文档库 最新最全的文档下载
当前位置:文档库 › 系统的可靠性设计.

系统的可靠性设计.

硬件系统的可靠性设计

硬件系统的可靠性设计

目录 1 可靠性概念 (4) 1.1 失效率 (4) 1.2 可靠度 (5) 1.3 不可靠度 (6) 1.4 平均无故障时间 (6) 1.5 可靠性指标间的关系 (6) 2 可靠性模型 (7) 2.1 串联系统 (7) 2.2 并联系统 (9) 2.3 混合系统 (11) 2.4 提高可靠性的方法 (12) 3 可靠性设计方法 (12) 3.1 元器件 (12) 3.2 降额设计 (13) 3.3 冗余设计 (14) 3.4 电磁兼容设计 (15) 3.5 故障自动检测与诊断 (15) 3.6 软件可靠性技术 (15) 3.7 失效保险技术 (15) 3.8 热设计 (16) 3.9 EMC设计 (16) 3.10 可靠性指标分配原则 (17) 4 常用器件的可靠性及选择 (19) 4.1 元器件失效特性 (19) 4.2 元器件失效机理 (21) 4.3 元器件选择 (23) 4.4 电阻 (23) 4.5 电容 (26) 4.6 二极管 (30) 4.7 光耦合器 (31) 4.8 集成电路 (32) 5 电路设计 (38) 5.1 电流倒灌 (38) 5.2 热插拔设计 (40) 5.3 过流保护 (41) 5.4 反射波干扰 (42) 5.5 电源干扰 (49) 5.6 静电干扰 (51) 5.7 上电复位 (52) 5.8 时钟信号的驱动 (53) 5.9 时钟信号的匹配方法 (55) 6 PCB设计 (60)

6.1 布线 (60) 6.2 去耦电容 (62) 7 系统可靠性测试 (62) 7.1 环境适应性测试 (62) 7.2 EMC测试 (63) 7.3 其它测试 (63) 8 参考资料 (64) 9 附录 (64)

可靠性设计准则

可靠性设计准则 1、新技术采用准则: 实施合理的继承性设计,在原有成熟产品的基础上开发、研制新产品; 尽量不使用不成熟的新技术、新工艺及新材料; 新技术的采用必须有良好的预研基础,并按规定进行评审和鉴定。 2、简化设计准则: 分析权衡产品功能,合并相同或相似功能,消除不必要功能; 在满足技术指标前提下尽量简化设计方案,减少零部件的数量; 尽量减少执行同一或相近功能的零部件、元器件数量; 优选标准化程度高的零部件、紧固件、元器件、连接件等; 最大限度采用通用组件、零部件、元器件,并尽量减少其品种; 必须使故障率高、易损坏、关键件的单元具有良好互换性和通用性; 产品修改时,不应改变其安装和连接方式以及有关部位的尺寸,使新旧可互换;设计须尽量使电路、结构简单的同时不给其他电路、结构增加不合理应力。 3、热设计准则: 元器件布局时应考虑周围零部件热辐射影响,将发热较大器件尽可能分散; 将热敏感器件远离热源或采取隔离(如电容器); 尽量采用温度漂移小的器件; 尽量降低接触面的热阻——加大热传导的面积、增加传导器件之间的接触压力、接触面应平整光滑且必要时可在发热体表面涂上散热图层以增加黑度系数、在传导路径中不应有绝热或隔热件; 应选用导热系数大的材料制造传导材料; 尽量缩短热传导的路径(加大横截面); 接近高温区的所有器件均应采取防护措施(间隙及使用耐高温绝缘材料); 发热器件应尽可能置于上方,条件允许应处于气流通道上; 发热量较大或电流较大元器件应安装散热器并远离其他器件; 尽可能利用金属机箱或底盘散热。

4、容差设计准则: 设计应考虑零部件元器件的制造容差、温漂、时漂的影响; 对系统参数影响较大的器件应选用低允差和高稳定性器件; 电路的阻抗匹配参数应保证在极限温度情况下电路工作稳定; 对稳定性要求高的电路,应通过容差分析进行参数设计; 正确选择元器件的工作点,使温度和使用环境的变化对电路影响最小。 5、机械环境设计准则: 应使电路结构对机械环境的影响最小; 元器件、材料的特性应满足产品的机械环境要求; 细长或较重的元器件应予以固定,以防振动疲劳断裂; 对振动和冲击强烈的部位应进行减震设计; 接插件等可移动的点接触部位,应加固和锁紧,以免振动时接触不良; 零部件应避免悬挂式安装,以防振动疲劳断裂; 供导线通过的金属隔板孔必须设置绝缘套,导线不得沿锐边、棱角铺设,以防磨损; 对于印制电路板应加固和锁紧,以免在振动时产生接触不良和脱开; 继电器安装应使触电的动作方向与衔铁的吸合方向相同,尽量不要与振动方向一致; 接插头处尽可能有支撑物; 在绕曲与振动环境下,应尽量使用软导线。 6、电磁兼容设计准则: 应采用良导体(如铜、铝)作为高频电场的屏蔽材料; 应采用导磁材料(如铁)作为低频磁场的屏蔽材料; 多重屏蔽能提高屏蔽效果和扩大屏蔽的频率范围; 有屏蔽要求的设备,应注意开口和间断处并做屏蔽处理; 金属表面之间必须紧密接触是获得良好搭接的关键; 搭接最好选用相同材料,选用不同材料时要注意搭接腐蚀问题; 在需要的场合,必须保护搭接免受潮气和其它腐蚀作用; 应把搭接片直接搭接在基体构件上,搭接片应能承受流过的电流;

硬件系统可靠性设计规范

硬件系统可靠性设计规范 一、概论 可靠性的定义:产品或系统在规定条件下和规定时间内完成规定功能的能力 可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷电路板布线、通道隔离等。有完善的抗干扰措施,是保证系统精度、工作正常和不产生错误的必要条件。设备可靠性设计规范的一个核心思想是监控过程,而不是监控结果。 二、可靠性设计方法 1、元器件:构成系统的基本部件,作为设计与使用者,主要是保证所选用的元器件的质量或可靠性指标满足设计的要求 2、降额设计:使电子元器件的工作应力适当低于其规定的额定值,从而达到降低基本故障率,保证系统可靠性的目的。幅度的大小可分为一、二、三级降额,一级降额((实际承受应力)/(器件额定应力) < 50%的降额),建议使用二级降额设计方法,一级降额<70% 3、冗余设计:也称为容错技术或故障掩盖技术,它是通过增加完成同一功能的并联或备用单元(包括硬件单元或软件单元)数目来提高系统可靠性的一种设计方法,实现方法主要包括:硬件冗余;软件冗余;信息冗余;时间冗余等 4、电磁兼容设计:系统在电磁环境中运行的适应性,即在电磁环境下能保持完成规定功能的能力。电磁兼容性设计的目的是使系统既不受外部电磁干扰的影响,也不对其它电子设备产生电磁干扰。硬件措施主要有滤波技术、去耦电路、屏蔽技术、接地技术等;软件措施主要有数字滤波、软件冗余、程序运行监视及故障自动恢复技术等 5、故障自动检测及诊断 6、软件可靠性设计:为了提高软件的可靠性,应尽量将软件规范化、标准化、模块化 7、失效保险技术 8、热设计 9、EMC设计:电磁兼容(EMC)包括电磁干扰(EMI)和电磁敏感度(EMS)两个方面 三、可靠性设计准则

系统总体设计原则汇总

系统总体设计原则汇总 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

系统总体设计原则 为确保系统的建设成功与可持续发展,在系统的建设与技术方案设计时我们遵循如下的原则:1、统一设计原则统筹规划和统一设计系统结构。尤其是应用系统建设结构、数据模型结构、数据存储结构以及系统扩展规划等内容,均需从全局出发、从长远的角度考虑。 2、先进性原则系统构成必须采用成熟、具有国内先进水平,并符合国际发展趋势的技术、软件产品和设备。在设计过程中充分依照国际上的规范、标准,借鉴国内外目前成熟的主流网络和综合信息系统的体系结构,以保证系统具有较长的生命力和扩展能力。保证先进性的同时还要保证技术的稳定、安全性。 3、高可靠/高安全性原则系统设计和数据架构设计中充分考虑系统的安全和可靠。4、标准化原则系统各项技术遵循国际标准、国家标准、行业和相关规范。5、成熟性原则系统要采用国际主流、成熟的体系架构来构建,实现跨平台的应用。6、适用性原则保护已有资源,急用先行,在满足应用需求的前提下,尽量降低建设成本。7、可扩展性原则信息系统设计要考虑到业务未来发展的需要,尽可能设计得简明,降低各功能模块耦合度,并充分考虑兼容性。系统能够支持对多种格式数据的存储。 业务应用支撑平台设计原则 业务应用支撑平台的设计遵循了以下原则:1、遵循相关规范或标准遵循J2EE、XML、JDBC、EJB、SNMP、HTTP、TCP/IP、SSL等业界主流标准2、采用先进和成熟的技术系统采用三层体系结构,使用XML规范作为信息交互的标准,充分吸收国际厂商的先进经验,并且采用先进、成熟的软硬件支撑平台及相关标准作为系统的基础。 3、可灵活的与其他系统集成系统采用基于工业标准的技术,方便与其他系统的集成。4、快速开发/快速修改的原则系统提

系统可靠性设计与分析

可靠性设计与分析作业 学号:071130123 姓名:向正平一、指数分布的概率密度函数、分布函数、可靠度函数曲线 (1)程序语言 t=(0:0.01:20); Array m=[0.3,0.6,0.9]; linecolor=['r','b','y']; for i=1:length(m); f=m(i)*exp(-m(i)*t); F=1-exp(-m(i)*t); R=exp(-m(i)*t); color=linecolor(i); subplot(3,1,1); title('指数函数概率密度函数曲线'); plot(t,f,color); hold on subplot(3,1,2); title('指数函数分布函数函数曲线'); plot(t,F,color); hold on subplot(3,1,3); title('指数指数分布可靠度函数曲线 plot(t,R,color); hold on end (3)指数分布的分析 在可靠性理论中,指数分布是最基本、最常用的分布,适合于失效率为常数 的情况。指数分布不但在电子元器件偶然失效期普遍使用,而且在复杂系统和整 机方面以及机械技术的可靠性领域也得到使用。 有图像可以看出失效率函数密度f(t)随着时间的增加不断下降,而失效率随 着时间的增加在不断的上升,可靠度也在随着时间的增加不断地下降,从图线的 颜色可以看出,随着m的增加失效率密度函数下降越快,而可靠度的随m的增加 而不断的增加,则失效率随m的增加减小越快。 在工程运用中,如果某零件符合指数分布,那么可以适当增加m的值,使零 件的可靠度会提升,增加可靠性。 二、正态分布的概率密度函数、分布函数、可靠性函数、失效率函数曲线 (1)程序语言 t=-10:0.01:10; m=[3,6,9]; n=[1,2,3]; linecolor=['r','b','y'];

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

浅谈软件系统可靠性

浅谈软件系统可靠性 1 概述 近年来,随着计算机在军用与民用产品上的应用日益增多,软件缺陷所引发的产品故障,甚至灾难性事故也越来越严重,软件故障已成为高新技术产品发展的瓶颈。在这种情况下,一旦计算机系统发生故障,则其效益就会大幅度地消减,甚至完全丧失,从而使社会生产和经济活动陷入不可收拾的混乱状态。因此可以说,计算机系统的高可靠性是实现信息化社会的关键。 计算机系统硬件可靠性方面已有六十余年的发展历史,冗余技术、差错控制、故障自动检测、容错技术和避错技术等可靠性设计技术已经成熟。相比之下,软件可靠性的研究只有三十几年的发展历史,加上软件生产基本上仍处于作坊式的手工制作,其提高软件可靠性的技术与管理措施还处于十分不完善的状况。20 世纪70 年代末至80 年代初,软件可靠性的研究集中于对软件可靠性模型进行比较和选择。90 年代以来,软件可靠性研究工作进展较快,主要集中在软件可靠性设计、软件可靠性测试与管理以及软件可靠性数据的收集这三个方面。 2 软件可靠性的基本概念 2.1 软件可靠性的定义 1983年,美国IEEE计算机学会软件工程技术委员会对软件可靠性的定义如下: a)在规定的条件下,在规定的时间内,软件不引起系统失效的概率,该概率是系统输入和系统使用的函数,也是软件中存在的错误的函数;系统输入将确定是否会遇到已存在的错误。 b)在规定的时间周期内,在所述条件下程序执行所要求的功能的能力。 软件可靠性定义中提到的“规定的条件”和“规定的时间”,在工程中有重要的意义。 定义中的“时间”有3种度量。第一种是日历时间,指日常生活中使用的日、周、月和年等计时单元;第二种是时钟时间,指从程序运行开始到运行结束所用的时、分、秒;第三种是执行时间,指计算机在执行程序时实际占用的CPU 时间。 定义中所指的“条件”,是指环境条件,包括了与程序存储、运行有关的计算机及其操作系统。 2.2 影响软件可靠性的主要因素 软件可靠性表明了一个程序按照用户的需求和设计的目标,执行其功能的正确程度。这要求一个可靠的程序应是正确的、完整的、一致的和健壮的。软件可靠性的决定因素是与输入数据有关的软件差错,正是因为软件中的差错引起了软件故障,使软件不能满足需求。影响软件可靠性的因素主要包括: 1、软件开发的支持环境; 2、软件的开发方法;

软件可靠性技术发展与趋势分析

软件可靠性技术发展及趋势分析 1引言 1)概念 软件可靠性指软件在规定的条件下、规定的时间内完成规定的功能的能力。 安全性是指避免危险条件发生,保证己方人员、设施、财产、环境等免于遭受灾难事故或重大损失。安全性指的是系统安全性。一个单独的软件本身并不存在安全性问题。只有当软件与硬件相互作用可能导致人员的生命危险、或系统崩溃、或造成不可接受的资源损失时,才涉及到软件安全性问题。由于操作人员的错误、硬件故障、接口问题、软件错误或系统设计缺陷等很多原因都可能影响系统整体功能的执行,导致系统进入危险的状态,故系统安全性工作自顶至下涉及到系统的各个层次和各个环节,而软件安全性工作是系统安全性工作中的关键环节之一。 因此,软件可靠性技术解决的是如何减少软件失效的问题,而软件安全性解决的是如何避免或减少与软件相关的危险条件的发生。二者涉及的范畴有交又,但不完全相同。软件产生失效的前提是软件存在设计缺陷,但只有外部输入导致软件执行到有缺陷的路径时才会产生失效。因此,软件可靠性关注全部与软件失效相关的设计缺陷,以及导致缺陷发生的外部条件。由于只有部分软件失效可能导致系统进

入危险状态,故软件安全性只关注可能导致危险条件发生的失效。以及与该类失效相关的设计缺陷和外部输入条件。 硬件的失效,操作人员的错误等也可能影响软件的正常运行,从而导致系统进入危险的状态,因此软件安全性设计时必须对这种危险情况进行分析,井在设计时加以考虑。而软件可靠性仅针对系统要求和约束进行设计,考虑常规的容错需求,井不需要进行专门的危险分析。在复杂的系统运行条件下,有时软件、硬件均未失效,但软硬件的交互 作用在某种特殊条件下仍会导致系统进入危险的状态,这种情况是软件安全性设计考虑的重点之一,但软件可靠性并不考虑这类情况。2)技术发展背景 计算机应用范围快速扩展导致研制系统的复杂性越来越高。软硬件密切耦合,且软件的规模,复杂度及其在整个系统中的功能比重急剧上升,由最初的20%左右激增到80%以上。伴随着硬件可靠性的提高,软件的可靠性与安全性问题日益突出。 在军事、航空航天、医疗等领域,核心控制软件的失效可能造成巨大的损失甚至威胁人的生命。1985年6月至1987年1月,Therac-25治疗机发生6起超大剂量辐射事故,其中3起导致病人死亡。1991年海湾战争。爱国者导弹在拦截飞毛腿导弹中几次拦截失败,其直接原因为软件系统未能及时消除计时累计误差。1996年阿里亚娜5型运载火箭由于控制软件数据转换溢出起飞40秒后爆炸,造成经济损

配电可靠性准则及规定

配电系统可靠性准则及规定 一、电力系统可靠性准则的一般概念 所谓电力系统可靠性准则,就是在电力系统规划、设计或运行中,为使发电和输配电系统达到所要求的可靠度满足的指标、条件或规定,它是电力系统进行可靠性评估所依据的行为原则和标准。 电力系统可靠性准则的应用范围为发电系统、输电系统、发输电合成系统和配电系统的规划、设计、运行和维修工作。 电力系统可靠性准则考虑的因素一般有:①电力系统发、输、变、配设备容量的大小;②承担突然失去设备元件的能力和预想系统故障的能力;③对系统的控制、运行及维护;④系统各元件的可靠运行;⑤用户对供电质量和连续性的要求;⑥能源的充足程度,包括燃料的供应和水库的调度;⑦天气对系统、设备和用户电能需求的影响等。其中①、②、⑥等因素可由规划、设计来控制,其余各因素则反映在生产运行过程之中。 电力系统可靠性准则按其所要求的可靠度获取的方法、考虑的系统状态过程及研究问题的性质不同,有以下几种不同的分类方法: 1.1. 概率性准则和确定性准则 电力系统可靠性准则按其要求的可靠度获取的方法,分为概率性准则和确定性准则。 (1)概率性准则。它是以概率法求得数字或参量来表示提供或规定可靠度的目标水平或不可靠度的上限值,如电力(电量)不足期望值或事故次数期望值。因此,概率性准则又称为指标或参数准则。此类准则又被构成概率性或可靠性评价的基础。 (2)确定性准则。它采取一组系统应能承受的事件如发电或输电系统的某些事故情况为考核条件,采用的考核或检验条件往往选择运行中最严重的情况。考虑的前提是如果电力系统能承受这些情况并保证可靠运行,则在其余较不严重的情况下也能够保证系统的可靠运行。因此,确定性准则又称为性质或性能的检验准则。此类准则是构成确定性偶发事件评价的基础。

软件可靠性和安全性设计指南

软件可靠性和安全性设计指南 (仅供内部使用) 文档作者:_______________ 日期:___/___/___ 开发/测试经理:_______________ 日期:___/___/___ 产品经理: _______________ 日期:___/___/___ 管理办:_______________ 日期:___/___/___ 请在这里输入公司名称 版权所有不得复制

软件可靠性和安全性设计指南 1 范围 1 .1主题内容 [此处加入主题内容] 1 .2适用范围 [此处加入适用范围] 2 引用标准 GBxxxx 信息处理——数据流程图、程序流程图、系统流程图、程序网络图和系统资源图的文件编制符号及约定。 GB/Txxx 软件工程术语 GB/Txxxxxx 计算机软件质量保证计划规范 GB/T xxxxx 计算机软件配置管理计划规范 GB/T xxxxx 信息处理——程序构造及其表示的约定 GJBxxxx 系统安全性通用大纲 GJBxxxxx 系统电磁兼容性要求 GBxxxx 电能质量标准大纲 GBxxxxx 电能质量标准术语 3 定义 [此处加入定义] 3 .1失效容限 [此处加入失效容限] 3 .2扇入 [此处加入扇入] 3 .3扇出 [此处加入扇出] 3 .4安全关键信息 [此处加入安全关键信息] 3 .5安全关键功能 [此处加入安全关键功能]

3 .6软件安全性 [此处加入软件安全性] 4 设计准则和要求 4 .1对计算机应用系统设计的有关要求 4 .1.1 硬件软件功能的分配原则 [此处加入硬件软件功能的分配原则] 4 .1.2 硬件软件可靠性指标的分配原则[此处加入硬件软件可靠性指标的分配原则] 4 .1.3 容错设计 [此处加入容错设计] 4 .1.4 安全关键功能的人工确认 [此处加入安全关键功能的人工确认] 4 .1. 5 设计安全性内核 [此处加入设计安全性内核] 4 .1.6 记录系统故障 [此处加入记录系统故障] 4 .1.7 禁止回避检测出的不安全状态[此处加入禁止回避检测出的不安全状态] 4 .1.8 安全性关键软件的标识原则 [此处加入安全性关键软件的标识原则] 4 .1.9 分离安全关键功能 [此处加入分离安全关键功能] 4 .2对硬件设计的有关要求 [此处加入对硬件设计的有关要求] 4 .3软件需求分析 4 .3.1 一般要求 [此处加入一般要求] 4 .3.2 功能需求 [此处加入功能需求] 4.3.2.1输入 [此处加入输入] 4.3.2.2处理 [此处加入处理] 4.3.2.3输出 [此处加入输出]

北京航空航天大学系统可靠性设计分析期末试卷a

1.判断题(共20分,每题2分,答错倒扣1分) (1)()系统可靠性与维修性决定了系统的可用性和可信性。 (2)()为简化故障树,可将逻辑门之间的中间事件省略。 (3)()在系统寿命周期的各阶段中,可靠性指标是不变的。 (4)()如果规定的系统故障率指标是每单位时间0.16,考虑分配余量,可以按每单位时间0.2 进行可靠性分配。 (5)()MTBF和MFHBF都是基本可靠性参数。 (6)()电子元器件的质量等级愈高,并不一定表示其可靠性愈高。 (7)()事件树的后果事件指由于初因事件及其后续事件的发生或不发生所导致的不良结果。 (8)()对于大多数武器装备,其寿命周期费用中的使用保障费用要比研制和生产费用高。 (9)()所有产品的故障率随时间的变化规律,都要经过浴盆曲线的早期故障阶段、偶然故障 阶段和耗损故障阶段。 (10)()各种产品的可靠度函数曲线随时间的增加都呈下降趋势。 2.填空题(共20分,每空2分) (1)MFHBF的中文含义为。 (2)平均故障前时间MTTF与可靠度R(t)之间的关系式是。 (3)与电子、电器设备构成的系统相比,机械产品可靠性特点一是寿命不服从分 布,二是零部件程度低。 (4)在系统所处的特定条件下,出现的未预期到的通路称为。 (5)最坏情况容差分析法中,当网络函数在工作点附近可微且变化较小、容差分析精度要求不 高、设计参数变化范围较小时,可采用;当网络函数在工作点可微且变化较大,或容差分析精度要求较高,或设计参数变化范围较大时,可采用。 (6)一般地,二维危害性矩阵图的横坐标为严酷度类别,纵坐标根据情况可选下列三项之一: 、 或。

3.简要描述故障树“三早”简化技术的内容。(10分)

硬件可靠性及提高

硬件可靠性及提高 一般来说,系统总是由多个子系统组成,而子系统又是由更小的子系统组成,直到细分到电阻器、电容器、电感、晶体管、集成电路、机械零件等小元件的复杂组合,其中任何一个元件发生故障都会成为系统出现故障的原因。因此,硬件可靠性设计在保证元器件可靠性的基础上,既要考虑单一控制单元的可靠性设计,更要考虑整个控制系统的可靠性设计。 1.影响硬件可靠性的因素 (1)元件失效。元件失效有三种:一是元件本身的缺陷,如硅裂、漏气等;二是加工过程、环境条件的变化加速了元件、组件的失效;三是工艺问题,如焊接不牢、筛选不严等。 (2)设计不当。在计算机控制系统中,许多元器件发生的故障并不是元件本身的问题,而是系统设计不合理或元器件使用不当所造成。 在设计过程中,如何正确使用各种型号的元器件或集成电路,是提高硬件可靠性不可忽视的重要因素。 (1)电气性能:元器件的电气性能是指元器件所能承受的电压、电流、电容、功率等的能力,在使用时要注意元器件的电气性能,不能超限使用。(2)环境条件:计算机控制系统的工作环境有时相当恶劣,由于环境因素的影响,不少系统的实验室试验情况虽然良好,但安装到现场并长期运行就频出故障。其原因是多方面的,包括温度、干扰、电源、现场空气等对硬件的影响。因此,设计系统时,应考虑环境条件对硬件参数的影响,元件设备须经老化试验处理。 (3)组装工艺:在硬件设计中,组装工艺直接影响硬件系统的可靠性。由于工艺原因引起的故障很难定位排除,一个焊点的虚焊或似接非接很可能导致整个系统在工作过程中不时地出现工作不正常现象。另外,设计印制电路板时应考虑元器件的布局、引线的走向、引线的分类排序等。

嵌入式软件可靠性设计规范checklist

嵌入式软件可靠性设计规范汇总

43.高级报警显示:红色,1.4Hz~ 2.8Hz,信占比率20%~60%开 44.中级报警显示:黄色,0.4Hz~0.8Hz,信占比率20%~60%开 45.低级报警显示:蓝绿色或者黄色,常开,信占比率100% 46. 高优先级和中优先级的报警上、下限设置值,一旦超出可能引起较严重后果的非合理报警数值区域时,均需加单独的对话弹出框予以提醒操作者 47. 默认的报警预置不允许修改,并提供让用户能恢复到出厂默认报警设置的操作途径 48.做报警日志记录,为以后的故障分析、维修检查或商业纠纷提供依据 与硬件接口的软件49. 数据传输接口的硬件性能限制了数据传输速率的提高,在确定波特率前,要确认硬件所能承受的最高传输率,光耦、485、232、CAN、传输线上有防护 器件(TVS或压敏电阻)的端口 50.硬件端口读进来的数据必须加值域范围的判断 51.硬件端口读取数据,必须加可控时间或次数的有限次限制 52.A/D的位数比前端放大电路的精度要求略高即可,并通过数学计算验证 53. 对运动部件的控制,正向运动突然转向反向运动时,必须控制先正向减速到0,然后再反向加速的控制方式 54. 运动部件停机后、再快速启动的工作控制方式是不允许的。须停机、开机、delay延时、再启动执行机构,以确保执行机构先释放原来运动状态的惯性,然后再从静态下启动 55. 运动部件都有过渡过程特性,软件驱动时的上升沿和下降沿的过渡特性会 直接影响到硬件的安全和执行效果 56. 板卡启动时,先initMCU、然后Delay、然后initIO,以确保各芯片的上电 电源都已经稳定下来再启动工作 57. 对采集自有可能受到干扰的模拟端口输入的数字量数据,一定要加上、下 限、Δ/Δt、规律性干扰的滤波措施三个方面的容错性机制 58. 对数字端口传输数据可以连续传输两遍,以防范随机性偶发干扰,实时性要求较高的,可以连续传三遍,2:1判定 59. 模块之间的数据通信联络,用周期性读取的方式、或请求-应答的方式传送 数据,一旦超出周期性时间要求,或未应答,则判定硬件失效,需有软件的

嵌入式系统最小系统硬件设计

引言 嵌入式系统是以应用为中心,软件硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗等综合性严格要求的专用计算机系统。本文主要研究了基于S3C2410的嵌入式最小系统,围绕其设计出相应的存储器、总电源电路、复位电路等一系列电路模块。 嵌入式最小系统 嵌入式最小系统即是在尽可能减少上层应用的情况下,能够使系统运行的最小化模块配置。以ARM内核嵌入式微处理器为中心,具有完全相配接的Flash电路、SDRAM电路、JTAG电路、电源电路、晶振电路、复位信号电路和系统总线扩展等,保证嵌入式微处理器正常运行的系统,可称为嵌入式最小系统。对于一个典型的嵌入式最小系统,以ARM处理器为例,其构成模块及其各部分功能如图1所示,其中ARM微处理器、FLASH和SDRAM模块是嵌入式最小系统的核心部分。

微处理器——采用了S3C2410A ; 电源模块——本电源运用5V 的直流电源通过两个三端稳压器转换成我们所设计的最小系统所需要的两个电压,分别是3.3V 和1.8V ,3.3V 的给VDDMOP ,VDDIO,VDDADC 等供电,而1.8V 的给VDDi 和RTC 供电。 时钟模块(晶振)——通常经ARM 内部锁相环进行相应的倍频,以提供系统各模块运行所需的时钟频率输入。32.768kHz 给RTC 和Reset 模块,产生计数时钟,10MHz 作为主时钟源; Flash 存储模块——存放嵌入式操作系统、用户应用程序或者其他在系统掉电后需要保存的用户数据等; SDRAM 模块——为系统运行提供动态存储空间,是系统代码运行的主要区域; 复位模块——实现对系统的复位; 1.8V 电源LDD 稳压 SDARM 32MB (use JTAG 接口 REST 电路256字 节E2PROM E2PROM UART 串口功能扩展 32768Hz 晶振RTC 时钟源 S3C2410A-20 (ARM920T) (16KB I-Cache,16KB D-Cache) SDARM 32MB (use NOR FLASH 2MB (use

(完整word版)软件设计基本原则

软件基本设计原则 ??友好、简洁的界面设计 ??结构、导向清晰,符合国际标准 ??强大的综合查询 ??信息数据共享 ??方便及时的信息交流板块 ??准确、可逆的科技工作流模块支持 ??良好的开放性和可扩展性 ??方案生命周期长 设计原则: 设计时考虑的总体原则是:它必须满足设计目标中的要求,并充分考虑本网站的基本约定,建立完善的系统设计方案。 信息系统的实施作为信息化规划的实践和实现,必须遵循信息化规划方案的思想,对规划进行项目实施层面上的细化和实现。 首先必须遵循信息化规划“投资适度,快速见效,成熟稳定,总体最优”的总原则。具体细化到信息系统分析设计和软件系统工程上来。 ●先进性

系统构成必须采用成熟、具有国内先进水平,并符合国际发展趋势的技术、软件产品和设备。在设计过程中充分依照国际上的规范、标准,借鉴国内外目前成熟的主流网络和综合信息系统的体系结构,以保证系统具有较长的生命力和扩展能力。 ●实用性 实用性是指所设计的软件应符合需求方自身特点,满足需求方实际需要。在合法性的基础上,应根据需求方自身特点,设置符合需求方的设计需求。对于需求方的需求,在不违背使用原则的基础上,确定适合需求的设计,满足需求方内部管理的要求。 1)设计上充分考虑当前各业务层次、各环节管理中数据处理的 便利和可行,把满足管理需求作为第一要素进行考虑。 2)采取总体设计、分步实施的技术方案,在总体设计的前提下, 系统实施时先进行业务处理层及低层管理,稳步向中高层管 理及全面自动化过渡。这样做可以使系统始终与业务实际需 求紧密连在一起,不但增加了系统的实用性,而且可使系统建 设保持很好的连贯性; 3)全部人机操作设计均充分考虑不同使用者的实际需要; 4)用户接口及界面设计充分考虑人体结构特征及视觉特征进行 优化设计,界面尽可能美观大方,操作简便实用。 ●可靠性

浅析计算机软件可靠性设计

浅析计算机软件可靠性设计 摘要:本文介绍了软件可靠性设计的基本概念,软件故障产生的机理,软件质量的可靠性参数,并且着重介绍了软件可靠性设计方法。 随着科学技术的不断进步,软件可靠性成为我们关注的一个问题,软件系统规模越做越大越复杂,其可靠性越来越难保证。应用本身对系统运行的可靠性要求越来越高,在一些关键的应用领域,如航空、航天等,其可靠性要求尤为重要,在银行等服务性行业,其软件系统的可靠性也直接关系到自身的声誉和生存发展竞争能力。特别是软件可靠性比硬件可靠性更难保证,会严重影响整个系统的可靠性。在许多项目开发过程中,对可靠性没有提出明确的要求,开发商(部门)也不在可靠性方面花更多的精力,往往只注重速度、结果的正确性和用户界面的友好性等,而忽略了可靠性。在投入使用后才发现大量可靠性问题,增加了维护困难和工作量,严重时只有束之高阁,无法投入实际使用。本文仅就软件可靠性工程在软件开发过程中的应用谈谈自己的认识。 1.软件可靠性设计的基本概念 1.1 软件及软件故障。软件(也称程序)本质上是一种把一组离散输入变成一组离散输出的工具,它由一组编码语句组成,这些语句的功能基本上是以下功能之一:(1)计算一个表达式并将其结果

存储在单元里;(2)决定下一步要执行哪个语句;(3)进行输入/输出控制。 的整个寿命周期的。软件的寿命周期,是指从软件任务的提出一直到它完成使命,因陈旧而被废弃为止的整个时间历程,这个寿命周 期包括了提出要求/规格说明、设计、实现、检验、维护等五个阶段,前四个阶段为开发期,维护阶段为使用期。 1.2 软件可靠性。关于软件可靠性的定义是什么。较多的人认为软件的可靠性与“概率统计的可靠性”的概念密切相关,软件的可靠性是软件在规定的条件下、规定的时间周期内执行所要求功能的能力。软件的可靠度是软件在规定的条件下、规定的时间内不引起系统故障的概率,该概率是系统输入与系统使用的函数。 2.软件质量的可靠性参数 2.1 系统平均不工作间隔时间(mtbsd或mtbd)。设d为软件正常工作总时间,d为系统由于软件故障而停止工作的次数,则定义tbsd=tv/(d+1)。式中,tbsd—mtbsd;tv—软件正常工作总时间(h);d—系统由于软件故障而停止工作的次数。mtbsd反映了系统的稳定性。 2.2 系统不工作次数(一定时期内)。由于软件故障而停止工作,必须由操作者介入再启动才能继续工作的次数。 2.3 可用度a。设tv为软件正常工作总时间,td为由于软件故

人机系统可靠性设计基本原则(设备改善遵循的原则)

人机系统可靠性设计基本原则 1.系统的整体可靠性原则 从人机系统的整体可靠性出发,合理确定人与机器的功能分配,从而设计出经济可靠的人机系统。 一般情况下,机器的可靠性高于人的可靠性,实现生产的机械化和自动化,就可将人从机器的危险点和危险环境中解脱出来,从根本上提高了人机系统可靠性。 2.高可靠性组成单元要素原则 系统要采用经过检验的、高可靠性单元要素来进行设计。 3.具有安全系数的设计原则 由于负荷条件和环境因素随时间而变化,所以可靠性也是随时间变化的函数,并且随时间的增加,可靠性在降低。因此,设计的可靠性和有关参数应具有一定的安全系数。 4.高可靠性方式原则 为提高可靠性,宜采用冗余设计、故障安全装置、自动保险装置等高可靠度结构组合方式。 (1)、系统“自动保险”装置。自动保险,就是即使是外行不懂业务的人或不熟练的人进行操作,也能保证安全,不受伤害或不出故障。 这是机器设备设计和装置设计的根本性指导思想,是本质安全化追求的目标。要通过不断完善结构,尽可能地接近这个目标。 (2)、系统“故障安全”结构。故障安全,就是即使个别零部件

发生故障或失效,系统性能不变,仍能可靠工作。 系统安全常常是以正常的准确的完成规定功能为前提。可是,由于组成零件产生故障而引起误动作,常常导致重大事故发生。为达到功能准确性,采用保险结构方法可保证系统的可靠性。 从系统控制的功能方面来看,故障安全结构有以下几种: ①消极被动式。组成单元发生故障时,机器变为停止状态。 ②积极主动式。组成单元发生故障时,机器一面报警,一面还能短时运转。 ③运行操作式。即使组成单元发生故障,机器也能运行到下次的定期检查。 通常在产业系统中,大多为消极被动式结构。 5.标准化原则 为减少故障环节,应尽可能简化结构,尽可能采用标准化结构和方式。 6.高维修度原则 为便于检修故障,且在发生故障时易于快速修复,同时为考虑经济性和备用方便,应采用零件标准化、部件通用化、设备系列化的产品。 7.事先进行试验和进行评价的原则 对于缺乏实践考验和实用经验的材料和方法,必须事先进行试验和科学评价,然后再根据其可靠性和安全性而选用。

嵌入式软件可靠性设计

嵌入式软件可靠性设计培训 嵌入式软件既是电子系统的核心,也是硬件系统的有效补充,需要具备防错、判错、纠错、容错的功能,具备了这些功能,就能保证系统可靠性要求在软件分系统设计中的实现。但是软件可靠性又不同于硬件电路,它不会随时间的推移而降低,并且其可靠性保障全部在设计过程中实现。因此软件工程的工作也是软件可靠性所要关注的内容。 为此,我协会决定组织召开《嵌入式软件可靠性设计》讲座,本讲座主要从嵌入式软件的系统设计、需求分析、接口、模块、变量控制、软件测试、安全性分析、硬件匹配设计等设计规范进行总结和分析,深层次探讨嵌入式软件的可靠性设计技巧。现具体事宜通知如下: 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 课程提纲:课程大纲以根据学员要求,上课时会有所调整,具体以报到时的讲义为准。 1.概述和定义 2.计算机系统设计准则:2.1、一般要求;2.2、硬件与软件功能的分配原则;2.3、硬件与软件可靠性指标的分配原则;2.4、安全关键功能的人工确认;2.5、安全性内核;2.6、自动记录系统故障;2.7、禁止回避检测出的不安全状态;2.8、保密性设计;2.9、容错设计

3.硬件设计:3.1、硬件选用;3.2、总线检测;3.3、加电检测;3.4、电源失效的安全措施;3.5、主控计算机失效的安全措施;3.6、反馈回路传感器失效的防护措施3.7、电磁干扰的防护措施;3.8、维修互锁措施 4.软件需求分析 5.软件危险分析 6.安全关键功能设计 7.冗余设计准则:7.1、指令冗余设计;7.2、软件陷阱与软件拦截技术;7.3、软件冗余 8.接口设计准则:8.1、硬件接口要求;8.2、硬件接口的软件设计;8.3、人机界面设计;8.4、报警设计;8.5、软件接口设计 9.软件健壮性设计准则:9.1、电源失效防护;9.2、加电检测;9.3、电磁干扰; 9.4、系统不稳定;9.5、接口故障9.6、干扰信号9.7、错误操作;9.8、监控定时器的设计9.9、异常保护设计 10. 简化设计准则:10.1、单入和单出;10.2、模块的独立性;10.3、模块的扇入扇出;10.4、模块耦合方式;10.5、模块内聚顺方式;10.6、其他特殊考虑 11.余量设计:11.1、资源分配及余量要求11.2、时序安排的余量要求 12. 数据要求:12.1、数据需求;12.2、属性控制;12.3、数值运算范围控制;12.4、合理性检查 13. 防错程序设计准则:13.1、参数化;13.2、公用数据和公共变量;13.3、标志;13.4、文件;13.5、非授权存取的限制13.6、无意指令跳转的处理;13.7、程序检测点的设置13.8、寻址模式的选用;13.9、数据区隔离;13.10、安全关键信息的要求;13.11、信息存储要求;13.12、算法选择要求 14. 编程要求:14.1、语言要求;14.2、汇编语言编程限制14.3、高级语言的编程限制;14.4、圈复杂度指数(McCabe)14.5、软件单元的规模;14.6、命名要

给水管网系统建模及其可靠性分析报告

给水管网系统建模及其可靠性分析 摘要 给水管网系统是一个拓扑结构复杂、规模庞大、用水变化随机性强、运行控制为多目标的网络系统。管网建模是仿真给水管网系统动态工况的最有效的方法,是为模拟管网系统建立数学模型的过程。模拟容主要是图形模拟、状态模拟和参数模拟。而建立模型并不是一蹴而就的,要不断的开发、更新和完善。在管网优化设计的四个方面中,保证给水系统可靠性是给水设计的主要容之一。随着现代科学技术的快速发展,可靠性工程理论日益受到广泛重视。 关键词:给水管网系统建模;管网优化设计:管网系统可靠性 一、引言 我国各城市的市政公用输配系统(供水、供气)是城市重要的基础设施之一,也是城市建设和可持续性发展的制约因素,这些工程网络在系统规划上有许多方面存在着共性。 对给水管网系统进行建模,一方面对于大量复杂、繁琐的问题能够取得快速、准确的计算结果,大大提高了工作效率,使得以前很少或者不可能进行的大型工程量计算问题和多方案比较问题得以顺利解决。另一方面,可以对输配系统的工作状态(水力、水质)进行比较准确的模拟仿真,尤其当系统中有较完善的设施时,更可以对系统的实时工况进行在线模拟,这样不仅可为系统的优化运行、调度提供很好的基础条件,为系统的改扩建提供可靠的依据,也为给水管网水质预测和安全输配提供支持。 对给水管网系统建模完成后应注意管网的优化设计,包括四个方面:水压、水量的保证性;水质的安全性;可靠性和经济性。随着现代科学技术的快速发展,作为系统工程之一的可靠性工程理论日益受到广泛重视。在近代,各种工程系统、构筑物设计时,已经开始应用可靠性的数学理论。可靠性和其他技术经济指标一样,成为评价系统优劣的主要指标。可靠性问题之所以得到重视,是因为系统、构筑物、设备相互有关,任一部分损坏可能导致整个系统的故障,而整个系统的故障,例如给水系统发生故障,将对社会和人民生活带来损害。而故障的发生多数为随机事件,一般无法预料和预防,因此给水系统可靠性具有概率的性质。在生活节奏日益加快的今天,确保给水管网系统的正常运行具有十分重要的意义。

软件可靠性设计与分析

软件可靠性分析与设计 软件可靠性分析与设计 软件可靠性分析与设计的原因?软件在使用中发生失效(不可靠会导致任务的失败,甚至导致灾难性的后果。因此,应在软件设计过程中,对可能发生的失效进行分析,采取必要的措施避免将引起失效的缺陷引入软件,为失效纠正措施的制定提供依据,同时为避免类似问题的发生提供借鉴。 ?这些工作将会大大提高使用中软件的可靠 性,减少由于软件失效带来的各种损失。 Myers 设计原则 Myers 专家提出了在可靠性设计中必须遵循的两个原则: ?控制程序的复杂程度

–使系统中的各个模块具有最大的独立性 –使程序具有合理的层次结构 –当模块或单元之间的相互作用无法避免时,务必使其联系尽量简单, 以防止在模块和单元之间产生未知的边际效应 ?是与用户保持紧密联系 软件可靠性设计 ?软件可靠性设计的实质是在常规的软件设计中,应用各种必须的 方法和技术,使程序设计在兼顾用户的各种需求时, 全面满足软件的可靠性要求。 ?软件的可靠性设计应和软件的常规设计紧密地结合,贯穿于常规 设计过程的始终。?这里所指的设计是广义的设计, 它包括了从需求分析开始, 直至实现的全过程。 软件可靠性设计的四种类型

软件避错设计 ?避错设计是使软件产品在设计过程中,不发生错误或少发生错误的一种设计方法。的设计原则是控制和减少程序的复杂性。 ?体现了以预防为主的思想,软件可靠性设计的首要方法 ?各个阶段都要进行避错 ?从开发方法、工具等多处着手 –避免需求错误 ?深入研究用户的需求(用户申明的和未申明的 ?用户早期介入, 如采用原型技术 –选择好的开发方法

?结构化方法:包括分析、设计、实现 ?面向对象的方法:包括分析、设计、实现 ?基于部件的开发方法(COMPONENT BASED ?快速原型法 软件避错设计准则 ? (1模块化与模块独立 –假设函数C(X定义了问题X 的复杂性, 函数E(X定义了求解问题X 需要花费的工作量(按时间计,对于问题P1和问题P2, 如果C(P1>C(P2,则有 E(P1> E(P2。 –人类求解问题的实践同时又揭示了另一个有趣的性质:(P1+P2>C(P1 +C(P2 –由上面三个式子可得:E(P1+ P2> E(P1+E(P2?这个结论导致所谓的“分治法” ----将一个复杂问题分割成若干个可管理的小问题后更易于求解,模块化正是以此为据。 ?模块的独立程序可以由两个定性标准度量,这两个标准分别称为内聚和耦合。耦合衡量不同模块彼此间互相依赖的紧密程度。内聚衡量一个模块内部各个元素彼此结合的紧密程度。 软件避错设计准则 ? (2抽象和逐步求精 –抽象是抽出事物的本质特性而暂时不考虑它们的细节 ?举例

相关文档
相关文档 最新文档