文档库 最新最全的文档下载
当前位置:文档库 › 中考数学压轴题专题圆的综合的经典综合题含详细答案

中考数学压轴题专题圆的综合的经典综合题含详细答案

中考数学压轴题专题圆的综合的经典综合题含详细答案
中考数学压轴题专题圆的综合的经典综合题含详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)

1.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x

=上时停止旋转,旋转过程中,AB边交直线y x

=于点M,BC边交x轴于点N(如图).

(1)求边OA在旋转过程中所扫过的面积;

(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;

(3)设MBN

?的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析

【解析】

试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;

(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;

(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.

试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,

∴OA旋转了45°.

∴OA在旋转过程中所扫过的面积为

2

452

3602ππ

?

=.

(2)∵MN∥AC,

∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.

∴∠BMN=∠BNM.∴BM=BN.

又∵BA=BC,∴AM=CN.

又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.

∴∠AOM=∠CON=1

2(∠AOC-∠MON)=

1

2

(90°-45°)=22.5°.

∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.

证明:延长BA交y轴于E点,

则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,

∴∠AOE=∠CON.

又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.

∴△OAE≌△OCN.

∴OE=ON,AE=CN.

又∵∠MOE=∠MON=45°,OM=OM,

∴△OME≌△OMN.∴MN=ME=AM+AE.

∴MN=AM+CN,

∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.

∴在旋转正方形OABC的过程中,p值无变化.

考点:旋转的性质.

2.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.

(1)求证:CF是⊙O的切线;

(2)若AE=4,tan∠ACD=

3

3

,求FC的长.

【答案】(1)见解析

【解析】

分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案;(2)根据正切的性质求出EC的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.

详解:(1)证明:连接OC.∵AB是⊙O的直径,

∴∠ACB=90°,∴∠OCB+∠ACO=90°.

∵OB=OC,∴∠B=∠OCB.

又∵∠FCA=∠B,∴∠FCA=∠OCB,

∴∠FCA+∠ACO=90°,即∠FCO=90°,

∴FC⊥OC,

∴FC是⊙O切线.

(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=

AE

43 tan ACE3

==

设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,

即r2=(r-4)2+32,解得r=8.

∴OE=r-4=4=AE.

∵CE⊥OA,∴CA=CO=8,

∴△AOC是等边三角形,

∴∠FOC=60°,∴∠F=30°.

在Rt△FOC中,

∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,

∴FC=

22

OF OC83

-=.

点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.

3.如图.在△ABC中,∠C=90°,AC=BC,AB=30cm,点P在AB上,AP=10cm,点E从点P 出发沿线段PA以2c m/s的速度向点A运动,同时点F从点P出发沿线段PB以1c m/s的速度向点B运动,点E到达点A后立刻以原速度沿线段AB向点B运动,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设点E、F运动的时间为t (s)(0<t<20).

(1)当点H落在AC边上时,求t的值;

(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以

点C为圆心,1

2

t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.

【答案】(1)t=2s或10s;(2)①S=

2

2

2

9?(02)

7

5050(210)

2

40400?(1020)

t t

t t t

t t t

?<≤

?

?

-+-<≤

?

?

-+<<

??

;②100cm2.

【解析】

试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;

(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;

②分两种情形分别列出方程即可解决问题.

试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2

如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.

综上所述:t=2s或10s时,点H落在AC边上.

(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2

如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣1

2

(5t﹣10)2=﹣

7

2

t2+50t﹣50.

如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣

1

2

(30﹣3t)2=﹣

7

2

t2+50t﹣50.

如图6中,当10

<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.

综上所述:S=

2

2

2

9?(02)

7

5050(210) 2

40400?(1020)

t t

t t t

t t t

?<≤

?

?

-+-<≤

?

?

-+<<

??

②如图7中,当0<t≤5时,1

2

t+3t=15,解得:t=

30

7

,此时S=100cm2,当5<t<20时,

1

2

t +20﹣t =15,解得:t =10,此时S =100.

综上所述:当⊙C 与GH 所在的直线相切时,求此时S 的值为100cm 2

点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.

4.如图,AB 是半圆O 的直径,半径OC ⊥AB ,OB =4,D 是OB 的中点,点E 是弧BC 上的动点,连接AE ,DE .

(1)当点E 是弧BC 的中点时,求△ADE 的面积; (2)若3

tan 2

AED ∠=

,求AE 的长; (3)点F 是半径OC 上一动点,设点E 到直线OC 的距离为m ,当△DEF 是等腰直角三角形时,求m 的值.

【答案】(1)62ADE S =2)16

55

AE =

3)23m =,22m =71m =.

【解析】 【分析】

(1)作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,则EH =OH =2+a ,根据Rt △AEB 中,EH 2=AH?BH ,即可求出a 的值,即可求出S △ADE 的值;

(2)作DF ⊥AE ,垂足为F ,连接BE ,设EF =2x ,DF =3x ,根据DF ∥BE 故

AF AD

EF BD

=,得出AF =6x ,再利用Rt △AFD 中,AF 2+DF 2=AD 2,即可求出x ,进而求出AE 的长;

(3)根据等腰直角三角形的不同顶点进行分类讨论,分别求出m 的值. 【详解】

解:(1)如图,作EH ⊥AB ,连接OE ,EB , 设DH =a ,则HB =2﹣a ,OH =2+a , ∵点E 是弧BC 中点, ∴∠COE =∠EOH =45°, ∴EH =OH =2+a ,

在Rt △AEB 中,EH 2=AH?BH , (2+a )2=(6+a )(2﹣a ), 解得a =222±-, ∴a =222-, EH=22, S △ADE =

1

622

AD EH =;

(2)如图,作DF ⊥AE ,垂足为F ,连接BE

设EF =2x ,DF =3x ∵DF ∥BE

AF AD

EF BD = ∴

6

22AF x ==3 ∴AF =6x

在Rt △AFD 中,AF 2+DF 2=AD 2 (6x )2+(3x )2=(6)2 解得x 255AE =8x 16

55

(3)当点D 为等腰直角三角形直角顶点时,如图

设DH=a

由DF=DE,∠DOF=∠EHD=90°,∠FDO+∠DFO=∠FDO+∠EDH,∴∠DFO=∠EDH

∴△ODF≌△HED

∴OD=EH=2

在Rt△ABE中,EH2=AH?BH

(2)2=(6+a)?(2﹣a)

-

解得a=±232

m=23

当点E为等腰直角三角形直角顶点时,如图

同理得△EFG≌△DEH

设DH=a,则GE=a,EH=FG=2+a

在Rt△ABE中,EH2=AH?BH

(2+a)2=(6+a)(2﹣a)

解得a=222

±-

∴m=22

当点F为等腰直角三角形直角顶点时,如图

同理得△EFM≌△FDO

设OF=a,则ME=a,MF=OD=2

∴EH=a+2

在Rt△ABE中,EH2=AH?BH

(a+2)2=(4+a)?(4﹣a)

解得a=71

m71

【点睛】

此题主要考查圆内综合问题,解题的关键是熟知全等三角形、等腰三角形、相似三角形的判定与性质.

5.解决问题:

() 1如图①,半径为4的O 外有一点P ,且7PO =,点A 在O 上,则PA 的最大值和

最小值分别是______和______.

()2如图②,扇形AOB 的半径为4,45AOB ∠=,P 为弧AB 上一点,分别在OA 边找

点E ,在OB 边上找一点F ,使得PEF 周长的最小,请在图②中确定点E 、F 的位置并直接写出PEF 周长的最小值; 拓展应用

()3如图③,正方形ABCD 的边长为4

2;E 是CD 上一点(不与D 、C 重合),

CF BE ⊥于F ,P 在BE 上,且PF CF =,M 、N 分别是AB 、AC 上动点,求PMN 周长的最小值.

【答案】(1)11,3;(2)图见解析,PEF 周长最小值为423)41042. 【解析】 【分析】

()1根据圆外一点P 到这个圆上所有点的距离中,最远是和最近的点是过圆心和该点的直

线与圆的交点,容易求出最大值与最小值分别为11和3;

()2作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与

OA 、OB 分别交于点E 、F ,点E 、F 即为所求,此时PEF 周长最小,然后根据等腰直角三角形求解即可;

()3类似()2题作对称点,

PMN 周长最小12PP =,然后由三角形相似和勾股定理求解.

【详解】 解:()1如图①,

圆外一点P 到这个圆上所有点的距离中,最大距离是和最小距离都在

过圆心的直线OP 上,

此直线与圆有两个交点,圆外一点与这两个交点的距离个分别最大距离和最小距离.

PA ∴的最大值227411PA PO OA ==+=+=,

PA 的最小值11743PA PO OA ==-=-=,

故答案为11和3;

()2如图②,以O 为圆心,OA 为半径,画弧AB 和弧BD ,作点P 关于直线OA 的对称点

1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、

F 即为所求.

连接1OP 、2OP 、OP 、PE 、PF ,

由对称知识可知,1AOP AOP ∠∠=,2BOP BOP ∠∠=,1PE PE =,2PF P F = ∴1245AOP BOP AOP BOP AOB ∠∠∠∠∠+=+==,

12454590POP ∠=+=,

12POP ∴为等腰直角三角形,

121PP ∴==

PEF 周长1212PE PF EF PE P F EF PP =++=++=,此时PEF 周长最小.

故答案为;

()3作点P 关于直线AB 的对称1P ,连接1AP 、1BP ,作点P 关于直线AC 的对称2P ,

连接1P 、2P ,与AB 、AC 分别交于点M 、N .如图③ 由对称知识可知,1

PM PM =,2PN P N =,PMN 周长1212PM PN MN PM P N MN PP =++=++=,

此时,PMN 周长最小12PP =.

由对称性可知,1BAP BAP ∠∠=,2EAP EAP ∠∠=,12AP AP AP ==, ∴1245BAP EAP BAP EAP BAC ∠∠∠∠∠+=+==

12454590P AP ∠=+=,

12P AP ∴为等腰直角三角形,

PMN ∴周长最小值12PP =,当AP 最短时,周长最小. 连接DF .

CF BE ⊥,且PF CF =,

45

PCF ∠∴=,PC

CF

=45ACD ∠=,

PCF ACD ∠∠∴=,PCA FCD ∠∠=,

又AC

CD

=, ∴在APC 与DFC 中,AC PC

CD CF

=,PCA FCD ∠∠=

C AP ∴∽DFC ,

2AP AC

DF CD

==, ∴2AP DF =

90BFC ∠=,取AB 中点O .

∴点F 在以BC 为直径的圆上运动,当D 、F 、O 三点在同一直线上时,DF 最短.

2222(22)(42)2221022DF DO FO OC CD OC =-=+-=+-=-, AP ∴最小值为2AP DF =

∴此时,PMN 周长最小值

()

12222222102241042PP AP DF =

=?=?-=-.

【点睛】

本题考查圆以及正方形的性质,运用圆的对称性和正方形的对称性是解答本题的关键.

6.已知,ABC ?内接于

O ,点P 是弧AB 的中点,连接PA 、PB ;

(1)如图1,若AC BC =,求证:AB PC ⊥; (2)如图2,若PA 平分CPM ∠,求证:AB AC =; (3)在(2)的条件下,若24

sin 25

BPC ∠=

,8AC =,求AP 的值.

【答案】(1)见解析;(2)见解析5

【解析】 【分析】

(1)由点P 是弧AB 的中点,可得出AP=BP , 通过证明APC BPC ??? ,ACE BCE ???可得出AEC BEC ∠=∠进而证明AB ⊥ PC.

(2)由PA 是∠CPM 的角平分线,得到∠MPA=∠APC, 等量代换得到∠ABC=∠ACB, 根据等腰三角形的判定定理即可证得AB=AC.

(3)过A 点作AD ⊥BC,有三线合一可知AD 平分BC,点O 在AD 上,连结OB ,则∠BOD =∠BAC ,根据圆周角定理可知∠BOD=∠BAC, ∠BPC=∠BAC ,由∠BOD=∠BPC 可得

sin sin BD

BOD BPC OB

∠=∠=

,设OB=25x ,根据勾股定理可算出OB 、BD 、OD 、AD 的长,再次利用勾股定理即可求得AP 的值. 【详解】

解:(1)∵点P 是弧AB 的中点,如图1, ∴AP =BP ,

在△APC 和△BPC 中 AP BP AC BC PC PC =??

=??=?

, ∴△APC ≌△BPC (SSS ), ∴∠ACP =∠BCP , 在△ACE 和△BCE 中

AC BC ACP BCP CE CE =??

∠=∠??=?

, ∴△ACE ≌△BCE (SAS ), ∴∠AEC =∠BEC , ∵∠AEC +∠BEC =180°, ∴∠AEC =90°, ∴AB ⊥PC ;

(2)∵PA 平分∠CPM , ∴∠MPA =∠APC ,

∵∠APC +∠BPC +∠ACB =180°,∠MPA +∠APC +∠BPC =180°, ∴∠ACB =∠MPA =∠APC , ∵∠APC =∠ABC , ∴∠ABC =∠ACB , ∴AB =AC ;

(3)过A 点作AD ⊥BC 交BC 于D ,连结OP 交AB 于E ,如图2,

由(2)得出AB =AC , ∴AD 平分BC , ∴点O 在AD 上,

连结OB ,则∠BOD =∠BAC , ∵∠BPC =∠BAC , ∴sin sin BOD BPC ∠=∠=2425BD OB

=, 设OB =25x ,则BD =24x , ∴OD 22OB BD -7x ,

在Rt ABD 中,AD =25x +7x =32x ,BD =24x , ∴AB 22AD BD +40x ,

∵AC =8, ∴AB =40x =8, 解得:x =0.2,

∴OB =5,BD =4.8,OD =1.4,AD =6.4, ∵点P 是AB 的中点, ∴OP 垂直平分AB , ∴AE =

1

2

AB =4,∠AEP =∠AEO =90°, 在Rt AEO ?中,OE 223AO AE -=,

∴PE =OP ﹣OE =5﹣3=2,

在Rt APE ?中,AP 22222425PE AE +=+= 【点睛】

本题是一道有关圆的综合题,考查了圆周角定理、勾股定理、等腰三角形的判定定理和三线合一,是初中数学的重点和难点,一般以压轴题形出现,难度较大.

7.如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的⊙O 与AD 、AC 分别交于点E 、F ,且∠ACB =∠DCE .

(1)判断直线CE 与⊙O 的位置关系,并说明理由; (2)若AB 2BC =2,求⊙O 的半径.

6

【答案】(1)直线CE与⊙O相切,理由见解析;(2)⊙O

【解析】

【分析】

(1)首先连接OE,由OE=OA与四边形ABCD是矩形,易求得∠DEC+∠OEA=90°,即OE⊥EC,即可证得直线CE与⊙O的位置关系是相切;

(2)首先易证得△CDE∽△CBA,然后根据相似三角形的对应边成比例,即可求得DE的长,又由勾股定理即可求得AC的长,然后设OA为x,即可得方程

222

-=,解此方程即可求得⊙O的半径.

x x

3)6)

【详解】

解:(1)直线CE与⊙O相切.…

理由:连接OE,

∵四边形ABCD是矩形,

∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,

∴∠DCE+∠DEC=90°,∠ACB=∠DAC,

又∠DCE=∠ACB,

∴∠DEC+∠DAC=90°,

∵OE=OA,

∴∠OEA=∠DAC,

∴∠DEC+∠OEA=90°,

∴∠OEC=90°,

∴OE⊥EC,

∵OE为圆O半径,

∴直线CE与⊙O相切;…

(2)∵∠B=∠D,∠DCE=∠ACB,

∴△CDE∽△CBA,

∴BC AB

=,

DC DE

又CD=AB2BC=2,

∴DE=1

根据勾股定理得EC3

又226

=+…

AC AB BC

设OA 为x ,则222(3)(6)x x +=-, 解得64

x =

, ∴⊙O 的半径为

64

【点睛】

此题考查了切线的判定与性质,矩形的性质,相似三角形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想与方程思想的应用,注意辅助线的作法.

8.如图,过⊙O 外一点P 作⊙O 的切线PA 切⊙O 于点A ,连接PO 并延长,与⊙O 交于C 、D 两点,M 是半圆CD 的中点,连接AM 交CD 于点N ,连接AC 、CM . (1)求证:CM 2=MN.MA ;

(2)若∠P=30°,PC=2,求CM 的长.

【答案】(1)见解析;(2)2 【解析】 【分析】

(1)由CM DM =知CAM DCM ∠=∠,根∠CMA=∠NMC 据证ΔAMC ∽ΔCMN 即可得;

(2)连接OA 、DM ,由直角三角形PAO 中∠P=30°知()11

22

OA PO PC CO =

=+,据此求得OA=OC=2,再证三角形CMD 是等腰直角三角形得CM 的长. 【详解】

(1)

O 中,M 点是半圆CD 的中点, ∴ CM DM =,

CAM DCM ∴∠=∠,

CMA NMC ∠=∠, AMC CMN ∽∴??, ∴ CM AM MN CM

=,即2·CM MN MA =; (2)连接OA 、DM ,

PA 是O 的切线,

90PAO ∴∠=?, 又30P ∠=?,

()11

22

OA PO PC CO ∴==+,

设O 的半径为r ,

2PC =,

()1

22

r r ∴=+,

解得:2r =, 又CD 是直径, 90CMD ∴∠=?, CM DM =,

CMD ∴?是等腰直角三角形,

∴在Rt CMD ?中,由勾股定理得222CM DM CD +=,即()2

22216CM r ==,

则28CM =,

22CM ∴=. 【点睛】

本题主要考查切线的判定和性质,解题的关键是掌握切线的性质、圆周角定理、相似三角形的判定和性质等知识点

9.已知:如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC 、BC 分别交于点D 、E ,过点D 作DF ⊥BC ,垂足为F .(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求图中阴影部分的面积.

【答案】(1)见解析(2)332 23

π

-

【解析】

试题分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;

(2)首先由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;再连接OE,求得CF,EF的长,从而利用S直角梯形FDOE﹣S扇形OED求得阴影部分的面积.

试题解析:

(1)证明:连接DO.

∵△ABC是等边三角形,

∴∠A=∠C=60°.

∵OA=OD,

∴△OAD是等边三角形.

∴∠ADO=60°,

∵DF⊥BC,

∴∠CDF=90°﹣∠C=30°,

∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,

∴DF为⊙O的切线;

(2)∵△OAD是等边三角形,

∴AD=AO=AB=2.

∴CD=AC﹣AD=2.

Rt△CDF中,

∵∠CDF=30°,

∴CF=CD=1.

∴DF=,

连接OE,则CE=2.

∴CF=1,

∴EF=1.

∴S直角梯形FDOE=(EF+OD)?DF=,

∴S扇形OED==,

∴S阴影=S直角梯形FDOE﹣S扇形OED=﹣.

【点睛】此题考查学生对切线的判定及扇形的面积等知识点的掌握情况,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了等边三角形的性质和利用割补法计算补规则图形的面积.

10.如图,已知四边形ABCD内接于⊙O,点E在CB的延长线上,连结AC、AE,∠ACB=∠BAE=45°.

(1)求证:AE是⊙O的切线;

(2)若AB=AD,AC=32,tan∠ADC=3,求BE的长.

【答案】(1)证明见解析;(2)

5

2 BE=

【解析】试题分析:(1)连接OA、OB,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A作AF⊥CD于点F,由AB=AD,得到∠ACD=∠ACB=45°,在Rt△AFC中可求得AF =3,在Rt△AFD中求得DF=1,所以AB=AD=10,CD= CF+DF=4,再证明

△ABE∽△CDA,得出BE AB

DA CD

=,即可求出BE的长度;

试题解析:

(1)证明:连结OA,OB,∵∠ACB=45°,

∴∠AOB=2∠ACB= 90°,

∵OA=OB,

∴∠OAB=∠OBA=45°,

∵∠BAE=45°,

∴∠OAE =∠OAB +∠BAE =90°, ∴OA ⊥AE . ∵点A 在⊙O 上, ∴AE 是⊙O 的切线.

(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°. ∵AB=AD , ∴AB =AD ∴∠ACD =∠ACB =45°, 在Rt △AFC 中, ∵AC =32,∠ACF =45°, ∴AF=CF=AC ·sin ∠ACF =3, ∵在Rt △AFD 中, tan ∠ADC=3AF

DF

=, ∴DF =1,

∴2

2

3110AB AD ==+=, 且CD = CF +DF =4, ∵四边形ABCD 内接于⊙O , ∴∠ABE =∠CDA , ∵∠BAE =∠DCA , ∴△ABE ∽△CDA , ∴BE AB

DA CD

=

, ∴

10

10

=, ∴52

BE =

中考数学专题训练---圆的综合的综合题分类含答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E. (1)求证:AC∥OD; (2)如果DE⊥BC,求AC的长度. 【答案】(1)证明见解析;(2)2π. 【解析】 试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度. 试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO, ∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD; (2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三 角形,∴∠AOC=60°,∴弧AC的长度=606 180 π? =2π. 点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用. 2.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.

【答案】画图见解析. 【解析】 【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线. 【详解】解:画图如下: 【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线. 3.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC. (1)判断直线BE与⊙O的位置关系,并证明你的结论; (2)若sin∠ABE= 3 3 ,CD=2,求⊙O的半径. 【答案】(1)直线BE与⊙O相切,证明见解析;(2)⊙O的半径为3 . 【解析】 分析:(1)连接OE,根据矩形的性质,可证∠BEO=90°,即可得出直线BE与⊙O相切;(2)连接EF,先根据已知条件得出BD的值,再在△BEO中,利用勾股定理推知BE的长,设出⊙O的半径为r,利用切线的性质,用勾股定理列出等式解之即可得出r的值.详解:(1)直线BE与⊙O相切.理由如下: 连接OE,在矩形ABCD中,AD∥BC,∴∠ADB=∠DBC. ∵OD=OE,∴∠OED=∠ODE. 又∵∠ABE=∠DBC,∴∠ABE=∠OED, ∵矩形ABDC,∠A=90°,∴∠ABE+∠AEB=90°, ∴∠OED+∠AEB=90°,∴∠BEO=90°,∴直线BE与⊙O相切;

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

2015中考数学分类汇编圆综合题学生版

2015中考数学真题分类汇编圆综合题 一.解答题(共30小题) 1.(2015?大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.(2015?潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.(2015?枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长. 4.(2015?西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM, AM. (1)求证:AD是⊙O的切线;

(2)若sin∠ABM=,AM=6,求⊙O的半径. 5.(2015?广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径. 6.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 7.(2015?莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O 在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

中考数学综合练习题

42.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P (1)若AE=CF, ①求证:AF=BE,并求∠APB的度数; ②若AE=2,试求AP?AF的值; (2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径的长. 43.合作学习 如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数 的图象分别相交于点E,F,且DE=2,过点E作EH⊥x轴于点H,过点F作FG⊥EH 于点G。回答下列问题: ①该反比例函数的解析式是什么? ②当四边形AEGF为正方形时,点F的坐标是多少? (1)阅读合作学习内容,请解答其中的问题; (2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?” 针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由. 44.九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘 制成如下统计图. 根据统计图,解答下列问题: (1)第三次成绩的优秀率是多少?并将条形统计图补充完整;

(2)已求得甲组成绩优秀人数的平均数,方差,请通过计算说明,哪一组成绩优秀的人数较稳定? 45.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张? 46.在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0)和(1,0). (1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴; (2)在其它格点位置添加一颗棋子P,使A,O,B,P成为一个轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可). 47.如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥轴于点E,点B坐标为(0,2),直线AB交轴于点C,点D与点C关于轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为,△BED的面积为 .

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

初三中考数学综合题一

初三中考数学综合题(一) A 卷 一、选择题(每小题3分,共30分) 1.下列各数中是负数的是( ) A .-(-3) B .-(-3)2 C .-(-2)3 D .|-2| 2.下列计算正确的是( ) A .3a = B .632a a a ÷= C .()1 22a a -=- D .() 3 2628a a -=- 3.6月5日是世界环境日,“海洋存亡,匹夫有责”,目前全球海洋总面积约为36105.9万.平方千米,用科学记数法(保留三个有效数字)表示为( ) A .6 1061.3?平方千米 B .7 1061.3?平方千米 C .81061.3?平方千米 D .91061.3?平方千米 4.一个几何体的三视图如图所示,则这个几何体是( ). 5.已知下列四个命题:(1).对角线互相垂直平分的四边形是正方形;(2).相邻的两个角都互补的四边形是平行四边形;(3).平分弦的直径垂直于弦,并且平分弦所对的两条弧;( 4).对角线垂直相等的四边形是菱形。其中真命题的个数是( ) A .0 B .1 C .2 D .3 6.已知112233 (2)(1)(2)P y P y P y --,,,,,是反比例函数2y x =的图象上的三点,则123y y y ,,的大小关系是( ) A.321y y y << 123y y y << C.213y y y << D. 以上都不对 7.如右图,小明课间把老师的三角板的直角顶点放在黑板的两 条平行线a b 、上,已知155∠=°,则2∠的度数为( ) A .45° B .125° C .55° D .35° 8.已知点P (x ,y )在函数x x y -+= 2 1 的图象上,那么点P 应在平面直角坐标系中的( ) A .第一象限 B . 第二象限 C . 第三象限 D . 第四象限 9.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,成都市某中学九年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额.. 的众数和中位数分别是( ) A .20、20 B .30、20 C .3010.如图,在平面直角坐标系中,点A 在第一象限, ⊙A 与x 轴相切于B ,与y 轴交于C (0,1), D (0,4)两点,则点A 的坐标是 ( ) A .35 (,)22 B .3(,2)2 A B C D 主 视 图左视图俯 视图(第4题)

中考数学专题训练--函数综合题

中考数学专题训练函数综合题专题 1. 如图,一次函数y kx b y 4 与反比例函数x 的图像交于 A 、B 两点,其中y 点A的横坐标为1,又一次函数y (1)求一次函数的解析式; (2)求点 B 的坐标. kx b 的图像与x 轴交于点C3,0 . A C O x B 2. 已知一次函数y=(1-2x)m+x+3 图像不经过第四象限,且函数值y 随自变量x 的减小而减小。(1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 4.5 ,求这个一次函数的解析式。 y 2 1 -1 O -1 1 2 x 图 2 3. 如图,在平面直角坐标系中,点O 为原点,已知点 A 的坐标为(2,2),点B、C 在x 轴上,BC=8,AB=AC ,直线 y 1 / 22 D A

° AC 与 y 轴相交于点 D . ( 1)求点 C 、D 的坐标; ( 2)求图象经过 B 、D 、 A 三点的二次函数解析式及它的顶点坐标. 4. 如图四, 已知二次函数 y ax 2 2ax 3 的图像与 x 轴交于点 A ,点 B ,与 y 轴交于点 C ,其顶点为 D ,直线 DC 的函数关系式为 y kx b ,又 tan OBC 1. y ( 1)求二次函数的解析式和直线 DC 的函数关系式; D ( 2)求 △ ABC 的面积. C ( 图 四 ) A O B x 5. 已知在直角坐标系中,点 A 的坐标是( -3, 1),将线段 OA 绕着点 O 顺时针旋转 90 得到 OB. y 2 / 22 A

x

(1)求点B 的坐标;(2) 求过A、B、O 三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴的对称点为C,求△ABC 的面积。 y 6.如图,双曲线0)、与y 轴交于点5 x 在第一象限的一支上有一点 B. C(1,5),过点C 的直线y kx b( k 0) 与x 轴交于点A(a, (1) 求点A 的横坐标 a 与k 之间的函数关系式; (2) 当该直线与双曲线在第一象限的另一交点 D 的横坐标是9 时,求△COD 的面积. y B C D O A x 第 6 题 3 / 22

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

中考数学综合习题(六)

中考数学综合习题(六) 一、 填空题 1、计算:(2)--= ;15- = ;1 3()2 -= . 2、计算:(52)(52)+-= . 3、计算:2sin60°= . 4、将3 2 x xy -分解因式的结果为 . 5、一个圆锥形容器的底面半径为12cm ,母线长为15cm ,那么这个圆锥形容器的高为 cm. 6、如图,将边长为8cm 的正方形ABCD 沿直线l 向右翻动(不滑动),当正方形连续翻动三次后,正方形ABCD 的中心经过的路线长是 cm. 选择题(7~12题为单项选择题;13~15题为多项选择题) 7、下列计算正确的是( ) A 、3 2 5 2a a a += B 、32 6 (2)4a a -= C 、2 2 2 ()a b a b +=+ D 、623 a a a ÷= 8、下列各图中,∠1大 于∠2的 是( ) 9、下列运算中,错误.. 的是( ) A 、 (0)a ac c b bc =≠ B 、1a b a b --=-+ C 、0.55100.20.323a b a b a b a b ++= -- D 、x y y x x y y x --=++ 10、将不等式841 13822 x x x x +<-?? ?≤-??的解集在数轴上表示出来,正确的是( ) 11、在下面的四个几何体中,它们各自的左视图与主视图不一样的是( )

12、已知某种品牌电脑的显示器的大约为4 210?小时,这种显示 寿命 器工作的天数为d (天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( ) 13、下列说法正确的是( ) A 、9的算术平方根是3 B 、设a 是实数,则a a -的值可能是正数,也可能是负数 C 、点(2,3)P -关于原点的对称点的坐标是(2,3)-- D 、抛物线2 6y x x =--的顶点在第四象限 14、如图,反映的是某中学七(3)班学生外出乘车、步行、骑车的人数直方图(部分)和扇形分布图,则下列说法正确的是( ) A 、七(3)班外出步行的有8人 B 、七(3)班外出的共有40人 C 、在扇形统计图中,步行人数所占的圆心角度数为82° D 、若该校七年级外出的学生共有500人,那么估计全年级外出骑车的约有150人 15、如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则下列结论中正确的有( ) A 、∠ADE=∠CDE B 、DE ⊥E C C 、AD·BC=BE·DE D 、 CD=AD+BC 三、解答下列各题 A B C D E F 12 20 乘车50% 步行 20% 骑车30% 乘车 步行 骑车

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

中考数学综合题专题复习【相似】专题解析

一、相似真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C. (1)求抛物线解析式及对称轴; (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由; (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由. 【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得 解得 ∴抛物线解析式为:y= x2?x?1 ∴抛物线对称轴为直线x=- =1 (2)解:存在 使四边形ACPO的周长最小,只需PC+PO最小 ∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点. 设过点C′、O直线解析式为:y=kx

∴k=- ∴y=- x 则P点坐标为(1,- ) (3)解:当△AOC∽△MNC时, 如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E ∵∠ACO=∠NCD,∠AOC=∠CND=90° ∴∠CDN=∠CAO 由相似,∠CAO=∠CMN ∴∠CDN=∠CMN ∵MN⊥AC ∴M、D关于AN对称,则N为DM中点 设点N坐标为(a,- a-1) 由△EDN∽△OAC ∴ED=2a ∴点D坐标为(0,- a?1) ∵N为DM中点 ∴点M坐标为(2a,a?1) 把M代入y= x2?x?1,解得 a=4 则N点坐标为(4,-3) 当△AOC∽△CNM时,∠CAO=∠NCM ∴CM∥AB则点C关于直线x=1的对称点C′即为点N

相关文档
相关文档 最新文档