文档库 最新最全的文档下载
当前位置:文档库 › 铁碳合金平衡组织的显微分析及观察.

铁碳合金平衡组织的显微分析及观察.

铁碳合金平衡组织的显微分析及观察.
铁碳合金平衡组织的显微分析及观察.

实验一铁碳合金平衡组织的显微分析及观察

一.实验目的

1.认识不同成分的铁碳合金在平衡状态下的组织形态。

2.加深理解铁碳合金的化学成分-组织-性能之间的关系。

3.分析含碳量对铁碳合金显微组织的影响。

二.实验原理

在金相显微镜下观察到的金属内部结构称为显微组织,平衡状态的显微组织是指合金在极为缓慢的冷却条件下所得到的组织。铁碳合金的平衡组织主要指碳钢和白口铸铁。从铁碳合金状态图上可以看出,所有碳钢和白口铸铁的室温均由铁素体(F)和渗碳体(Fe3C)这两个基本相所组成。但由于碳的质量分数不同,铁素体和渗碳体的相对数量、析出条件以及分布情况均有所不同,因而呈现出各种不同的组织状态。在金相显微镜下铁碳合金的几种基本组织:

1.铁素体(F)它是碳溶于α-Fe中的间隙固溶体。在金相显微镜观察为白色晶粒,亚共析钢中的铁素体呈块状分布,随着钢中含碳量的增加,铁素体数量减少,其形状也由多边形块状逐渐变成在珠光体边界呈断续网状分布。

2.渗碳体(Fe3C)它是铁和碳形成的化合物,其碳的质量分数为6.69%,抗浸蚀能力较强,经3-5%硝酸酒精溶液浸市蚀后呈亮白色,若用苦味酸钠溶液浸蚀,则被染成暗黑色。由此可以区别铁素体和渗碳体。

3.珠光体(P)它是铁素体和渗碳体的机械混合物,在一般退火处理下,是由铁素体和渗碳体相互混合交替排列形成的层片状组织,经4%硝酸酒精溶液浸蚀后,在高倍放大时能清楚地看到珠光体中平行相间的宽条铁素体和条状渗碳体;当放大倍数较低时,这时所观察到的珠光体中的渗碳体呈一条黑线。当组织较细而放大倍数较低时,珠光体的片层就不能分辨,而呈黑色。

4.莱氏体(L'd)它是在室温时,由珠光体、共晶渗碳体及二次渗碳体所组成的机械混合物。经4%硝酸酒精溶液浸蚀后,莱氏体的组织特征氏,在白亮色的渗碳体基体上分布着许多黑色点(块)状或条状的珠光体。二次渗碳体和共晶渗碳体连在一起,没有边界线无法分辨开。

三.实验内容

观察给出试样的显微组织,画出所观察到组织的示意图。

四.实验设备及材料

1.金相显微镜。

2.金相试样:20钢、45钢、T8钢、T12钢、共晶白口铸铁、亚共晶白口铸铁、过共晶白口铸铁等七块试样。

3.金相图谱。

五.实验要求

1.根据设备条件,1~2人为一组,每组备有显微镜一台、试样七块、金相图谱一本。

2.按观察要求,选择物镜和目镜,并装在显微镜上。按照金相显微镜的操作程序,将其调节到所看见的组织最为清晰为止。

六.金相显微镜的结构和使用

金相显微镜通常由光学系统、照明系统和机械系统三大部分组成。现以XJB-1型台式金相显微镜为例说明。

XJB-1型金相显微镜的光学系统如图1所示,灯泡发出的光线经聚光透镜组及反光镜聚集到孔径光栏,再经过聚光竟聚集到物竟的后焦面,最后通过物镜平行照射到试样的表面。从试样表面反射回来的光线经物镜组和辅助透镜,由半反射经转向,经过辅助透镜及棱镜形成一个倒立的放大实像,该像再经过目镜放大,就成为在目镜视场中能看到的放大映像。

XJB-1型金相显微镜的外形如图2所示。现将分别介绍其各部件的功能及使用。照明系统:在底座内装有一低压灯泡作为光源,聚光镜、孔径光栏及反光镜等均安置在圆形底座上,视场光栏及另一聚光镜则安在支架上,她们组成显微镜的照明系统,使试样表面获得充分均匀的照明。

显微镜调焦装置:在显微镜的两侧有粗调焦和微调焦手轮,粗调手轮的转动可使栽物台的弯臂作上下移动,微调手轮使显微镜沿滑轮缓慢移动,在右侧手轮上刻有分度格,每一格表示物镜座上下移动0.002mm。

载物台:用于放置金相样品,观察面须向下。载物台和下面托盘之间有导架,用手推动,可使载物台栽水平面上作一定范围的十字定向移动,以改变试样的观察部位。2

孔径光栏和视场光栏:孔径光栏装在照明反射镜座上面,调整孔径光栏能够控制入射光束的粗细,以保证物像达到清晰的程度。视场光栏设在物镜支架下面,其作用是控制视场范围,使目镜中视场明亮而无阴影。

物镜转换器:转换器呈球面状,上面有三个螺孔,可安装不同放大倍数的物镜,转动转动器可使各物镜镜头进入光路,与不同的目镜搭配使用,以获得各种放大倍数。

目镜筒:目镜筒呈45°倾斜安装在附有棱镜的半球座上,还可将目镜转向45°呈水平状态以配合照相装置进行金相摄影。

图1 XJB-1型金相显微镜的光学系统图2 XJB-1型金相显微镜外形结构图

铁碳合金平衡组织观察实验报告23

铁碳合金平衡组织观察实验报告 一、实验目的 (1)观察和识别铁碳和金(碳素钢和白口铸铁)在平衡状态下的显微组织特征; (2)了解铁碳合金成分(含碳量)对铁碳合金显微组织的影响,从而加深理解成分、组织、性能之间的关系; (3)熟悉金相显微镜的使用。 二、实验原理 状态图是研究铁碳合金组织与成分关系的重要工具,了解和掌握状态图,对于制定钢铁材料的各种加工工艺有着很重要的指导意义。 所谓平衡状态的显微组织是指合金在极缓慢的条件下冷却到室温所得到的组织。铁碳合金的平衡组织主要是指碳钢和白口铸铁的缓慢冷却到室温得到的组织,它们是(特别是碳钢)工业上应用最广泛的金属材料,它们的性能与其显微组织有密切的关系。 三、使用的仪器设备 金相显微镜 四、实验方法、步骤 (1)实验前,阅读实验指导书,为实验做好理论方面的准备; (2)在老师的指导下调节好金相显微镜; (3)在金相显微镜下分别观察工业纯铁、20钢、45钢、65钢、T8钢、T12钢、亚共晶白口铁、共晶白口铁、过共晶白口铁等9种铁碳合金的平衡组织,识别钢和铁的组织形态的特征;根据相图分析各合金的形成过程;建立成 分,组织之间相互关系的概念; (4)画出所观察金相样品的显微组织示意图。 五、实验结果分析 (1)根据所观察并画出的金相样品的显微组织示意图,在图中标出组织,在图下标出:含碳量、组织、放大倍数、侵蚀剂。 样品名称:1.2%碳钢 状态:退火 显微组织:珠光体和网状渗碳体 放大倍数:500倍 侵蚀剂:3%硝酸酒精溶液 样品名称:共晶白口铁 状态:铸造 含碳量:4.3% 显微组织:莱氏体 放大倍数:400倍;侵蚀剂:3%酒精溶液 样品名称:工业纯铁 含碳量:C%小于0.02%

铁碳合金平衡组织观察与分析

实验四铁碳合金平衡组织观察与分析 一、实验目的 1、熟悉掌握铁碳合金(碳钢及白口铸铁)在平衡状态下的显微组织。 2、分析成分(含碳量)对铁碳合金显微组织的影响,从而加深理解成分、组织与性能之间的相互关系。 二、实验原理 铁碳合金的显微组织是研究和分析钢铁材料性能的基础,所谓平衡状态的显微组织是指合金在极为缓慢的冷却条件下(如退火状态,即接近平衡状态)所得到的组织。可根据以组织组成物标注的Fe-Fe3C合金相图来分析铁碳合金在平衡状态下的显微组织,如图4–1所示。 图4–1以组织组成物标注的Fe-Fe3C合金相图 铁碳合金的平衡组织主要是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广的金属材料,它们的性能与其显微组织密切相关。此外,对碳钢和白口铸铁显微组织的观察和分析,有助于加深

对Fe-Fe3C相图的理解。 从Fe-Fe3C相图上可以看出,所有碳钢和白口铸铁的室温组织均由铁素体(F)和渗碳体(Fe3C)这两个基本相所组成。但是由于含碳量不同,铁素体和渗碳体的相对数量、析出条件以及分布情况均有所不同,因而呈现各种不同的组织形态。 在Fe-Fe3C相图中,ABCD为液相线,AHJECF为固相线。相图中各特征点的温度、成分及其含义见表4–1。 表4–1铁碳相图中各特征点的说明 Fe- Fe3C相图中有二条水平线(此处不介绍包晶线及包晶反应): ECF水平线(1148?C)为共晶线,在该线温度下将发生共晶转变:L4.3→ A2.11 + Fe3C 。转变产物为奥氏体和渗碳体的机械混合物,称高温莱氏体(Ld)。 PSK水平线(727?C)为共析线,在该线温度下将发生共析转变:A0.77→ F0.0218 + Fe3C 。转变产物为铁素体和渗碳体的机械混合物,称珠光体(P)。共析线又称为A1线。 Fe- Fe3C相图中还有固态转变线:GS为A体?F体固溶体转变线,又称为A3线;ES线为碳在A体中的固溶线。称为A cm线;PQ线为碳在F体中的固溶线。

实验一铁碳合金平衡组织的观察与分析

实验一 铁碳合金平衡组织的观察与分析 一、实验目的 1认识和熟悉铁碳合金平衡状态下的显微组织特征; 2?了解含碳量对铁碳合金平衡组织的影响。建立起 3. 了解平衡组织的转变规律并能应用杠杆定律。 平衡状态是指铁碳合金在极为缓慢的冷却条件下完成转变的组织状态。 退火状态下的碳钢组织可以看成是平衡组织。 图1是以组织组成物表示的铁碳合金相图。 在室温下碳钢和白口铸铁的组织都是由铁素 体和渗碳体两种基本相构成。 但是由于含碳量不同、 合金相变规律的差异, 致使铁碳合金在 室温下的显微组织呈现出不同的组织类型。表 1列出各种铁碳合金在室温下的显微组织。 表织 合金分类 含碳量/% 显微组织 工业纯铁 <0.0218 铁素体(F ) 碳钢 亚共析钢 0.0218 ?0.77 F+珠光体(P ) 共析钢 0.77 P 过共析钢 0.77 ?2.11 P+二次渗碳体(C n ) 白口铸铁 亚共晶白口铸铁 2.11 ?4.3 P+ C n +莱氏体(L e ) 共晶白口铸铁 4.3 L e 过共晶白口铸铁 4.3 ?6.69 L e +二次渗碳体(C l ) 铁碳合金显微组织中, 铁素体和渗碳体两种相经硝酸酒精溶液浸蚀后均呈白亮色, 而它 们之间的相界则呈黑色线条。采用煮沸的碱性苦味酸钠溶液浸蚀, 铁素体仍为白色,而渗碳 体则被染成黑色。 图1以组织组成物表示的铁碳合金相图 概述 Fe-Fe 3C 状态图与平衡组织的关系; 在实验条件下, A+Lc*Fe^C A*F C ^C B 9000- “匕 F+ F +FejC ■

铁碳合金的各种基本组织特征如下: 1. 工业纯铁 含碳量小于0.0218 %的铁碳合金称为工业纯铁,其显微组织为单相铁素体或铁素体+极少量三次渗碳体。为单相铁素体时,显微组织由亮白色的呈不规则块状晶粒组成,黑色网状线即为不同位向的铁素体晶界,如图2(a)所示。当显微组织中有三次渗碳体时,则在某 些晶界处看到呈双线的晶界线,表明三次渗碳体以薄片状析出于铁素体晶界处,如图2(b)所示。 (a) 250X (b) 700X 图2工业纯铁的显微组织 2. 碳钢 碳钢按含碳量的不同,将组织类型分为3种:共析钢、亚共析钢和过共析钢。其组织 特征如下: (1) 共析钢 含碳量为0.77 %的铁碳合金称为共析钢,其显微组织是珠光体。珠光体是层片状铁素 体和渗碳体的机械混合物。两相的相界是黑色的线条,在不同放大倍数条件下观察,则具有不同的组织特征,在高倍数(>500倍)电镜下观察时,能清晰地分辨珠光体中平行相间的宽条铁素体和细片状渗碳体,如图3(a)所示。在300?400倍光学显微镜下观察时,由于显 微镜的鉴别能力小于渗碳体片厚度,这时所看到的渗碳体片就是一条黑线?如图3(b)所示。珠光体有类似指纹的特征。 (A) SOTx (b) 300 x 图3共析钢的珠光体组织 (2) 亚共析钢 含碳量为0.0218%?0.77%的铁碳合金称为亚共析钢,室温下的显微组织是铁素体+珠光体。铁素体呈白色不规则块状晶粒,珠光体在放大倍数较低或浸蚀时间长、浸蚀液浓度加大时,则为黑色块状晶粒,如图4所示。

铁碳合金相显微组织观察

实验一、铁碳合金相显微组织观察 一、实验目的 1)观察碳钢和铸铁试样在平衡状态下的显微组织。 2)熟悉工业纯铁、灰口铸铁等材料的组织特征,了解各种工业用铸铁的显微组织特征。 并熟悉随含碳量的增加,组织的变化特征。 二、实验原理 通常将含碳量<2.11%的Fe-C合金称为钢,含碳量>2.11%的合金称为铸铁。根据铁碳二元相图,它们在室温下的组成相都是铁素体和渗碳体,但它们在显微组织上有很大的差异。 三、实验器材 显微镜,供观察样品每组8块 四、实验内容 (1)画出铁碳合金状态图,并写出所观察组织成分构成; (2)画出所观察样品的显微组织示意图(4个图),注明合金成分、放大倍数及各组织组成物的名称,说明其特征; (3)用箭头标明相组成物和组织组成物的名称于组织图外;

(参考资料) 1、铁碳合金在室温下的显微组织特征 工业纯铁:含碳量<0.0218%的铁碳合金通常称为工业纯铁,它为两相组织,即由铁素体和三次渗碳体组成。显微组织中黑色线条是铁素体的晶界、而亮白色基体是铁素体的多边形状等轴晶粒。 碳钢 共析钢:含碳量为0.77%的铁碳合金。其显微组织由单一的共析珠光体组成。亚共析钢:含碳量在0.0218%—0.77%范围内的铁碳合金。其组织由先共析铁素体和珠光体所组成,随着含碳量的增加,铁素体的数量逐渐减少,而珠光体的数量则相应地增多,显微组织中亮白色为铁素体,暗黑色为珠光体。 过共析钢:含碳量在0.77%与2.11%之间的铁碳合金。其组织由珠光体和先共析渗碳体(即二次渗碳体)组成。钢中含碳量越多,二次渗碳体数量越多。显微组织中存在片状珠光体和网络状二次渗碳体,经4%硝酸酒精浸蚀后珠光体呈暗黑色,而二次渗碳体则成白色网状。 白口铸铁:含碳量大于 2.11%的铁碳合金叫白口铸铁。其中的碳以渗碳体的形式存在,断口呈白亮色而得此名。 亚共晶白口铸铁:含碳量<4.3%的白口铸铁称为亚共晶白口铸铁。在室温下亚共晶白口铸铁的组织为珠光体+二次渗碳体+莱氏体。用4%硝酸酒精溶液浸蚀后,在显微镜下呈现黑色枝晶状的珠光体和斑点状莱氏体,其中二次渗碳体与共晶渗碳体混在一起,不易分辨出来。 共晶白口铸铁:共晶白口铸铁的含碳量为4.3%,它在室温下的组织由单一的共晶莱氏体组成。经4%硝酸酒精浸蚀后,在显微镜下,珠光体呈暗黑色细条或斑点状,共晶渗碳体呈亮白色。 过共晶白口铸铁:含碳量>4.3%的白口铸铁称为过共晶白口铸铁,在室温时的组织由一次渗碳体和莱氏体组成。用4%硝酸酒精溶液浸蚀后,在显微镜下可观察到在带黑色斑点的莱氏体基体上分布着亮白色的粗大条片状的一次渗碳体。

实验一 铁碳合金平衡组织的观察与分析

实验一铁碳合金平衡组织的观察与分析 一、实验目的 1.认识和熟悉铁碳合金平衡状态下的显微组织特征; 2.了解含碳量对铁碳合金平衡组织的影响。建立起Fe-Fe3C状态图与平衡组织的关系;3.了解平衡组织的转变规律并能应用杠杆定律。 二、概述 平衡状态是指铁碳合金在极为缓慢的冷却条件下完成转变的组织状态。在实验条件下,退火状态下的碳钢组织可以看成是平衡组织。 图1是以组织组成物表示的铁碳合金相图。在室温下碳钢和白口铸铁的组织都是由铁素体和渗碳体两种基本相构成。但是由于含碳量不同、合金相变规律的差异,致使铁碳合金在室温下的显微组织呈现出不同的组织类型。表1列出各种铁碳合金在室温下的显微组织。 合金分类含碳量/% 显微组织 工业纯铁<0.0218 铁素体(F) 碳钢 亚共析钢0.0218~0.77 F+珠光体(P) 共析钢0.77 P 过共析钢0.77~2.11 P+二次渗碳体(CΠ) 白口铸铁 亚共晶白口铸铁 2.11~4.3 P+ CΠ+莱氏体(L e) 共晶白口铸铁 4.3 L e 过共晶白口铸铁 4.3~6.69 L e+二次渗碳体(C I) 铁碳合金显微组织中,铁素体和渗碳体两种相经硝酸酒精溶液浸蚀后均呈白亮色,而它们之间的相界则呈黑色线条。采用煮沸的碱性苦味酸钠溶液浸蚀,铁素体仍为白色,而渗碳体则被染成黑色。 图1 以组织组成物表示的铁碳合金相图

铁碳合金的各种基本组织特征如下: 1.工业纯铁 含碳量小于0.0218%的铁碳合金称为工业纯铁,其显微组织为单相铁素体或铁素体+极少量三次渗碳体。为单相铁素体时,显微组织由亮白色的呈不规则块状晶粒组成,黑色网状线即为不同位向的铁素体晶界,如图2(a)所示。当显微组织中有三次渗碳体时,则在某些晶界处看到呈双线的晶界线,表明三次渗碳体以薄片状析出于铁素体晶界处,如图2(b)所示。 (a)250X (b)700X 图2 工业纯铁的显微组织 2.碳钢 碳钢按含碳量的不同,将组织类型分为3种:共析钢、亚共析钢和过共析钢。其组织特征如下: (1)共析钢 含碳量为0.77%的铁碳合金称为共析钢,其显微组织是珠光体。珠光体是层片状铁素体和渗碳体的机械混合物。两相的相界是黑色的线条,在不同放大倍数条件下观察,则具有不同的组织特征,在高倍数(>500倍)电镜下观察时,能清晰地分辨珠光体中平行相间的宽条铁素体和细片状渗碳体,如图3(a)所示。在300~400倍光学显微镜下观察时,由于显微镜的鉴别能力小于渗碳体片厚度,这时所看到的渗碳体片就是一条黑线.如图3(b)所示。珠光体有类似指纹的特征。 图3 共析钢的珠光体组织 (2)亚共析钢 含碳量为0.0218%~0.77%的铁碳合金称为亚共析钢,室温下的显微组织是铁素体+珠光体。铁素体呈白色不规则块状晶粒,珠光体在放大倍数较低或浸蚀时间长、浸蚀液浓度加大时,则为黑色块状晶粒,如图4所示。

铁碳合金平衡组织观察与分析实验报告

铁碳合金平衡组织观察与 分析 材料工程1601 实验者:王XX 学号:1703XXXXX

一实验目的 1、区别和研究铁碳合金(碳钢和白口铸铁)在平衡状态下的显微组织; 2、分析含碳量对铁碳合金显微组织的影响,加深理解成分、组织与性能之间的相互关系。 二概述 铁碳合金的显微组织是研究钢铁材料性能的基础。铁碳合金平衡状态的组织是指合金在极为缓慢的冷却条件下(如退火状态)所得到的组织,其相变过程均按Fe—Fe3C相图进行,所以我们可以根据该相图来分析铁碳合金的平衡组织。 图3-1 Fe-Fe3C相图 如图3—1所示,所有碳钢和白口铸铁在室温下的组织均由铁素体(F)和渗碳体(FeC)这两个基本相所组成。只是因含碳量不同,铁素体和渗碳体的相对数量、析出条件以及分布情况各有所不同,因而呈各种不同的组织形态,见表4—1。 碳钢和白口铸铁在金相显微镜下具有下面几种基本组织:

表4—1 各种铁碳合金在室温下的显微组织 及良好的塑性,硬度较低。用3—4%硝酸酒精熔液浸蚀后,在显微镜下呈现明亮色的多边形晶粒:亚共析钢中,铁素体呈块状分析;当含碳量接近于共析成分时,铁素体则呈断续的网状分布于珠光体周围。 (2)渗碳体(FeC)是铁与碳形成的一种化合物,其含碳量为6.67%。当用3~4%硝酸酒精溶液浸蚀后,渗碳体呈亮白色,若用苦味酸钠溶液浸蚀,则渗碳

体呈黑色而铁素体仍为白色。由此可区别铁素体与渗碳体。此外,按铁碳合金成分和形成条件不同,渗碳体呈观不同的形态:一次渗碳体(初生相)直接由液体中析出,在白口铸铁中呈粗大的条片状;二次渗碳体(次生相)从奥氏体巾析出,呈网络状沿奥氏体晶界分布,经球化退火,渗碳体呈颗粒状。 (3)珠光休(P)是铁素体和渗碳体的机械混合物,浸蚀后可观察到两种不同的组织形态: 1)片状珠光体它是由铁素休与渗碳体交替排列形成的层片状组织,经硝酸酒精溶液浸蚀后,在不同放大倍数的显微镜下,可以看到具存不同特征的层片状组织。在高倍放大时(照片4—1),能清楚地看到珠光体中平行相间的宽条铁素休和细条渗碳体。当放大倍数低时(照片4—2),由于显微镜的鉴别能力小于渗碳体片厚度,这时就只能看到一条黑线,它实际上就表示渗碳体。当组织较细而放大倍数更低时,珠光体片层就不能分辨,而呈黑色。 2)球状珠光体球状珠光休组织的特征是在亮白色的铁素体基体上,均匀分布着白色的渗碳体颗粒,其边界呈暗黑色,如照片4—3。 上述各类组织组成物的机械性能见表4—2。 (4)莱氏体(L)室温时是珠光体、二次渗碳体和共晶渗碳体所组成的机械混合物。它是由含碳量为4.3%的液态共晶白口铸铁在1147℃共晶反应所形成的共晶体(奥氏体和共晶渗碳体)其中奥氏体在继续冷却时析出二次渗碳体,在723℃以下分解为珠光体。因此,莱氏体的显微组织特征是在亮白色的渗碳体基底上相间地分布着暗黑色斑点及细条状的珠光体。 表4—2 各类组织组成物的机械性能

铁碳合金平衡组织显微分析

铁碳合金平衡组织显微分析 金相试样的制备 一、实验目的 1.熟悉金相显微试样的制备过程 2.了解掌握金相显微试样的制备方法 二、概述 在利用金相显微镜作金相显微分析时,必须首先制备金相试样,我们在显微镜中所观察到的显微组织,是靠光线从试样观察面上的反射来实现的。若试样观察面上的反射光能进入物镜。我们就可以从目镜中观察到反射的象,否则就观察不到。 图2-1 光线在不同表面上的反射情况 由图2-1所示可见,未经制备的试样的表面相当于无数多个与镜筒不垂直的平滑表面,这是不能成象的。因此,我们要先把试样观察面制备成光滑平面。但是光滑平面在显微镜下只看到光亮一片,而不能看到显微组织结构特征,故还须用一定的浸蚀剂浸蚀试样观察面,使某些耐浸蚀弱的区域不同程度地受到浸蚀而呈现微观察的凸凹不平。这些区域的反射光线被散射而呈暗色。由于明暗相衬,在显微观察中就能表示试试样磨面组织结构的特征了。 金相试样的制备包括试样的切取、镶嵌、磨制抛光、锓蚀等五个步骤。 1. 取样 试样应根据分析目的和要求在有代表的位置上截取。一般地说,取横截面主要观察:1、试样边缘到中心部位显微组织的变化。2、表层缺陷的检验、氧化、

过滤、折叠等。3、表面处理结果的研究,如表面淬火、硬化层、化学热处理层、镀层等。4、晶粒度测定等。通过纵截面可观察:1、非金属夹杂;2、测定晶粒变形程度;3、鉴定带状组织及通过热处理消除带状组织的效果等。试样一般可用手工切割、机床切割、切片机切割等方法截取(试样大小为φ12×12mm圆柱体或12×12×12mm的立方体)。不论采用哪种方法,在切取过程中均不宜使试样的温度过高,以免引起金属组织的变化,影响分析结果。 2. 镶嵌 当试样的尺寸太小(如金属丝、薄片等)时,直接用手来磨制很困难,需要使用试样夹或利用样品镶嵌机,把试样镶嵌在低熔点合金或塑料(如胶木粉、聚乙烯及聚合树脂等)中,如图2-2所示。 图2-2 试样的镶嵌(见实验室挂图) 3. 磨制 试样的磨制一般分粗磨和细磨两道工序。 a. 粗磨:粗磨的目的是为了获得一个平整的表面,钢铁材料试样的粗磨可用锉刀锉平,也可在砂轮机上磨制。但应注意:试样对砂轮压力不宜过大。否则会在试样表面形成很深的磨良,增加精磨和抛光的困难,要随时用水冷却试样,以免受热引起组织交化;试样边缘的棱角若无保存必要,可先行磨圆(倒角),以免在细磨及抛光时撕破砂纸或抛光布,甚至造成试样从抛光机上飞出伤人。 b. 细磨:经粗磨后试样表面虽较平整,但仍还存在有较深的痕(如图2-3)所示。细磨的目的就是为了消除这些磨痕,以得到平整而光滑的磨面,为下一步

铁碳合金非平衡组织观察

实验四铁碳合金非平衡组织观察一、实验目的 识别铁碳合金在不同热处理状态下的显微组织 加深对TTT曲线的理解及非平衡状态下钢的成份热处理工艺、组织之间的关系的认识。二.实验原理碳钢经热处理后的组织,可以是平衡或接近平衡状态(如退火、正火)的组织,也可是不平衡组织(如淬火组织),因此在研究热处理后的组织时,不但要参考铁碳相图,还要利用C曲线。 铁碳相图能说明慢冷时不同碳质量分数的铁碳合金的结晶过程和室温下的组织,计算相的质量分数。C曲线则能说明一定成分的铁碳合金在不同冷却条件下的转变过程,及能得到哪些组织,如图4-1。 1.冷却时所得的各种组织组成物的形态a.珠光体(图4-2) 珠光体是奥氏体高温转变的产物,根据其片层间距的大小可分为: (1)珠光体(P)是铁素体与渗碳体的机械混合物,层片较粗。 (2)索氏体(s)是铁素体与渗碳体的机械混合物。其层片比珠光体更细密,在显微镜的高倍(700倍以上)放大下才能分辨。 (3)屈氏体(T)也是铁素体与渗碳体的机械混合物。片层比索氏体更细密,在一般光学显微镜下无法分辨,只能看到如墨菊状的黑色组织。当其少量析出时,沿晶界分布呈黑色网状包围马氏体。当析出量较多时,呈大块黑色晶团状。只有在电子显微镜下才能分辨其中的片层。b.贝氏体 贝氏体是奥氏体中温转变的产物,也是铁素体与渗碳体的两相混合物,但其金相形态与珠光体类组织不同,并因钢的成分和形成温度不同而有差别。其组织形态主要有二种:(1)上贝氏体(B)上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗

碳体所组成的非层状组织。当转变量不多时,在光学显微镜下为成束的铁素体条向奥氏体晶界内伸展,具有羽毛状特征。在电镜下铁素体以几度到十几度的小位向差相互平列,渗碳体沿条的长轴方向排列成行。 (2)下贝氏体下贝氏体是在片状铁索体内部沉淀有碳化物的混合物组织。由于下贝氏体易受浸蚀,所以在显微镜下呈黑色针状,在电镜下是以片状铁索体为基体,其中分布着很细的碳化物片,大致与铁索体片的长轴呈55。~65。的角度。C.马氏体( 马氏体(M)是奥氏体低温转变的产物,是碳在α—Fe中的过饱和固溶体。马氏体可分为两大类,即板条状马氏体和片状马氏体。 (1)板条状马氏体在光学显微镜下,板条状马氏体的形态呈现为一束束相互平行的细长条状马氏体群,在一个奥氏体晶粒内可有几束不同取向的马氏体群。每束内的条与条之间以小角度晶界分开,束与束之间具有较大的位向差。板条状马氏体的立体形态为细长的板条状,其横截面据推测呈近似椭圆形。由于条状马氏体形成温度较高,在形成过程中常有碳化物析出,即产生自回火现象,故在金相试验时易被腐蚀呈现较深的颜色。在电子显微镜下,马氏体群是由许多平行的板条所组成。经透射电镜观察发现,板条状马氏体的亚结构是高密度的位错。含碳低的奥氏体形成的马氏体呈板条状,故板条状马氏体又称低碳马氏体.因亚结构为位错又称位错马氏体。 (2)片状马氏体在光学显微镜下,片状马氏体呈针状或竹叶状,片间有一定角度,其立体形态为双凸透镜状。因形成温度较低,没有自回火现象,故组织难以浸蚀,所以颜色较浅,在显微镜下呈白亮色。用透射电镜观察,其亚结构为孪晶。 含碳高的奥氏体形成的马氏体呈片状,故称为片状马氏体,又称高碳马氏体;根据亚结构特点.又称孪晶马氏体。 马氏体的粗细取决于淬火加热温度,即取决于奥氏体晶粒的大小。高碳钢在正常淬火温度下加热,淬火后得到细针状马氏体,在光学显微镜下呈布纹状,仅能隐约见到针状,故又称为隐晶马氏体。如淬火温度较高,奥氏体晶粒粗大,则得到粗大针状马氏体。d.残余奥氏体(Ar) 当奥氏体中碳质量分数大于0.5%时,淬火时总有一定量的奥氏体不能转变成为马氏体,而保留到室温,这部分奥氏体即为残余奥氏体。它不易受硝酸酒精溶液的浸蚀,在显微镜下呈白亮色,分布在马氏体之间,无固定形态,淬火后未经回火时,残余奥氏体与马氏体很难区分,都呈白亮色。只有回火后才能分辨出马氏体间的残余奥氏体。淬火钢经不同温度回火后,所得的组织通常分为三种: (1)回火马氏体淬火钢在150℃—250℃之间进行低温回火时,马氏体内析 出碳化物,这种组织称为回火马氏体。与此同时,残余奥氏体也开始转变为回火马氏体。在显微镜下回火马氏体仍保持针(片)状形态。因回火马氏体易受浸蚀。所以为暗色针状组织。回火马氏体具有高的强度和硬度,而韧性和塑性较淬火马氏体有明显改善。 (2回火屈氏体是淬火钢在350℃~500℃进行中温回火所得的组织,是铁素体与粒状渗碳体组成的极细密混合物。组织特征是,铁素体基本上保持原来针(片)状马氏体的形态,而在基体上分布着极细颗粒的渗碳体,在光学显微镜下分辨不清,为黑点。但在电子显微镜下可观察到渗碳体颗粒。回火屈氏体有较好的强度,最佳的弹性,韧性也较好。(3)回火索氏体是淬火钢在500~C~650~C高温回火时所得到的组织。它是由粒状渗碳体和等轴形铁素体组成的混合物。在光学显微镜下可观察到渗碳体小颗粒,它均匀分布

铁碳合金平衡组织观察精讲实验报告

实验四铁碳合金平衡组织观察 一、实验目的: 1.了解铁碳合金在平衡状态下的显微组织。 2.分析成分对铁碳合金显微组织的影响,从而理解成分、组织与性能之间的相互关系。 二、实验原理及内容: 铁碳合金的显微组织是研究和分析钢铁材料性能的基础,平衡组织指合金在极其缓慢的冷却速度下得到的组织。在实验条件下,退火态的铁碳合金组织可以看成平衡组织。铁碳合金平衡组织是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广的金属材料,它们性能与其显微组织密切相关。 1. 铁碳合金平衡状态图 铁碳合金的平衡组织是指铁碳合金在极为缓慢的冷却条件下所得到的组织。可以根据铁碳相图(如图5-1所示),来分析铁碳合金在平衡状态下的显微组织。 图5-1 Fe-Fe C相图 3 从—相图上可以看到所有的碳钢和白口铸铁在室温时的组织均由铁素体(F)和渗碳体()这两个基本相组成,但是由于含碳量的不同,铁素体和渗碳

体的相对数量、析出条件以及分布情况均有所不同。因而呈现各种不同的组织形态,其性能也各不相同。

2.几种基本组织组成物 用侵蚀剂显露的碳钢和白口铸铁,在金相显微镜下具有下面几种基本组织组成物。 表1 各种铁碳合金在室温下的平衡组织 3、各种组成相或组织组成物的特征 a)铁素体(F)是碳溶于α-Fe的固溶体。铁素体为体心立方晶格。 具有磁性及良好的塑性,硬度较低,一般为80HB~120HB,经3%~5% 硝酸酒精溶液浸蚀后,在显微镜下观察呈白色晶粒,见工业纯铁的组织 (如图1所示)。亚共析钢中,随着钢中碳质量分数的增加,珠光体量增 加而铁素体量减少。铁素体量较多时,呈块状分布(如图2所示)。当钢 中碳质量分数接近共析成份时,铁素体往往呈断续的网状,分布于珠光 体的周围(如图3所示)。

铁碳合金平衡组织的显微分析实验

“铁碳合金平衡组织的显微分析实验”实验报告 一、实验目的 (1)熟悉室温下碳钢与白口铸铁平衡状态下的显微组织,明确成分-组织之间的关系。 (2)进一步熟悉金相显微镜的操作。 二、实验原理 碳钢与白口铸铁在室温下,其平衡状态下的组织中的基本组成相均为铁素体与渗碳体。但是由于碳含量及处理不同,它们的数量、分布及形态有很大不同,因此在金相显微镜下观察不同铁碳合金,其显微组织也就有很大差异。 碳含量小于0.02%的铁碳合金称为工业纯铁。碳含量小于0.006%的工业纯铁显微组织为单相铁素体;碳含量大于0.006%的工业纯铁的显微组织为铁素体和极少量的三次渗碳体。 根据碳含量的不同,碳钢可分为亚共析钢、共析钢和过共析钢三类。碳含量为0.77%的铁碳合金为共析钢。其显微组织为片状渗碳体分布于铁素体基体上的机械混合物——珠光体;碳含量小于0.77%的铁碳合金称为亚共析钢。其显微组织为铁素体和珠光图。 碳含量大于0.77%的铁碳合金称为过共析钢。其显微组织为珠光体和二次渗碳体。 碳含量大于2.11%的铁碳合金为铸铁,不含石墨只含渗碳体相的铸铁称为白口铸铁。 碳含量为4.3%铁碳合金称为共晶白口铸铁。室温下其组织为珠光体和渗碳体的机械混合物——莱氏体。碳含量小于4.3%铁碳合金称为亚共晶白口铸铁。其显微组织为莱氏体、珠光体和二次渗碳体。碳含量大于4.3%铁碳合金称为过共晶白口铸铁。其显微组织为莱氏体和一次渗碳体。 三、实验装置及试件 金相显微镜、碳钢和白口铸铁平衡组织金相试样一套、金相图谱、材料检索表。 四、实验步骤 (1)领取金相试样一套和金相图谱一本(注意不可用手触摸材料面及显微镜镜头); (2)打开金相显微镜电源(若有变压器须先接变压器后接电源); (3)用金相显微镜调整光圈并调焦后逐个观察金相试样的显微组织(观察T8钢时需用400x目镜,其它用100x目镜),并仔细观察其特征。 (4)选取5个符合要求的适宜的不同材料画出其显微组织(所画的组织要有代表性; 组织中组成物的大小与放大倍数一致,其数量与合金成为相符合;对每个图应 按要求标注,记录其序号、材料、状态、浸蚀剂与金相组织,用指引线指明组 织组成物的名称)。 五、实验结果

实验-铁碳合金平衡组织观察

实验-铁碳合金平衡组织观察

实验 Fe-Fe3C相图观察 一、实验目的 1.认识铁碳合金的平衡组织。 2.了解含碳量对铁碳合金平衡组织的影响规律。 3.加深对平衡状态下碳钢的成分、组织、性能间关系的认识。 二、实验原理 铁碳合金的显微组织是研究和分析铁碳材料性能的基础,所谓平衡状态的显微组织是指合金在极为缓慢的冷条件下(退火状态,即接近平衡状态)所得到的组织。因此我们可以根据Fe-Fe3C相图来分析铁碳合金在平衡状态下的显微组织(图1-1所示)。 图1-1 Fe-Fe3C相图

铁碳合金的平衡组织主要是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广泛的金属材料,它们的性能与其显微组织密切有关。此外,对碳钢和白口铸铁显微组织的观察和分析,有助于加深对Fe-Fe3C相图的理解。 从Fe-Fe3C相图上可以看出,所有碳钢和白口铸铁的室温组织均由铁素体(F)和渗碳体(Fe3C)这两个基本相组成。但是由于含碳量不同,因而呈现各种不同的组织形态。 用侵蚀剂显露的碳钢和白口铸铁,在金相显微镜下具有下面几种基本组织。 1.铁素体(F)——碳在α-Fe中形成的固溶体。铁素体为体心立方晶体,具有磁性及良好塑性,硬度较低。用3-4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的等轴晶粒,黑色网是晶界,这是因为晶粒晶界耐腐蚀性不同,而且各晶粒的位向不同呈现不同的颜色;亚共析钢中铁素体呈块状分布;当含碳量接近共析成分时,铁素体则呈断续的网状分布于珠光体周围。 2.渗碳体(Fe3C)——是铁与碳形成的一种化合物,其碳含量为6.69%,质硬而脆,耐腐蚀性强,经3-4%硝酸酒精溶液浸蚀后,渗碳体呈亮白色。按照成分和形成条件的不同,渗碳体可呈现不同的形态:一次渗碳体(初生相)是直接由液体中析出的,故在白口铸铁中呈粗大的条片状;二次渗碳体(次生相)是从奥氏体中析出的,往往呈网状沿奥氏体晶界分布;三次渗碳体是由铁素体中析出的,通常是不连续薄片状存在于铁素体晶界处,数量极微,可忽略不计。 3.珠光体(P)一是铁素体和渗碳体的机械混合物。在一般退火处理情况下,是由铁素体与渗碳体相互混合交替形成的层片状组织。经硝酸酒精溶液侵蚀后,在不同放大倍数的显微镜下可以看到具有不同特征的珠光体组织。在高倍放大时能清楚地看到珠光体中平行相间的宽条铁素体和细条渗碳体;当放大倍数较低时,由于显微镜的鉴别能力小于渗碳体厚度,这时珠光体中的渗碳体就只能看到是一条黑线,当组织较细而放大倍数较低时,珠光体的片层就不能分辨,而呈黑色。 4.低温莱氏体(Le)——是在室温时珠光体十二次渗碳体十渗碳体所组成的机械混合物。含碳量为4.3%的共晶白口铸铁在1147℃对形成由奥氏体和渗碳体组成的共晶体机械合物,称为莱氏体,其中奥氏体冷却时析出二次渗碳

实验十铁碳合金显微组织的观察及分析

实验十铁碳合金显微组织的观察及分析 总结报告 班级:冶金E111 姓名:杨泽荣 学号:41102010

摘要:依据铁碳相图分析了不同成分铁碳合金及其形貌特征,解释了如何鉴别细网状铁素体和网状渗碳体,冷却速度对组织形貌和相对量有无影响,各类铸铁的组织对性能有何影响等问题。 关键词:铁碳合金组织形貌铁碳相图 1 实验设备与材料 光学显微镜,标准试验样品若干 2 实验原理 2.1 铁碳相图 2.2铁碳组织组成物 铁素体:碳在体心立方铁中的固溶体δ–Fe(C)和α-Fe(C),通常也成δ铁素体和α铁素体。 奥氏体:碳在面心立方铁的固溶体γ-Fe(C) 珠光体:奥氏体从高温缓慢冷却时发生共析转变所形成的,其立体形态为铁素体薄层和碳化物(包括渗碳体)薄层交替重叠的层状复相物。广义则包括过冷奥氏体发生珠光体转变所形成的层状复相物。在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳体也可呈粒状,这样的珠光体称为粒状珠光体。

莱氏体:莱氏体是液态铁碳合金发生共晶转变形成的奥氏体和渗碳体所组成的共晶体,其含碳量为ωc=4.3%。当温度高于727℃时,莱氏体由奥氏体和渗碳体组成,用 符号Ld表示。在低于727℃时,莱氏体是由珠光体和渗碳体组成,用符号Ld’表 示,称为变态莱氏体。 渗碳体: Fe 和C 形成的化合物 2.3含碳量不同情况下的析出相及其组织形貌。 根据组织特点及含碳量的不同,铁碳合金可分为工业纯铁、钢和铸铁三大类。钢又可根据含碳量分为亚共析钢、共析钢、过共析钢;铸铁根据含碳量也可分为亚共晶白口铁、共晶白口铁、过共晶白口铁。 ⑴工业纯铁 纯铁在室温下具有单相铁素体组织。含碳量<0. 02 %的铁碳合金通常称为工业纯铁,它为两相组织,即由铁素体和极少量的三次渗碳体组成。显微组织中的黑色线条是铁素体的晶界,亮白色的基底是铁素体的不规则等轴晶粒,在某些晶界处可以看到不连续的薄片状三次渗碳体。 ⑵亚共析钢 亚共析钢的含碳量在0.02%~0.77%范围内,其显微组织是由铁素体和珠光体组成。用4%的硝酸酒精浸蚀后,铁素体为亮白色,珠光体为暗黑色。随着含碳量的增加,组织中的铁素体量逐渐减少,而珠光体的量不断增加;当含碳量大于0.60%时,铁素体由块状变成网状分布在珠光体的周围。根据含碳量,可以由杠杆定律求得铁素体和珠光体的相对量。另外,由显微镜中观察铁素体和珠光体各自所占面积的百分数,可近似地计算出钢的含碳量,即,碳含量≈P×0.77%,其中P为珠光体所占面积百分数。 ⑶共析钢 含碳量为0.77%的碳钢称为共析钢,它由单一的珠光体组成。 ⑷过共析钢 过共析钢的含碳量在0.77%~2.11%,它在室温下的组织由珠光体和二次渗碳体组成。钢中含碳量越多,二次渗碳体数量就越多。经硝酸酒精浸蚀后,二次渗碳体呈亮白色网分布在珠光体的周围。 ⑸亚共晶白口铸铁 含碳量是 2.11%~4.3%,在室温下的组织由珠光体、二次渗碳体和变态莱氏体所组

实验十铁碳合金显微组织的观察及分析

实验十铁碳合金显微组织的观察及分析 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

实验十铁碳合金显微组织的观察及分析 总结报告 班级:冶金E111 姓名:杨泽荣 学号:

摘要:依据铁碳相图分析了不同成分铁碳合金及其形貌特征,解释了如何鉴别细网状铁素体和网状渗碳体,冷却速度对组织形貌和相对量有无影响,各类铸铁的组织对性能有何影响等问题。 关键词:铁碳合金组织形貌铁碳相图 1 实验设备与材料 光学显微镜,标准试验样品若干 2 实验原理 2.1 铁碳相图 2.2铁碳组织组成物 铁素体:碳在体心立方铁中的固溶体δ–Fe(C)和α-Fe(C),通常也成δ铁素体和α铁素体。 奥氏体:碳在面心立方铁的固溶体γ-Fe(C) 珠光体:奥氏体从高温缓慢冷却时发生共析转变所形成的,其立体形态为铁素体薄层和碳化物(包括渗碳体)薄层交替重叠的层状复相物。广义则包括过冷奥 氏体发生珠光体转变所形成的层状复相物。在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以片要比渗碳体厚得多.在条件下,珠光体中的渗碳体也可呈粒状,这样的珠光体称为。 莱氏体:莱氏体是液态铁碳合金发生共晶转变形成的和渗碳体所组成的共晶体,其含碳量为ωc=4.3%。当温度高于727℃时,莱氏体由奥氏体和渗碳体组 成,用符号Ld表示。在低于727℃时,莱氏体是由和渗碳体组成,用符号Ld’表示,称为变态莱氏体。 渗碳体: Fe 和C 形成的Fe3C化合物

2.3含碳量不同情况下的析出相及其组织形貌。 根据组织特点及含碳量的不同,铁碳合金可分为工业纯铁、钢和铸铁三大类。钢又可根据含碳量分为亚共析钢、共析钢、过共析钢;铸铁根据含碳量也可分为亚共晶白口铁、共晶白口铁、过共晶白口铁。 ⑴工业纯铁 纯铁在室温下具有单相铁素体组织。含碳量<0. 02 %的铁碳合金通常称为工业纯铁,它为两相组织,即由铁素体和极少量的三次渗碳体组成。显微组织中的黑色线条是铁素体的晶界,亮白色的基底是铁素体的不规则等轴晶粒,在某些晶界处可以看到不连续的薄片状三次渗碳体。 ⑵亚共析钢 亚共析钢的含碳量在0.02%~0.77%范围内,其显微组织是由铁素体和珠光体组成。用4%的硝酸酒精浸蚀后,铁素体为亮白色,珠光体为暗黑色。随着含碳量的增加,组织中的铁素体量逐渐减少,而珠光体的量不断增加;当含碳量大于0.60%时,铁素体由块状变成网状分布在珠光体的周围。根据含碳量,可以由杠杆定律求得铁素体和珠光体的相对量。另外,由显微镜中观察铁素体和珠光体各自所占面积的百分数,可近似地计算出钢的含碳量,即,碳含量≈P×0.77%,其中P为珠光体所占面积百分数。 ⑶共析钢 含碳量为0.77%的碳钢称为共析钢,它由单一的珠光体组成。 ⑷过共析钢

铁碳合金平衡组织的金相分析

实验四铁碳合金平衡组织观察 一实验目的 1、了解金相显微镜的基本原理、金相试样的制备原理,掌握常用显微镜的使用方法。 2、研究和了解铁碳合金(碳钢及白口铸铁)在平衡状态下的显微组织。 3、分析成分(含碳量)对铁碳合金显微组织的影响,从而加深理解成分、组织与性 能之间的相互关系。 二概述 铁碳合金的显微组织是研究和分析钢铁材料性能的基础,所谓平衡状态的显微组织是指合金在极为缓慢的冷却条件下(如退火状态,即接近平衡状态)所得到的组织。我们可根据Fe-Fe3C相图来分析铁碳合金在平衡状态下的显微组织(如下图所示)。 按组织分区的Fe-Fe3C相图 铁碳合金的平衡组织主要是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广的金属材料,它们的性能与其显微组织密切有关。此外,对碳钢和白口铸铁显微组织的观察和分析,有助于加深对Fe-Fe3C相图的理解。

从Fe-Fe3C相图上可以看出,所有碳钢和白口铸铁的室温组织均由铁素体(F)和渗碳体(Fe3C)这两个基本相所组成。但是由于含碳量不同,铁素体和渗碳体的相对数量、析出条件以及分布情况均有所不同,因而呈现各种不同的组织形态。 用浸蚀剂显露的碳钢和白口铸铁,在金相显微镜下具有下面几种基本组织组成物。 (1)铁素体(F)——是碳在α-Fe中的固溶体。铁素体为体心立方晶体,具有磁性及良好塑性,硬度较低。用3~4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的等轴晶粒;亚共析钢中铁素体呈块状分布;当含碳量接近于共析成分,铁素体呈断的网状分布于珠光体周围。 (2) 渗碳体(Fe3C)——是铁与碳形成的一种化合物,其碳含量为6.69%,质硬而脆,耐腐蚀性强,经3~4%硝酸酒精溶液浸蚀后,渗碳体呈亮白色,若用苦酸钠溶液浸蚀,则渗碳体能被染成暗黑色或棕红色,而铁素体乃为白色,由此可区别铁素体与渗碳体。按照成分和形成条件的不同,渗碳体可以呈现不同的形态:一次渗碳体(初生相)是直接由液体中析出的,故在白口铸铁中呈粗大的条片状;二次渗碳体(次生相)是从奥氏体中析出的,往往呈网络状沿奥氏体晶界分布;三次渗碳体是由铁素体中析出的,通常呈不连续薄片状存在于铁素体晶界处,数量极微,可忽略不计。 (3)珠光体(P)——铁素体和渗碳体的机械混合物,是一般退火处理情况下是由铁素体与渗碳体互混交替排列形成的层片状组织。经硝酸酒精溶液浸蚀后,在不同放大倍数的显微镜下可以看到具有不同特征的珠光体组织。在高倍放大时能清楚地看到珠光体中平行相间的宽条铁素体和细条渗碳体;当放大倍数较低时,由于显微镜的鉴别能力小于渗碳体片厚度,这时珠光体中的渗碳体就只能看到是一条黑线,当组织较细而放大倍数较低时,珠光体的片层就不能分辨,而呈黑色。高碳工具钢(过共析钢)经球化退火处理后还可获得球状珠光体。 (4)莱氏体(Ld/)——是在室温时珠光体及二次渗碳体所组成的机械混合物。含碳量为4.3%的共晶白口铸铁在1148°C时形成由奥氏体和渗碳体组成的共晶体,其中奥氏体冷却时析出二次渗碳体,并在727°C以下分解为珠光体。莱氏体的显微组织特征是在亮白色的渗碳体基底上相同地分布着暗黑色斑点及细条状的珠光体。二次渗碳体和共晶渗碳体连在一起,从形态上难以区分。

实验一铁碳合金平衡组织显微分析报告材料指导书及实验报告材料材料2

实验指导书 实验一铁碳合金平衡组织显微分析 一、实验目的 1.了解碳钢和白口铸铁在平衡状态下的显微组织。 2.分析成分(含碳量)对碳钢和白口铸铁显微组织的影响, 理解成分、组织与性能之间的相互关系。 二实验内容及步骤 1.实验前复习教材中有关内容和预习实验指导书。 2.在显微镜下对各种试样进行观察和分析,确定其组织组成物。 3.画出所观察的显微组织示意图。 4.根据显微组织中珠光体所占面积的百分数近似地确定一种亚共析钢的平均含碳量。 三、实验设备及材料 1.金相显微镜 2.金相图谱 3.各种铁碳合金显微试样 Ⅰ-1 工业纯铁; Ⅰ-2 20 钢;Ⅱ-1 亚共晶白口铸铁;

Ⅰ-3 T8 钢;Ⅱ-2 共晶白口铸铁; Ⅰ-4 T12 钢; Ⅱ-3 过共晶白口铸铁 四、实验注意事项 1.在观察显微组织时,可先用低倍全面进行观察,然后用高倍对部分区域进行详细观察。 2.要正确使金相显微镜,特别要注意:将显微镜的灯泡(6~8V)插头,插在变压器上,切勿直接插在200V的电源插座上,否则灯泡立即烧坏。 3.对试样,不得用手触摸试样表面或将试样重叠起来,以免损伤试样表面。 4.画显微组织图时,应抓住其形态特点,注意不要将磨痕或杂质画在图上。 五、实验报告要求 1.实验目的。 2.画出所观察过的显微组织示意图 (在直径为30mm的圆内画,并将组织组成物名称以箭头引出标明, 在图的下面注明材料名称、含碳量、侵蚀剂、放大倍数,以及简单的描述。)。 3.根据所观察的组织,近似地估算一种亚共析钢的含碳量。 实验报告 实验一铁碳合金平衡组织显微分析

学生姓名班级学号 实验日期指导教师

铁碳合金的显微组织及分析

实验五铁碳合金的显微组织及分析 一、实验目的 1、进一步熟悉Fe-Fe3C相图。 2、掌握各相和组织组成以及它们的金相形貌特征(珠光体、铁素体、渗碳体、莱氏体等)。 3、掌握共晶、亚共晶、过共晶白口铸铁的显微组织特征(莱氏体、变态莱氏体,一次渗碳体、共晶渗碳体和二次渗碳体的形成与形貌特点;高温奥氏体转变所得室温产物等)。 4、了解碳含量对各相及组织组成物的形貌和相对量的影响。 二、实验原理简介 1、铁碳合金相图

2、根据组织特征,将铁碳合金按含碳量化分为七种类型: (1)工业纯铁(< 0.0218%C); (2)亚共析钢(0.0218-0.77%C); (3)共析钢(0.77%C); (4)过共析钢(0.77-2.11%C); (5)亚共晶白口铸铁(2.11-4.30%C); (6)共晶白口铸铁(4.30%C); (7)过共晶白口铸铁(4.30-6.69%C)。 三、实验内容及步骤 实验内容: 1、白口铁凝固组织的观察与分析。 注意: (1)三次渗碳体的形成及辨认; (2)网状铁素体与渗碳体的区分; (3)含碳量对铁素体形态及分布的影响; (4)二次渗碳体的分布特点,最大析出量。 2、钢的平衡组织及含碳量的影响(固态转变组织)。 注意: (1)三次渗碳体的形成及辨认; (2)网状铁素体与渗碳体的区分; (3)含碳量对铁素体形态及分布的影响; (4)二次渗碳体的分布特点,最大析出量。 实验步骤: 1、用低倍观察组织的全貌,了解一般规律。 2、用高倍对某相或某些细节仔细观看,找出特点,了解特殊规律。 3、有了该组织的基本形貌特征概念后,画出观察到的组织。 四、实验仪器及设备 1、光学显微镜; 2、标准样品:纯铁、20钢、60钢、T8共析钢、T12钢;亚共晶、共晶、过共晶白

铁碳合金的显微组织分析与鉴别实验报告

铁碳合金的显微组织分析与鉴别 一、实验目的 1.了解金相试样的制备原理和制备过程,了解目前制备金相试样的先进技术。 2. 熟悉各种常用制样设备的基本原理和使用方法。 3.利用金相显微镜认真观察所制备金相试样的显微组织特征,根据以学过的知识分析组织组成和基本类型,初步判别材料类型和材料编号。 二、实验内容概述 金相试样的制备过程包括取样、镶嵌、标号、磨制、抛光、浸蚀等几个步骤,但并不是每个金相试样都需要经过上述各个步骤。若选取的试样大小、形状合适,便于握持磨制,则不必进行镶嵌;若需检验铸铁中的石墨,就不必进行浸蚀。制备好的试样应能观察到材料的真实组织,做到金相面无磨痕、无麻点、无水迹,并使金属组织中的夹杂物、石墨等不脱落,以免影响显微分析的正确性。 1.取样 金相试样的选取应根据检验的目的,选取有代表性的部位和磨面。如在检验和分析零件的失效原因时,除了在失效的具体部位取样外,还需要在零件的完好处取样,以便进行对比研究;在检测脱碳层、化学热处理的渗层、淬火层等,应选择横向截面或横向表层取样;在研究带状组织及冷塑性变形工件的组织和夹杂物的变形情况时,则应截取纵向截面试样;对于一般热处理后的零件,由于金相组织比较均匀,试样的截取可以在任一截面进行。 金相试样的截取方法应根据金属材料的具体性质而定,如软的金属材料可用手锯或锯床切割;硬而脆的材料(如白口铸铁)可用锤击打碎;对于极硬的材料(如淬火钢)可用砂轮片切割或用电脉冲加工。但不论用何种方法取样,都应避免试样的受热或产生变形,以免引起金属的组织变化,为防止零件受热,必要时应随时用水冷却。 2.镶嵌 选取的试样尺寸应便于握持,一般不要过大。常用的试样尺寸为直径12~15mm的圆柱 a)、b) 机械夹持法c) 低熔点合金镶嵌法 d) 塑料镶嵌法 图2-1 金相试样的镶嵌方法 体或边长为12~15mm的正方柱体试样。对于形状特殊或尺寸细小不易握持的试样或为了不

相关文档
相关文档 最新文档