文档库 最新最全的文档下载
当前位置:文档库 › 近世代数习题解答(石生明版)

近世代数习题解答(石生明版)

近世代数习题解答(石生明版)
近世代数习题解答(石生明版)

近世代数习题解答(张禾瑞)一章

近世代数习题解答 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A I ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A =I ,B B A ?Y , 及由B A ?得B B A ?Y ,故B B A =Y , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c b b c a a a a a

近世代数习题解答张禾瑞三章

近世代数习题解答 第三章环与域 1加群、环的定义 1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的. 证 (ⅰ)若S 是一个子群 则S b a S b a ∈+?∈, '0是S 的零元,即a a =+'0 对G 的零元,000' =∴=+a a 即.00S a a s ∈-=-∴∈ (ⅱ)若S b a S b a ∈+?∈, S a S a ∈-?∈ 今证S 是子群 由S S b a S b a ,,∈+?∈对加法是闭的,适合结合律, 由S a S a ∈-?∈,而且得S a a ∈=-0 再证另一个充要条件: 若S 是子群,S b a S b a S b a ∈-?∈-?∈,, 反之S a a S a a S a ∈-=-?∈=-?∈00 故S b a b a S b a ∈+=--?∈)(, 2. },,,0{c b a R =,加法和乘法由以下两个表给定: + 0 a b c ? 0 a b c 0 0 a b c 0 0 0 0 0 a a 0 c b a 0 0 0 0 b b c 0 a b 0 a b c c c b a 0 c 0 a b c 证明,R 作成一个环 证R 对加法和乘法的闭的. 对加法来说,由.9.2习题6,R 和阶是4的非循环群同构,且为交换群. 乘法适合结合律Z xy yz x )()(= 事实上. 当0=x 或a x =,)(A 的两端显然均为0. 当b x =或x=c,)(A 的两端显然均为yz .

这已讨论了所有的可能性,故乘法适合结合律. 两个分配律都成立xz xy z y x +=+)( zx yx x z y +=+)( 事实上,第一个分配律的成立和适合律的讨论完全一样, 只看0=x 或a x =以及b x =或c x =就可以了. 至于第二个分配律的成立的验证,由于加法适合交换律,故可看 0=y 或a y =(可省略a z z ==,0的情形)的情形,此时两端均为zx 剩下的情形就只有 0,0)(=+=+=+x x bx bx x b b 0,0)(=+=+=+x x cx cx x c c 0,0)(=+=+==+x x cx bx ax x c b ∴R 作成一个环. 2交换律、单位元、零因子、整环 1. 证明二项式定理 n n n n n b b a a b a +++=+- 11)()( 在交换环中成立. 证用数学归纳法证明. 当1=n 时,显然成立. 假定k n =时是成立的: k i i k k i k k k k b b a b a a b a +++++=+-- )()()(11 看1+=k n 的情形)()(b a b a k ++ ))()()((11b a b b a b a a k i i k k i k k k ++++++=-- 1111111)]()[()()(++--+++++++++=+k i i k k i k i k k k k b b a b a a b a 1111 11)()(+-+++++++++=k i i k k i k k k b b a b a a (因为)()()(11 k r k r k r -++=) 即二项式定理在交换环中成立. 2. 假定一个环R 对于加法来说作成一个循环群,证明R 是交换环. 证设a 是生成元 则R 的元可以写成 na (n 整数) 2)]([)]([))((nma aa m n ma a n ma na === 2))((mna na ma =

近世代数学习系列二十二群论与魔方

群论与魔方:群论基础知识要了解破解魔方攻略背后的数学原理,「群论」(Group Theory)是必不可少的知识,本章介绍群论的基础知识。群论是「抽象代数学」(Abstract Algebra)的重要分支,是有关「群」(Group)的理论。抽象代数学跟一般代数学或线性代数学不同,其要旨不是解方程或方程组,而是研究各种代数结构的特性,「群」就是一种非常重要的代数结构。 群的基本定义 设有一个集合G和G上的「二元运算」(Binary Operation)「?」。如果G 的元素和「?」满足以下「公理」(Axiom),我们便说(G, ?)构成一个「群」(为了行文方便,有时可以把「群(G, ?)」径直称为「群G」): 1.「封闭性」(Closure)-对G中任何两个元素a和b而言,a ? b ∈ G。 2.「结合性」(Associativity)-对G中任何三个元素a、b和c而言,(a ? b) ? c = a ? (b ? c)。 3.「单位元」(Identity)-存在G中一个元素e (称为「单位元」),使得对于G中任何元素a而言,e ? a = a ? e = a。 4.「逆元」(Inverse)-对于G中任何元素a而言,都有G中的元素a?1 (称为a的「逆元」),使得a ? a?1 = a?1? a = e。 请注意由于「?」满足结合性,在写出三个或以上元素之间的运算时,可以不用括号,即写成a ? b ? c。如果某个运算涉及同一个元素,我们可以像一般乘法那样采用「指数」记法,例如可以把a ? a ? a写成a3。我们还可以仿照一般乘法规定零指数和负指数的定义如下:a0= e,a?n= (a?1)n。另外,可以证明上述定义中的「单位元」是唯一的,而且对于G中任一元素a而言,其「逆元」a?1也是唯一的。根据「封闭性」,若a和b是G的元素,则(a ? b)也是G 的元素,因此我们也可以谈论(a ? b)的逆元,而且这个逆元满足 (a ? b)?1 = b?1? a?1(1) 如果(G, ?)还满足「交换性」(Commutativity),即对G中任何两个元素a、b 而言,a ? b = b ? a,我们便说(G, ?)是「交换群」(Commutative Group)或「阿贝尔群」(Abelian Group)。

近世代数习题解答(张禾瑞)四章

近世代数习题解答 第四章 整环里的因子分解 1 素元、唯一分解 1. 证明:0不是任何元的真因子。 证 当0≠a 时 若b a 0=则0=a 故矛盾 当0=a 时,有00ε= (ε 是单位) 就是说0是它自己的相伴元 2. 我们看以下的整环I ,I 刚好包含所有可以写成 m m n (2是任意整数,0≥n 的整数) 形式的有理数,I 的哪些个元是单位,哪些个元是素元? 证 1)I 的单位 总可以把m 表为 p p m k (2=是0或奇数,k 非负整数)我们说 1±=p 时,即k m 2±=是单位,反之亦然 2)I 的素元 依然是k p p m k ,(2=的限制同上) 我们要求 ⅰ)0≠p ⅱ)1±≠p ⅲ)p k 2只有平凡因子 满足ⅰ)—— ⅲ)的p 是奇素数 故p m k 2=而p 是奇素数是 n m 2是素元,反之亦然, 3.I 是刚好包含所有复数b a bi a ,(+整数)的整环,证明5不是I 的素元,5有没有唯一分解? 证 (1)I 的元ε是单位,当而且只当12=ε 时, 事实上,若bi a +=ε是单位 则11-=εε 2'221εε= 即2'21εε= 但222b a +=ε是一正整数,同样2'ε也是正整数, 因此,只有12=ε 反之,若1222=+=b a ε,则0,1=±=b a 或1,0±==b a 这些显然均是单位

此外,再没有一对整数b a ,满足12 2=+b a ,所以I 的单位只有i ±±,1。 (2)适合条件52=α的I 的元α一定是素元。 事实上,若52=α则0≠α 又由α)1(也不是单位 若2225,λβαβλα=== 则12=β或52=β ββ?=12是单位λαβλ?=?-12是α的相伴元 λλβ?=?=1522是单位βαλβ?=?-1是α的相伴元 不管哪种情形,α只有平凡因子,因而α是素元。 (3)I 的元5不是素元。 若βα=5则2225λβ= 这样,2β只可能是25,5,1 当52=β由)1(β是单位 当1522=?=λβ由)1(λ是单位 此即λβ,中有一是5的相伴元 现在看52=β的情形 5,222=+=+=b a bi a ββ可能的情形是 ???==21 b a ???-=1b a ???=1b a ???-=-=21b a ???=1b a ???-==12b a ???=-=12b a ???-=1b a 显然)2)(2(5i i -+= 由(2)知52=β的β是素元,故知5是素元之积 (4)5的单一分解 )21)(21(5i i -+=)21)(1)(21)(1(i i --+-= )21)()(21)(()21)()(21)((i i i i i i i i --+=-+-= i ±±,1均为单位 2 唯一分解环 1.证明本节的推论 证 本节的推论是; 一个唯一分解环I 的 n 个元n a a a ,,21 在I 里一定有最大公因子 , n a a a ,,21 的两个最大公因子只能查一个单位因子。 用数学归纳法证 当2=n 时,由本节定理3知结论正确。 假定对1-n 个元素来说结论正确。

近世代数习题解答张禾瑞二章

近世代数习题解答 第二章群论 1群论 1. 全体整数的集合对于普通减法来说是不是一个群? 证不是一个群,因为不适合结合律. 2. 举一个有两个元的群的例子. 证G={1,-1}对于普通乘法来说是一个群. 3. 证明,我们也可以用条件1,2以及下面的条件 4,5'来作群的定义: 4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立 5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa e A_1 证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e 1 1 1 ' 所以(a a)e = (a a)(a a ) 即a a = e (2)一个右恒等元e 一定也是一个左恒等元,意即 由ae = a 得ea = a 即ea = a 这样就得到群的第二定义. (3)证ax二b可解 取x = a 这就得到群的第一定义. 反过来有群的定义得到4,5'是不困难的. 2单位元,逆元,消去律 1. 若群G的每一个元都适合方程x2二e,那么G就是交换群. 证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba . 2. 在一个有限群里阶大于2的元的个数是偶数. _1 n —1 n n —1 —1 证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e 若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶 _4 _4 2 (2) a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾 (3) a b 贝U a「b' 斗

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

近世代数学习系列二十二 群论与魔方

群论与魔方:群论基础知识 要了解破解魔方攻略背后的数学原理,「群论」(Group Theory)是必不可少的知识,本章介绍群论的基础知识。群论是「抽象代数学」(Abstract Algebra)的重要分支,是有关「群」(Group)的理论。抽象代数学跟一般代数学或线性代数学不同,其要旨不是解方程或方程组,而是研究各种代数结构的特性,「群」就是一种非常重要的代数结构。 群的基本定义 设有一个集合G和G上的「二元运算」(Binary Operation)「?」。如果G 的元素和「?」满足以下「公理」(Axiom),我们便说(G, ?)构成一个「群」(为了行文方便,有时可以把「群(G, ?)」径直称为「群G」): 1.「封闭性」(Closure)-对G中任何两个元素a和b而言,a ? b ∈ G。 2.「结合性」(Associativity)-对G中任何三个元素a、b和c而言,(a ? b) ? c = a ? (b ? c)。 3.「单位元」(Identity)-存在G中一个元素e (称为「单位元」),使得对于G中任何元素a而言,e ? a = a ? e = a。 4.「逆元」(Inverse)-对于G中任何元素a而言,都有G中的元素a?1 (称为a的「逆元」),使得a ? a?1 = a?1? a = e。 请注意由于「?」满足结合性,在写出三个或以上元素之间的运算时,可以不用括号,即写成a ? b ? c。如果某个运算涉及同一个元素,我们可以像一般乘法那样采用「指数」记法,例如可以把a ? a ? a写成a3。我们还可以仿照一般乘法规定零指数和负指数的定义如下:a0= e,a?n= (a?1)n。另外,可以证明上述定义中的「单位元」是唯一的,而且对于G中任一元素a而言,其「逆元」a?1也是唯一的。根据「封闭性」,若a和b是G的元素,则(a ? b)也是G 的元素,因此我们也可以谈论(a ? b)的逆元,而且这个逆元满足 (a ? b)?1 = b?1? a?1(1)

《近世代数》模拟试题1及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 的群,试求中G 中下列各个元素1213,,0101c d cd ???? == ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

近世代数之我见

一对课程的看法: 1作用与意义 近世代数的理论和方法不仅在数学理论本身中占有及其重要的地位,而且在其他学科中也有着广泛的应用,如理论物理、计算机科学等。其研究的方法和观点,对这些学科产生了越来越大的影响。 本课程旨在使学生对近世代数的基础理论和基本的思想、方法有一个初步的了解,为学生进一步的学习打下必要的基础。要求学生能熟练掌握群、环、域的基本理论,包括其定义和基本的性质,并对模的概念有所理解。要求学生对数学中的公理化思想有初步认识。 2.本课程的主要内容 本课程讲授四类典型的代数系统:集合与运算、群、环和域。其内容包括: 群的各种定义,循环群,n阶对称群,变换群,子群与陪集,Lagrange定理,不变子群的定义及其性质,群同态和同构基本定理,能够计算群元素的阶; 环、域、理想、唯一分解环的定义,环中的可逆元,零因子、素元的定义,判别唯一分解环的方法。 3.教学重点与难点 重点:群、正规子群、环、理想、同态基本原理。 难点:商群、商环。 二、对教法的看法: “近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。为此,下面介绍五种常用的学习方法。 一、通过例子来加深对基本理论的理解 针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。例:设R是所有偶数构成的环,Z表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。 二、通过变换角度来寻求问题的解法 通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。下面举例说明这种方法:

近世代数的基础知识

近世代数的基础知识 初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。 3.1 集合、映射、二元运算和整数 3.1.1 集合 集合是指一些对象的总体,这些对象称为集合的元或元素。“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ?”表示“x 不是集合A 的元”。 设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈?)均有B a ∈,则称A 是B 的子集,记作B A ?。若B A ?且A B ?,即A 和B 有完全相同的元素,则称它们相等,记作B A =。若B A ?,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ?。 不含任何元素的集合叫空集,空集是任何一个集合的子集。 集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。例如: {}c b a A ,,=; {})(x p x S =,其中)(x p 表示元素x 具有的性质。 本文中常用的集合及记号有: 整数集合{} ,3,2,1,0±±±=Z ; 非零整数集合{}{} ,3,2,10\±±±==* Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ; 有理数集合Q ,实数集合R ,复数集合C 等。 一个集合A 的元素个数用A 表示。当A 中有有限个元素时,称为有限集,否则称为无限集。用∞=A 表示A 是无限集,∞

近世代数习题与答案

近世代数习题与答案 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、 选择题(本题共5小题,每小题3分,共15分) 一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。 (A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i } 2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。 (A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。 (A) (2),(3) (B) (2) (C)(3) 4、若Q 是有理数域,则(Q(2):Q)是( )。 (A) 6 (B) 3 (C) 2 5、下列不成立的命题是( )。 (A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内) 1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。 2、F 是域,则[](()) F x f x 是域当且仅当 。 3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~: A ~ B ?秩(A )=秩(B ),则这个等价关系决定的等价类有________个。 4、6次对称群S 6中,(1235)-1(36)=____________。 5、12的剩余类环Z 12的可逆元是 。 三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”) 1、设G 是群,?≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( ) 2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。 ( ) 3、商环6Z Z 是一个域。 ( )

高等代数3章习题

第三章 线性方程组 自我检测题 一.判断题 1.含零向量的向量组线性相关. 2.若一向量组的一个部分组线性相关,则它也线性相关. 3.线性无关向量组的任何一个部分组均线性无关. 4. 任一向量组都有极大线性无关向量组. 5. 一向量组的极大线性无关组是唯一的. 6.方程个数小于未知数个数的齐次线性方程组必有非零解. 7. 向量组线性相关的充要条件是该向量组的秩小于它所含向量的个数. 8.若向量组123,,ααα线性相关,则3α可由12,αα线性表出. 9. 若向量12,αα线性相关, 12,ββ线性相关, 1122,αβαβ++线性相关. 10. 若向量组123,,ααα线性无关,则12αα+,23αα+,31αα+也线性无关. 11. 如果向量组12,,,n ααα 线性相关,则12αα+,23αα+,...…, 1n n αα-+,1n αα+线性相关。 12.若向量12,αα线性无关, 3α不能由12,αα线性表出,则向量组123,,ααα线性无关. 13.若n 阶矩阵A 的秩r

近世代数学习系列二十一 群论与物理的问题

群论问题与物理问题(和众多牛人的讨论总结) 转载自https://www.wendangku.net/doc/a710073757.html,/s/blog_635226d80100on7o.html 群:终极理论之梦 2009-11-30 一、与尤亦庄的讨论 2009/9/28 在2009-09-27,"Yi-Zhuang You" 写道: 1.有一本高等代数的书中说“幺正”是指矩阵与它的逆之积等于1,而“正交”则是之积等于单位阵 E. 看书认真一点,我敢保证书上不是这样定义的。任何矩阵和它的逆之积都是1,这里的1不是数字,1 = E 都是是代表单位阵的符号。我不给你重复正确的定义了,你自己再去认真看,我只强调一下“幺正”和“正交”的区别就像复数和实数的区别一样,你要是体会清楚这个类比了,那你就算懂了。 2.有一本书说U代表酉群。为什么用“酉”这个词?另外,U既代表“幺正”,又代表“酉”,是不是说二者同义?“幺正”=“酉”,这两个词是同一个英文单词(unitary)的不同翻译,前者是意译,后者是音译,这就是区别。还说“正交”对应实数域上的线性空间,而“酉”是推广到复数域上的结果。那么与第1条比较,发现从实数域扩展到复数域时,矩阵与它的逆之积从E变为1.这说明什么?矩阵和群什么关系?“矩阵”中的概念是否可以移用到“群”中来? ok,这里你已经看到这个类比了,实数和复数的关系。那么与第一条相比,你别瞎比了,第一条的定义是错的,E 和 1没有任何区别,他们都是单位阵的记号,不同的书不一样而已。O和U的区别不是 E和1的区别,而是转置(transpose)和厄米共轭(hermitian conjugate)的区别。 3.Hermite(埃尔米特)的意思是共轭转置。这与量子力学中可观测的“厄米算符”有什么区别?厄米算符(Hermitian operator)是这样一类特殊的算符,特殊之处在于它的厄米共轭恰好就是它自己本身。这个出现在“酉”中,与“幺正”的联系是什么?再说一次,“酉”和“幺正”是同一个词的不同翻译,它们同义。“幺正”和“厄米”的关系是:幺正阵= exp (i×厄米阵),就类比于复数(幺正)和它的幅角(厄米)的关系。 4.O群经常用来讨论转动。那么用什么讨论平移呢?为什么转动那么特殊,使得讨论10维宇宙之类问题用的是O群而不是别的?用平移群讨论平移,用转

近世代数习题解答张禾瑞二章

近世代数习题解答 第二章 群论 1 群论 1. 全体整数的集合对于普通减法来说是不是一个群? 证 不是一个群,因为不适合结合律. 2. 举一个有两个元的群的例子. 证 }1,1{-=G 对于普通乘法来说是一个群. 3. 证明, 我们也可以用条件1,2以及下面的条件 ''5,4来作群的定义: '4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立 '5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1 证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1 得 e a a =-1 因为由'4G 有元'a 能使e a a =-'1 所以))(()('111a a a a e a a ---= 即 e a a =-1 (2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea = 即 a ea = 这样就得到群的第二定义. (3) 证 b ax =可解 取b a x 1-= 这就得到群的第一定义. 反过来有群的定义得到''5,4是不困难的. 2 单位元,逆元,消去律 1. 若群G 的每一个元都适合方程e x =2,那么G 就是交换群. 证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有 ba a b ab ab ===---111)(. 2. 在一个有限群里阶大于2的元的个数是偶数. 证 (1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n n n ===?=---111)()( 若有n m ? 使e a m =-)(1 即 e a m =-1)(因而 1-=e a m e a m =∴ 这与a 的阶是n 矛盾.a Θ的阶等于1-a 的阶 (2) a 的阶大于2, 则1-≠a a 若 e a a a =?=-21 这与a 的阶大

近世代数习题解答(张禾瑞)三章

近世代数习题解答 第三章 环与域 1 加群、环的定义 1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的. 证 (ⅰ)若S 是一个子群 则S b a S b a ∈+?∈, '0是S 的零元,即a a =+'0 对G 的零元,000' =∴=+a a 即.00S a a s ∈-=-∴∈ (ⅱ)若S b a S b a ∈+?∈, S a S a ∈-?∈ 今证S 是子群 由S S b a S b a ,,∈+?∈对加法是闭的,适合结合律, 由S a S a ∈-?∈,而且得S a a ∈=-0 再证另一个充要条件: 若S 是子群,S b a S b a S b a ∈-?∈-?∈,, 反之S a a S a a S a ∈-=-?∈=-?∈00 故S b a b a S b a ∈+=--?∈)(, 2. },,,0{c b a R =,加法和乘法由以下两个表给定: + 0 a b c ? 0 a b c 0 0 a b c 0 0 0 0 0 a a 0 c b a 0 0 0 0 b b c 0 a b 0 a b c c c b a 0 c 0 a b c 证明,R 作成一个环 证 R 对加法和乘法的闭的. 对加法来说,由.9.2习题6,R 和阶是4的非循环群同构,且为交换群. 乘法适合结合律Z xy yz x )()(= 事实上. 当0=x 或a x =,)(A 的两端显然均为0. 当b x =或x=c,)(A 的两端显然均为yz .

这已讨论了所有的可能性,故乘法适合结合律. 两个分配律都成立xz xy z y x +=+)( zx yx x z y +=+)( 事实上,第一个分配律的成立和适合律的讨论完全一样, 只看0=x 或a x =以及b x =或c x =就可以了. 至于第二个分配律的成立的验证,由于加法适合交换律,故可看 0=y 或a y = (可省略a z z ==,0的情形)的情形,此时两端均为zx 剩下的情形就只有 0,0)(=+=+=+x x bx bx x b b 0,0)(=+=+=+x x cx cx x c c 0,0)(=+=+==+x x cx bx ax x c b ∴R 作成一个环. 2 交换律、单位元、零因子、整环 1. 证明二项式定理 n n n n n b b a a b a +++=+- 11)()( 在交换环中成立. 证 用数学归纳法证明. 当1=n 时,显然成立. 假定k n =时是成立的: k i i k k i k k k k b b a b a a b a +++++=+-- )()()(11 看1+=k n 的情形)()(b a b a k ++ ))()()((11b a b b a b a a k i i k k i k k k ++++++=-- 1111111)]()[()()(++--+++++++++=+k i i k k i k i k k k k b b a b a a b a 1111 11)()(+-+++++++++=k i i k k i k k k b b a b a a (因为)()()(11k r k r k r -++=) 即二项式定理在交换环中成立. 2. 假定一个环R 对于加法来说作成一个循环群,证明R 是交换环. 证 设a 是生成元 则R 的元可以写成 na (n 整数) 2 )]([)]([))((nma aa m n ma a n ma na === 2 ))((mna na ma =

近世代数习题解答5

近世代数习题解答 第五章 扩域 1 扩域、素域 1. 证明:)(S F 的一切添加S 的有限子集于F 所得的子域的并集是一个域. 证 一切添加S 的有限子集于F 所得的子域的并集为 ∑ 1)若 ∑∈b a , 则一定有),,(2,1n F a ααα ∈ ),,(2,1m F b βββ ∈易知m n F b a βββααα,,,,,,(2121 ∈- 但∑?),,,,,,(2121m n F βββααα 从而∑∈-a b 2)若,,∑∈b a 且0≠b 则 ),,,(21m F b βββ ∈- 从而有∑?∈-),,,,,,(21211m n F ab βββααα 2 单扩域 1. 令E 是域F 的一个扩域,而F a ∈证明 a 是F 上的一个代数元,并且 证 因0=-a a 故a 是F 上的代数元.其次,因F a ∈,故F a F ?)(易见F a F ?)(,从而F a F =)( 2.令F 是有理数域.复数i 和11 2-+i i 在F 上的极小多项式各是什么? )(i F 与)112(-+i i F 是否同构? 证 易知复数i 在F 上的极小多项式为11 2,12-++i i x 在F 上的极小多项式为252+-x x 因)11 2()(-+=i i F i F 故这两个域是同构的. 3.详细证明,定理3中a 在域F 上的极小多项式是)(x p 证 令?是)(x F 中的所有适合条件0)(=a f 的多项式作成)(x f 的集合. 1) ?是)(x F 的一个理想 (ⅰ)若 ?∈)(),(x g x f 则0)(,0)(==a g a f 因而0)()(=-a g a f 故??-)()(x g x f ⅱ)若)(,)(x h x f ?∈是)(x F 的任一元 那么0)()(=a f a h 则?∈)()(x f x h 2)是一个主理想 设 )(1x p 是?中a !的极小多项式 那么,对?中任一)(x f 有

近世代数基础 第二章 群论

第二章群论 群是最简单,最重要,有广泛应用的代数系统。 在本章里主要研究具有某种特殊的群存在,结构和构造等。学习中我们从群的定义开如直到同态基本定理和不变子群,共讲十一个问题,它是以下几章的基础,本章开头提出的十一问题是: 一、群在的定义及其基本性质七、循环群; 二、单位元、逆元、消去律;八、子群; 三、有限群的另一定义;九、子群的陪集; 四、群的同态;十、不变子群、商群; 五、变换群;十一、同态与不变子群。 六、置换群; §2.1 群的定义 ●课时安排约1课时 ●教学内容《近世代数基础》张禾瑞著P31-35 群的思想:第一,它有满足结合律的代数运算;第二,这个代数运算具有逆运算。 定义:一个非空集合G对一个叫做乘法的代数过算来说作成一个群,则等价于下列条件: (1)(G,·)有单位元,且G中每一个元有逆元。 (2)(G,·)有左单位元,且G 中每个元有左逆元; (3)(G,·)有右单位元,且G 中每个元有右逆元; (4)a,b∈G,方程a.x=b和y.a=b在G中都有解,是一个有限整数;不然的话,这个群叫做无限群,有限群的元素个数叫做这个群的阶。 定义:对 a,b∈G来说,满足ab=ba条件的群叫做交换群。 例 1:证明若G包含一个元g,且乘法是gg=g,则G对于这个第六法来说作成一个群。 例2:设G是一个全体整数的集合,证明G对于普通加法来说作成一个群。 例3:设G是所有不等于零的整数集合,证明G对于普通乘法来说不作成一个群。 习题选讲:P38 1,3 ●教学重点群的定义,基本特点,群的思想方法,群的判定常用的方法。 ●教学难点群定义,群的判定常用的方法,利用群的定义证明性质和判定。 ●教学要求理解群的定义,掌握群定义中的四个等价条件,和群的判定方法,多训练(做题)。 ●布置作业 P35 1,3(2) ●教学辅导

抽象代数复习题及答案

《抽象代数》试题及答案 本科 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案, 并将正确答案的序号填在题干的括号。每小题3分) 1. 设Q 是有理数集,规定f(x)= x +2;g(x)=2 x +1,则(fg )(x)等于( B ) A. 2 21x x ++ B. 23x + C. 2 45x x ++ D. 2 3x x ++ 2. 设f 是A 到B 的单射,g 是B 到C 的单射,则gf 是A 到C 的 ( A ) A. 单射 B. 满射 C. 双射 D. 可逆映射 3. 设 S 3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S 3中与元素(1 32)不能交换的元的个数是( C )。 A. 1 B. 2 C. 3 D. 4 4. 在整数环Z 中,可逆元的个数是( B )。 A. 1个 B. 2个 C. 4个 D. 无限个 5. 剩余类环Z 10的子环有( B )。 A. 3个 B. 4个 C. 5个 D. 6个 6. 设G 是有限群,a ∈G, 且a 的阶|a|=12, 则G 中元素8 a 的阶为( B ) A . 2 B. 3 C. 6 D. 9 7.设G 是有限群,对任意a,b ∈G ,以下结论正确的是( A ) A. 111 ) (---=a b ab B. b 的阶不一定整除G 的阶 C. G 的单位元不唯一 D. G 中消去律不成立 8. 设G 是循环群,则以下结论不正确...的是( A ) A. G 的商群不是循环群 B. G 的任何子群都是正规子群 C. G 是交换群 D. G 的任何子群都是循环群 9. 设集合 A={a,b,c}, 以下A ?A 的子集为等价关系的是( C ) A. 1R = {(a,a),(a,b),(a,c),(b,b)} B. 2R = {(a,a),(a,b),(b,b),(c,b),(c,c)} C. 3R = {(a,a),(b,b),(c,c),(b,c),(c,b)} D. 4R = {(a,a),(a,b),(b,a),(b,b),(b,c),(c,b)} 10. 设f 是A 到B 的满射,g 是B 到C 的满射,则gf 是A 到C 的 ( B ) A. 单射 B. 满射 C. 双射 D. 可逆映射 11. 设 S 3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S 3中与元素(1 2)能交换的元的个数是( B )。 A. 1 B. 2 C. 3 D. 4 12. 在剩余类环8Z 中,其可逆元的个数是( D )。 A. 1个 B. 2个 C. 3个 D. 4个 13. 设(R ,+,· )是环 ,则下面结论不正确的有( C )。

我眼中的伽罗华 近世代数 群论

我对伽罗华的看法 有人认为,数学已经是一门古老的学科,笛卡尔创造解析学和牛顿发明微积分,都是十七世纪的事情。德国著名数学家、物理学家、天文学家高斯曾说过,数学是科学之王,那些被我们熟知的数学大家,也是年老资深,阅历成就无数,历史的厚重让数学给人一种只可远观的感觉。伽罗华的出现,为数学增添了悲情色彩,也为数学注入了年轻与热情。 在19世纪初,有一些数学问题一直困扰着当时的数学家们,而如何求解高次方程就是其中之一,年轻的伽罗瓦使用群论的想法去讨论方程式的可解性,系统化地阐释了为何五次以上之方程式没有公式解,而四次以下有公式解。他还漂亮地证明高斯的论断:若用尺规作图能作出正 p 边形,p 为质数(所以正十七边形可做图),解决了古代三大作图问题中的两个:“不能任意三等分角”,“倍立方不可能”。 这是伽罗华在二十岁就发现的理论,而他此时对数学的研究,仅仅五年。伽罗华无疑是数学界的奇才,然而回顾他短暂的一生,我们感受到的却是一种天才的孤独与悲哀,论文多次被丢失,遭受牢狱之苦,最终在决斗中结束了他二十一岁年轻的生命,伽罗华的那些卓越超群的思想大大地领先与他同时代人们的思考,以至于在他死后许多年,他的理论也未能为当代数学家所接受。 可以想象在19世纪初,有这样一位年轻人,一次又一次想把自己的思想传播出去却听不到回音,一次又一次送出自己的论文,却都石沉大海。怀着对数学的热爱,对事业必胜的信念,他坚持着,孤独着。查阅了许多有关伽罗华的资料,千篇一律。的确,他充满悲情的生命轨迹已经定格,而人们也对他卓越的数学才能与数学成就给予了高度评价。第一次知道伽罗华的时候,我是很震撼的,为他天才的数学头脑震撼,更多的是对他生命过早终结的惋惜;当我再次读起他的故事的时候,也是很震撼的,被他天才的数学才能所震撼,被他不羁的人格震撼,如果不那么早陨落,或许数学界将提早进步很多年。只是历史没有假设,历史也不会因为某个人而改变,就像没有人会因为知道自己会改变历史而改变自己的人生轨迹。伽罗华是有遗憾的,历史尊重了伽罗华最后的选择。 没有那么多界限,没有那么多遥不可及,伽罗华有天才的数学头脑,而我看到了他对真理的坚持、对事业的热爱和那颗坚持不懈坚定不移的心。也许正是由于年轻,他才敢于并能够以崭新的方式去思考,去描述他的数学世界。也正因如此,他才受到了冷遇。还好历史的曲折并不能埋没真理的光辉,由伽罗华开始的群论,还将继续发展下去,不仅是近代数学,现代许多学科分支中,都有群论的身影。

相关文档