主要由无功量变化引起,但线路的电压水平往往是由系统情况决定的。当线路电压基准值偏高或偏低时,无功的投切量可能与实际需求相去甚远,易出现无功过补偿或欠补偿。 对配电系统来说,除了专用变之外,还有许多公用变。而面向广大家庭用户及其他小型用户的公用变,由于其通常安装在户外的杆架上,实现低压无功集中补偿则是不现实的:难于维护、控制和管理,且容易造成生产安全隐患。这样,配电网的无功补偿受到了很大地限制。 3 杆上补偿方式 由于配电网中大量存在的公用变压器没有进行低压补偿,使得补偿度受到限制。由此造成很大的无功缺口需要由变电站或发电厂来填,大量的无功沿线传输使得配电网网损仍然居高难下。因此可以采用10kV户外并联电容器安装在架空线路的杆塔上(或另行架杆)进行无功补偿(如图1的方式3),以提高配电网功率因数,达到降损升压的目的。但由于杆上安装的并联电容器远离变电站,容易出现保护不易配置、控制成本高、维护工作量大、受安装环境和空间等客观条件限制等问题。因此,杆上无功优化补偿必须结合以下实际工程要求来进行: (1)补偿点宜少,建议一条配电线路上宜采用单点补偿,不宜采用多点补偿; (2)控制方式从简。建议杆上补偿不设分组投切; (3)建议补偿容量不宜过大。补偿容量太大将会导致配电线路在轻载时出现过电压和过补偿现象;另外杆上空间有限,太多数电容器同杆架设,既不安全,也不利于电容器散热; (4)建议保护方式应简化。主要采用熔断器和氧化锌避雷器作简单保护。 显然,杆上无功补偿主要是针对10kV馈线上的公用变所需无功进行补偿,因其具有投资小,回收快,补偿效率较高,便于管理和维护等优点,适合于功率因数较低且负荷较重的

无功补偿及电能计算

北极星主页 | 旧版 | 电力运营 | 电信运营 | 工业控制 | 电子技术 | 仪器仪表 | 大学院校 | 科研院所 | 协会学会新闻中心| 技术天地| 企业搜索| 产品中心| 商务信息| 人才招聘| 期刊媒体| 行业展会| 热点专题| 论坛| 博客| 高级搜索 帐号 密码 个人用户注册企业免费注册 能源工程 ENERGY ENGINEERING 2003年第1卷第1期 工矿企业无功补偿技术及其管理要求 方云翔 (浙江信息工程学校,湖州 313000)

摘要:分析了工矿企业采用无功补偿技术的必要性,介绍了无功补偿方式的确定及补偿容量的计算方法,并论述了加强无功补偿装置管理、提高运行效率应注意的问题。 关键词:无功补偿;技术管理;工矿企业 1 前言 供电部门在向用电单位(以下简称用户)输送的三相交流功率中,包括有功功率和无功功率两部分。将电能转换成机械能、热能、光能等那一部分功率叫有功功率,用户应按期向供电部门交纳所用有功电度的电费;无功功率为建立磁场而存在并未做功,所以供电部门不能向用户收取无功电度电费,但无功功率在输变电过程中要造成大量线路损耗和电压损失,占用输变电设备的容量,降低了设备利用率。因此,供电部门对输送给用户的无功功率实行限制,制订了功率因数标准,采用经济手段———功率因数调整电费对用户进行考核。用户功率因数低于考核标准,调整电费是正值,用户除了交纳正常电费之外,还要增加支付调整电费(功率因数罚款);用户功率因数高于考核标准,调整电费是负值,用户可以从正常电费中减去调整电费(功率因数奖励)。 用电设备如变压器、交流电动机、荧光灯电感式镇流器等均是电感性负荷,绝大多数用户的自然功率因数低于考核标准,都要采取一些措施进行无功补偿来提高功率因数。安装移相电力电容器是广大用户无功补偿的首选方案。 2 无功补偿的经济意义 2.1 提高输变电设备的利用率 有功功率

电网建设中的无功补偿

X 10 电网建设中的无功补偿 1功率因数和无功功率补偿的基本概念 1.1功率因数:电网中的电气设备如电动机变压器等属于既有电感又有电阻的电 感性负载,电感性负载的电压和电流的相量间存在着一个相位差, 相位角的余弦 cos ?即是功率因数,它是有功功率与视在功率之比即 cos ? = P/S 。功率因数是 反映电力用户用电设备合理使用状况、电能利用程度及用电管理水平的一个重要 指标。 1.2无功功率补偿:把具有容性功率的装置与感性负荷联接在同一电路,当容性 装置释放能量时,感性负荷吸收能量,而感性负荷释放能量时,容性装置却在吸 收能量,能量在相互转换,感性负荷所吸收的无功功率可由容性装置输出的无功 功率中得到补偿。 2无功补偿的目的与效果 2.1补偿无功功率,提高功率因数 2.2提高设备的供电能力 由P = S ? cos ?可看出,当设备的视在功率 S 一定时,如果功率因数cos ? 提高,上式中的P 也随之增大,电气设备的有功出力也就提高了。 2.3降低电网中的功率损耗和电能损失 由公式I = P/( ? U ? cos ? )可知当有功功率P 为定值时,负荷电流I 与 cos ?成反比,安装无功补偿装置后,功率因数提高,使线路中的电流减小,从 而使功率损耗降低:△ P =I 2R,降低电网中的功率损耗是安装无功补偿设备的主 要目的。 2.4改善电压质量 在线路中电压损失4U 的计算公式如下: A U= 式中 A U ——线路中的电压损失kV P ——有功功率MW

]=300 X( 1. 33— 0. 48) =255 (kvar ) Q= Q -- 无功功率Mvar U -- 额定电压kV R ――线路总电阻Q X L ――线路感抗Q 由上式可见,当线路中的无功功率 Q 减少以后,电压损失4U 也就减少了 2.5减少用户电费开支,降低生产成本。 2.6减小设备容量,节省投资。 3无功补偿容量的选择 3.1按提高功率因数值确定补偿容量 Q c 式中P ——最大负荷月的平均有功功率 kW cos ? i cos ? 2 - 补偿前后功率因数值 例如:某加工厂最大负荷月的平均有功功率为 300kW 功率因数cos ?二0.6, 拟将 功率因数提高到0.9,则所选的电容器容量为: 3.2按提高电压值确定补偿容量Q (kvar ) 式中 △ U 需要提高的电压值 V (kvar ) Q=300X[

无功补偿常用计算方法

按照不同的补偿对象,无功补偿容量有不同的计算方法。 (1)按照功率因数的提高计算 对需要补偿的负载,补偿前后的电压、负载从电网取用的电流矢量关系图如图3.7所示: I 2r I 1 补偿前功率因数1cos ?,补偿后功率因数2cos ?,补偿前后的平均有功功率为 P ,则需要补偿的无功功率容量 )t a n (t a n 21? ?-=P Q 补偿 (3.1) 由于负载功率因数的增加,会使电网给负载供电的线路上的损耗下降, 线损的下降率 %100)cos (3)cos (3)cos ( 3%21 122 2211?-= ?R I R I R I P a a a ???线损 %100)c o s c o s (1221??? ? ???-=?? (3.2) 式中R 为负载侧等值系统阻抗的电阻值。 (2)按母线运行电压的提高计算 ①高压侧无功补偿 无功补偿装置直接在高压侧母线补偿,系统等值示意图如图3.8所示: 图3.7 电流矢量图

P+jQ 补偿 图中, S U、U分别是系统电压和负载侧电压;jX R+是系统等值阻抗(不 含主变压器高低压绕组阻抗);jQ P+是负载功率, 补偿 jQ是高压侧无功补偿容 量; 1 U、 2 U分别是补偿装置投入前后的母线电压。 无功补偿装置投入前后,系统电压、母线电压的量值存在如下关系: 无功补偿装置投入前 1 1U QX PR U U S + + ≈ 无功补偿装置投入后 2 2 ) ( U X Q Q PR U U S 补偿 - + + ≈ 所以 2 1 2U X Q U U补偿 ≈ -(3.3) 所以母线高压侧无功补偿容量 ) ( 1 2 2U U X U Q- = 补偿 (3.4) ②主变压器低压侧无功补偿 无功补偿装置在主变压器的低压侧进行无功补偿,系统等值示意图如图3.9所示: P+jQ 补偿 图3.8 系统等值示意图

电网的无功补偿与电压调整

电网的无功补偿与电压调整 、输电网的无功补偿与电压调整 输电网多数无直供负载,一般不为调压目的而设置无功补偿装置。参数补偿多用于较长距离的输电线路,有串联补偿(又称纵补偿)与并联补偿(又称横补偿)之分。电压支撑则多用于与地区受电网络连接的输电网的中枢点。 1.1电抗器补偿 电抗器是超高压长距离输电线路的常用补偿设备,用以补偿输电线路对地电容所产生的充电功率,以抑制工频过电压。电抗器的容量根据线路长度和过电压限制水平选择,其补偿度(电抗器容量与线路充电功率之比)国外统计大多为70-85,个别为65,一般不低于60。电抗器一般常设置在线路两端,且不设断路器。 1.2串连电容补偿 串联电容用来补偿输电线路的感抗,起到缩短电气距离提高稳定性水平和线路的输电容量的作用。串联电容器组多为串、并联组合而成,并联支数由线路输送容量而定,串联个数则由所需的串联电容补偿度(串联电容的容抗与所补偿的线路感抗之比)而定。串联电容补偿一般在50以下,不宜过高,以免引起系统的次同步谐振。输电网中因阻抗不均而造成环流时,也可用串联电容来补偿。日本在110kV环网中就使用了串联电容补偿。 1.3中间同步或静止补偿 在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些

装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。 输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。 电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。近年来,国内外均注重静止补偿装置的应用。 2、配电网的无功补偿与电压调整 以相位补偿和保证用户用电电压质量为主。 2.1相位补偿亦称功率因数补偿 用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。励磁功率滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户

静止型动态无功补偿成套装置技术规范

35kV SVG型静止型动态无功补偿成套装置技术规范 1总则 1.l 本设备技术规范书适用于XXXXXXXXXXXXXXXXXXXX工程XXkV 动态无功补偿与谐波治理装置,它提出了该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本设备技术规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,供方应提供符合工业标准和本协议要求的优质产品。 1.3 如果供方没有以书面形式对本技术规范书的条文提出异议,则意味着供方提供的设备完全符合本技术规范书的要求。 l.4 本设备技术规范书所使用的标准如遇与供方所执行的标准不一致时,按较高标准执行。 1.5 本设备技术规范书经供、需双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 1.6 本设备技术规范书未尽事宜,由甲、乙双方协商确定。 2工程概况 2.1环境条件 周围空气温度 最高温度 ℃ 37.8 最低温度 ℃ -37 最大日温差 K 25 1 日照强度 W/cm2 (风速 0.5m/s) 0.1 2 海拔高度 m 1805 最大风速 m/s 23.7 3 离地面高10m处,30年一遇10min平均最大风速 4 环境相对湿度(在25℃时)平均值 65% 地震烈度(中国12级度标准) 8 水平加速度 g 0.30 垂直加速度 g 0.15 5 地震波为正弦波,持续时间三个周波,安全系数1.67 污秽等级 III 泄漏比距 3.1cm/kV 6 最高运行电压条件下,制造厂根据实际使用高海拔进行修正,并提供 高海拔修正值 7 覆冰厚度(风速不大于15m/s时) 10 批注 [s1]: 需根据现场实际情况进行更改 第1页

电网的无功补偿与电压调整

电网的无功补偿与电压调整 1、输电网的无功补偿与电压调整 输电网多数无直供负载,一般不为调压目的而设置无功补偿装置。参数补偿多用于较长距离的输电线路,有串联补偿(又称纵补偿)与并联补偿(又称横补偿)之分。电压支撑则多用于与地区受电网络连接的输电网的中枢点。 1.1电抗器补偿 电抗器是超高压长距离输电线路的常用补偿设备,用以补偿输电线路对地电容所产生的充电功率,以抑制工频过电压。电抗器的容量根据线路长度和过电压限制水平选择,其补偿度(电抗器容量与线路充电功率之比)国外统计大多为70-85,个别为65,一般不低于60。电抗器一般常设置在线路两端,且不设断路器。 1.2串连电容补偿 串联电容用来补偿输电线路的感抗,起到缩短电气距离提高稳定性水平和线路的输电容量的作用。串联电容器组多为串、并联组合而成,并联支数由线路输送容量而定,串联个数则由所需的串联电容补偿度(串联电容的容抗与所补偿的线路感抗之比)而定。串联电容补偿一般在50以下,不宜过高,以免引起系统的次同步谐振。输电网中因阻抗不均而造成环流时,也可用串联电容来补偿。日本在110kV环网中就使用了串联电容补偿。 1.3中间同步或静止补偿 在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线

路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。 输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网 相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。 电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。近年来,国内外均注重静止补偿装置的应用。 2、配电网的无功补偿与电压调整 以相位补偿和保证用户用电电压质量为主。 2.1相位补偿亦称功率因数补偿 用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。励磁功率——滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户电压降低。相位补偿是以进相的无功补偿设备(如并联电容器)就近供给用户或配电网所需要的滞相无功功率,减少在配电网中流动的无功功率,降低网损,

对电网无功补偿的探讨

对电网无功补偿的探讨 发表时间:2018-09-18T20:13:23.650Z 来源:《基层建设》2018年第23期作者:刘桂秀 [导读] 摘要:无功功率是保证电网电压稳定和减少有功损耗的重要因数,它的产生基本不消耗能源,但无功功率在输电线路上传送却要引起无功功率和电网电压的损耗。 身份证号码:45232219830915xxxx 摘要:无功功率是保证电网电压稳定和减少有功损耗的重要因数,它的产生基本不消耗能源,但无功功率在输电线路上传送却要引起无功功率和电网电压的损耗。通过有效合理的对无功补偿设备的配置,改善无功功率的分布可以有效的减少无功功率和电网电压的损耗。 关键词:无功功率、无功补偿、电网电压、损耗 电网传输的功率分有功功率和无功功率。直接消耗电能,将电能转变为机械能、热能等,利用这些能做功的部分功率称为有功功率;不消耗电能,只是把电能转换成另一种形式的能,这种能作为电气设备能够做功的必备条件,并且在电网中与电能进行周期性转换,这部分功率称为无功功率,无功功率的传送同样需要电流来完成,这样就会增加线路上的功率损耗,引起发热,增加线路末端的电压降。 电网中有很多感性负载要吸收无功功率,如变压器、交流电焊机等,且这部分感性无功值是大于零的,在电网中安装并联电容器等无功补偿设备以后,由于容性无功的值小于零,这样一个小于零的无功和一个大于零的无功就可以相互抵消,这样就减少了无功功率在电网线路中的流动,因此降低线路和变压器因输送无功功率造成的电能损耗,以实现无功功率的就地供应、分区平衡,从而提高电能做功的效率,这就是无功补偿。 电网无功补偿的基本原则:按电压分层、按电网分区、就地平衡,避免无功功率的远距离输送,以免占用线路输送容量和增加有功损耗。 一、无功补偿的设计原则 无功补偿应全面规划、合理布局、分级补偿,就地平衡的原则确定最优的补偿容量和分布方式,具体内容如下: 1、总体的无功平衡与局部的无功平衡相结合。既要满足供电网的总无功需求,又要满足分线、分站的变电站及各用户无功平衡。 2、集中补偿和分散补偿相结合。以分散补偿为主,这就要求在负荷集中的点进行补偿,既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,使无功平衡,减少变压器和线路的损耗。 3、高压补偿与低压补偿相结合。以低压补偿为主,高压无功补偿装置应装设在变压器的主要负荷侧,当不具备条件时,可装设在变压器的第三绕组侧,高压侧无负荷时,不得在高压侧装设补偿装置。 4、降损和调压相结合。以降损为主,兼顾调压。这是针对供电半径较长,分支较多,负荷比较分散,自然功率因数低的线路。这种线路负荷率低,线路的供电变压器多工作在空载或轻载的工况下,线路损耗大,若对此线路进行补偿,可提高线路的供电能力。 二、无功补偿容量的确定 1、高压补偿容量:变电站内按主变压器容量的10%-15%配置,线路补偿按照15%配置; 2、低压集中补偿容量:按变压器容量的20%-40%配置; 3、就地补偿容量:一般按电动机功率的25%-40%。 三、无功补偿回路数的确定 在补偿容量确定的情况下,补偿的回路数分得越多,每一回路的补偿容量越小,补偿的效果越好,但投资越大,设备的造价越高,产品的性价比越差。同时电容器的分组数越多,与系统发生谐振的几率越大。 通常根据最小负荷波动特点确定单支路补偿的容量,从而确定补偿回路数。0.4kV系统的户外补偿箱一般选择2-4个回路,户内补偿柜一般选择4-10个回路,高压补偿一般1-4回路,补偿回路数越多,在存在谐波的情况下与系统产生谐波谐振的几率越大。因此,在保证投切精度的情况下,以选择的回路数越少性价比越高。 四、选用电容器进行功率因数补偿的意义 采用电容器无功补偿具有管理维修方便,布置灵活,深入负荷中心,成本低廉等优点,低压电容器补偿被广泛应用,其重要意义有如下几点: 1、充分发挥发电机、变压器的装机容量的潜力,发电机、变压器只向负荷提供有功功率,而负荷所需的无功功率,则由电容器提供,电容器被看成是个无功电源。这样电源可只输送负荷所需的有功功率,从而减少线路有功损耗、线路导线截面积开关容量,从而节省投资。 2、无功补偿对减轻电压波动、改善电源质量有帮助。加入电容器补偿,可以减少线路无功功率的传输。当大型感性设备投入时,其冲击电流在线路上的压降减少,使电压波动的副值减少,从而改善电压质量。 3、采用电容器就地补偿后,对电动机的启动有好处,因为启动时无功就地由电容器供给,电网只有提供有功功率,线路电压降减少,电动机端电压提高,有利于电机的顺利启动。 4、采用电容补偿使功率因数提高,这样不但不会受到供电部门罚款,而且还可以得到奖励,直接获取经济效益。采用电容补偿,可使变压器装机容量减少,这样用户安装增容费减少,而按二部电价收取的固定电费部分也相应减少。 五、动态补偿和静态补偿的特点 静态补偿,是指补偿电容器不随无功功率的波动而实时跟踪投切,不但不实时投切,还要人为地延时投切,一般延时在40S以上。随着用电设备的投入或切除,电网所需的无功功率也随之变化,为了不使电容器投切过于频繁,造成投切元件损坏严重及电容器收到冲击次数过多,采取人为延时措施,待供电回路功率因数稳定地低于某一规定值后,再投入电容器。反之。当功率因数持续高于某一值,或出现向电网反送无功功率时,经延时后,上述现象没有改观再切除补偿电容器。静态补偿对用户在一段时间内的平均功率因数并无不良影响,也不影响供电部门对收费的影响,反而因避免频繁投切延长了执行元件及补偿电容器的使用寿命。另外,由于不随无功功率的波动而实时地进行投切,投切的执行元件采用接触器即能满足要求,从而减少补偿装置的造价,也方便对其维护。 动态补偿,是补偿电容器的投切要紧随负荷的无功功率的变化,不失时机的投切电容器,即进行实时跟踪补偿。为达到实时跟踪补偿的目的,从信号的检测到投切的执行要在10-20ms内完成。若采用电磁元件作执行元件,将无法满足快速投切要求。为达到此要求,采用

无功自动补偿装置使用说明

Xxxx 型低压无功补偿装置 使 用 说 明 书 地址: 电话: 传真: 邮编: 网址:

一、概述 xxxx型低压无功补偿装置分为由接触器或复合开关投切的低压自动无功补偿装置和由可控硅投切的低压动态无功补偿装置,该系列装置适用于负荷比较稳定的低压用户的配电系统,无人值守的配电室及箱式变电站的集中补偿。低压无功补偿装置的技术特点是:投切电容过程涌流小,整机使用寿命长, 维修维护量小,无功补偿响应速度快,可频繁投切。保护措施齐全,自动化程度高,能在外部故障或停电时自动退出工作,在送电后自动恢复运行。自投入市场以来,给广大用户带来了明显的经济和社会效益。 使用效益 ·提高受电功率因数,使之达到国家标准以上,不返送无功。 ·可最大限度降低线路和变压器损耗,使配电变压器有效输出容量增加。 ·优化用电质量,提高电网运行的安全可靠性。 ·在冲击性和波动性负荷处,可减少电压波动及抑制电压闪变,提高电压的稳定性。 ·消除电网轻负荷时的无功过剩和电压过高现象。 ·模块化结构,组装方便,母线连接无需打孔。 ·用户系统存在谐波时,可根据谐波含量选择带滤波型投切模块。 二、低压自动无功补偿装置的组成 Xxxx型低压无功补偿装置由隔离开关、电流互感器、避雷器、熔断器、接触器(可控硅或复合开关)、电容器、电抗器、控制器、指示仪表、手/自动转换开关、运行指示灯等元器件组成。 三.技术参数 1.产品型号说明 Xxxx□-□/□ -□□ 电抗率(7:7%) 投切开关(C:接触器T:晶闸管Z:复合开关) 装置的分组数 额定容量(kvar) 额定电压(kV) 投切模块 企业代号 2.主要技术指标 ·工作电压: 380VAC ·频率:50~60Hz ·控制器信号:负载无功功率和功率因数

电网无功补偿装置

工业企业供电课程报告电网无功补偿装置 学生姓名: 班级学号: 任课教师: 提交日期:2011.12.12 成绩:

电网无功补偿装置 一、研究背景、现状和意义 1.0无功问题背景 随着我国经济改革的不断深入,国民经济持续快速增长,工业企业的数量不 断增加,人们生活水平不断提高,这些都导致电量的需求大大增加。相比较而言, 我国发电机的装机容量与输配电能力的增加速度没有需求快,致使我们一些省份 出现“电荒”的情况,尤其一些经济相对发达的地区和用电负荷较大的大中城市。 更有甚者,部分城市在用电高峰期出现拉闸限电以使电网正常运行的情况,严重 制约着国民经济的发展,也给人民群众的生活带来很大不便。电压是电能主要质 量指标之一,电压高低反映无功出力与用户无功负荷是否平衡。就我国来说,电 力系统的用电负荷主要为感应电动机、变压器、感应电炉与电弧炉、电焊机与电 焊变压器、整流设备等感性负载。这些负载在消耗着大量有功功率的同时也在消 耗着大量的无功功率,造成电网功率因数偏低。大量感性负载的使用使得必须提 供足够的无功容量满足负载要求,否则会造成电网电压降低,电网供电质量下降 的不良后果。当电网低电压运行的危害可以归纳为以下6种[1]: (1) 当电压下降到额定电压65%---70%时,无功静态稳定破坏,发生电压 崩溃,造成大面积停电事故; (2) 发电机因运行电压降低而减少它的有功功率及无功功率的输出,由于定 子电流与转子电流受额定值限制,因此发电机的有功出力及无功出力近似与运行 电压成正比关系; (3) 送变电设备因运行降低而增加能耗; (4) 烧毁用户发动机; (5) 由于电源电压下降,引起电灯功率下降、光通量减小和照度的降低。 (6)发电机因电压低而影响有功及无功出力。 ?cos N N I U P = 由上式可见,当负载的功率因数1cos

无功补偿怎么计算

没目标数值怎么计算? 若以有功负载1KW,功率因数从0.7提高到0.95时,无功补偿电容量: 功率因数从0.7提高到0.95时: 总功率为1KW,视在功率: S=P/cosφ=1/0.7≈1.4(KVA) cosφ1=0.7 sinφ1=0.71(查函数表得) cosφ2=0.95 sinφ2=0.32(查函数表得) tanφ=0.35(查函数表得) Qc=S(sinφ1-cosφ1×tanφ)=1.4×(0.71-0.7×0.35)≈0.65(千乏) 电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 计算示例 例如:某配电的一台1000KVA/400V的变压器,当前变压器满负荷运行时的功率因数cosφ =0.75, 现在需要安装动补装置,要求将功率因数提高到0.95,那么补偿装置的容量值多大?在负荷不变的前提下安装动补装置后的增容量为多少?若电网传输及负载压降按5%计算,其每小时的节电量为多少? 补偿前补偿装置容量= [sin〔1/cos0.75〕-sin〔1/cos0.95〕]×1000=350〔KVAR〕安装动补装置前的视在电流= 1000/〔0.4×√3〕=1443〔A〕 安装动补装置前的有功电流= 1443×0.75=1082〔A〕 安装动补装置后视在电流降低=1443-1082/0.92=304 〔A〕 安装动补装置后的增容量= 304×√3×0.4=211〔KVA〕 增容比= 211/1000×100%=21% 每小时的节电量〔304 ×400 ×5% ×√3 ×1 〕 /1000=11 (度) 每小时的节电量(度)

相关文档