文档库 最新最全的文档下载
当前位置:文档库 › 目标位置预测滤波算法研究

目标位置预测滤波算法研究

目标位置预测滤波算法研究
目标位置预测滤波算法研究

目标位置预测滤波算法研究

【摘要】为了解决电视跟踪器中电视脱靶量的滞后以及跳变引起的目标丢失对控制系统的稳定性和跟踪精度的影响,分别在匀速和匀加速条件下利用五种滤波算法对测量数据进行滤波和预测仿真。仿真结果表明,各种滤波器能够根据传感器测量值对目标位置、速度进行估计预测,在稳态且增益值较小条件下,α-β或α-β-γ滤波算法具有精度高,计算量小的优越性。

【关键词】电视跟踪器;预测算法;α-β-γ滤波;目标跟踪;

1.引言

电视跟踪器由CCD和信号处理电路组成,是一个误差检测元件。从目标在CCD靶面上成像到脱靶量输出,中间经光电转换、信号处理、数据采集存储、多种跟踪算法运算和传输等环节,使得输出到伺服系统的脱靶量滞后于目标成像时间。对传感器的测量数据进行滤波预测,提供准确的位置、速度等信息,进行预测外推。可使系统位置带宽提高,控制系统的稳定性及跟踪精度提高。

本文以舰载跟踪器跟踪目标为对象,采用卡尔曼滤波算法、两点外推滤波算法、最小二乘算法、最小二乘算法、α-β滤波算法、α-β-γ滤波算法设计滤波器对目标位置进行预测。

2.目标状态变量

在给定的时间内,对于舰船等跟踪目标,可以认为是平稳直线运动的,如果在直角坐标系中处理目标的位置、速度可以得到最佳的滤波效果,但这需要进行大量的坐标变换,无法保证滤波器的实时跟踪性能。

因此对于舰载光电跟踪设备,跟踪目标的距离较远,机动性很低,因此直接对方位角和俯仰角测角数据进行滤波预测。

2.1匀速运动状态变量

光电跟踪设备是一种跟踪测量,当目标进入光学测量的视场内,伺服系统捕获锁定目标,然后一直跟踪目标,保证目标一直位于光学测量的视场内,记录系统同时记下目标相对视场中心的偏差-脱靶量,测角系统测量出视场中心的方位角和俯仰角,和脱靶量共同合成目标的实际角位置。一般的舰船通常只沿匀速直线轨道航行,转弯、闪避式机动及由于周围环境变化引起的加速度均可看作为对匀速轨迹的扰动。

2.2匀加速运动状态变量

3.滤波器

3.1卡尔曼滤波

根据目标的运动模型选择:匀速运动和匀直线运动两种情况,滤波器中系统测量矩阵H,系统转移矩阵,状态向量X的选择与2.1和2.2节中的分析相同,卡尔曼滤波需要知道系统噪声和量测噪声的统计特性。

4.仿真

由于方位轴和俯仰轴两个方向的运动相互独立,测量误差不存在耦合,因此两个轴的位置预测是相互独立的,只给出一个轴的仿真误差曲线。

目标位置初始值采用某几个观测值,速度初始值则采取差分方法来定,加速度初始值则采用速度差分方法来定,假设测角数据和测偏量的更新频率50Hz,仿真时间为10s,仿真次数为100次。

卡尔曼滤波算法总结

Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; } 首先是卡尔曼滤波的5个方程: -=--+(1)先验估计 X k k AX k k Bu k (|1)(1|1)() -=--+(2)协方差矩阵的预测(|1)(1|1)' P k k AP k k A Q

需求预测方法 (2)

需求预测方法 常用的物资需求预测方法主要包括基于时间序列模型的移动平均预测法、指数平滑预测法、趋势外推预测法等;基于因果分析模型的回归分析预测法,基于统计学习理论以及结构风险最小原理的支持向量机预测方法,基于人工智能技术的人工神经网络算法。归纳如图1: 图1:物资需求预测方法 一、 时间序列法 1.定义:将预测对象按照时间顺序排列起来,构成一个所谓的时间序列,从所构成的这一组时间序列过去的变化规律,推断今后变化的可能性及变化趋势、变化规律,就是时间序列预测法。 2.概况: 时间序列法主要考虑以下变动因素:①趋势变动,②季节变动,③循环变动,④不规则变动。 若以S t ,T t ,C t ,I t 表示时间序列的季节因素S t ,长期趋势波动、季节性变动、不规则变动.则实际观测值与它们之间的关系常用模型有 加法模型: 乘法模型: 混合模型: 时间序列预测一般反映三种实际变化规律:趋势变化、周期性变化、随机性变化。 t t t t I S T x ++=t t t t I S T x ??=)() )t t t t t t t t I T S x b I T S x a +?=+?=

3.时间序列常用分析方法:移动平均法、指数平滑法、季节变动法等 (1)移动平均法 ①简单移动平均法:将一个时间段的数据取平均值作为最新时间的预测值。该时间段根据要求取最近的。例如:5个月的需求量分别是10,12,32,12,38。预测第6个月的需求量。 =27。 可以选择使用3个月的数据作为依据。那么第6个月的预测量Q=32+12+38 3 ②加权移动平均法:将每个时段里的每组数根据时间远近赋上权重。例如:上个例子,3个月的数据,可以按照远近分别赋权重0.2,0.3,0.5。那么第6个月的预测量Q=0.2×32+0.3×12+0.5×38=29(只是在简单移动平均的基础上考虑了不同时段影响的权重不同,简单移动平均默认权重=1.) (2)指数平滑法 基本思想:预测值是以前观测值的加权和,且对不同的数据给予不同的权数,新数据给予较大的权数,旧数据给予较小的权数。 指数平滑法的通用算法: 指数平滑法的基本公式:St=aYt+(1-a)St-1 式中, St--时间t的平滑值; Yt--时间t的实际值; St-1--时间t-1的平滑值; a--平滑常数,其取值范围为[0,1] 具体方法:一次指数平滑、二次指数平滑、三次指数平滑。 方法的选取:指数平滑方法的选用,一般可根据原数列散点图呈现的趋势来确定。当时间数列无明显的趋势变化,可用一次指数平滑预测。如呈现直线趋势,选用二次指数平滑法;若实际数据序列呈非线性递增趋势,采用三次指数平滑预测方法。如呈现抛物线趋势,选用三次指数平滑法。或者,当时间序列的数据经二次指数平滑处理后,仍有曲率时,应用三次指数平滑法。 (3)季节变动法 根据季节变动特征分为:水平型季节变动和长期趋势季节变动 ①水平型季节变动: 是指时间序列中各项数值的变化是围绕某一个水平值上下周期性的波动。若时间序列呈水平型季节变动,则意味着时间序列中不存在明显的长期趋势变动而仅有季节变动和不规则变动。

基于meanshift的目标跟踪算法——完整版

基于Mean Shift的目标跟踪算法研究 指导教师:

摘要:该文把Itti视觉注意力模型融入到Mean Shift跟踪方法,提出了一种基于视觉显著图的Mean Shift跟踪方法。首先利用Itti视觉注意力模型,提取多种特征,得到显著图,在此基础上建立目标模型的直方图,然后运用Mean Shift方法进行跟踪。实验证明,该方法可适用于复杂背景目标的跟踪,跟踪结果稳定。 关键词:显著图目标跟踪Mean Shift Mean Shift Tracking Based on Saliency Map Abstract:In this paper, an improved Mean Shift tracking algorithm based on saliency map is proposed. Firstly, Itti visual attention model is used to extract multiple features, then to generate a saliency map,The histogram of the target based on the saliency map, can have a better description of objectives, and then use Mean Shift algorithm to tracking. Experimental results show that improved Mean Shift algorithm is able to be applied in complex background to tracking target and tracking results are stability. 1 引言 Mean Shift方法采用核概率密度来描述目标的特征,然后利用Mean Shift搜寻目标位置。这种方法具有很高的稳定行,能够适应目标的形状、大小的连续变化,而且计算速度很快,抗干扰能力强,能够保证系统的实时性和稳定性[1]。近年来在目标跟踪领域得到了广泛应用[2-3]。但是,核函数直方图对目标特征的描述比较弱,在目标周围存在与目标颜色分布相似的物体时,跟踪算法容易跟丢目标。目前对目标特征描述的改进只限于选择单一的特征,如文献[4]通过选择跟踪区域中表示目标主要特征的Harris点建立目标模型;文献[5]将初始帧的目标模型和前一帧的模型即两者的直方图分布都考虑进来,建立混合模型;文献[6]提出了以代表图像的梯度方向信息的方向直方图为目标模型;文献[7-8]提出二阶直方图,是对颜色直方图一种改进,是以颜色直方图为基础,颜色直方图只包含了颜色分布信息,二阶直方图在包含颜色信息的前提下包含了像素的均值向量和协方差。文献[9]提出目标中心加权距离,为离目标中心近的点赋予较大的权值,离目标中心远的点赋予较小的权值。文献[4-9]都是关注于目标和目标的某一种特征。但是使用单一特征的目标模型不能适应光线及背景的变化,而且当有遮挡和相似物体靠近时,容易丢失目标;若只是考虑改进目标模型,不考虑减弱背景的干扰,得到的效果毕竟是有限的。 针对上述问题,文本结合Itti 提出的视觉注意模型[5],将自底向上的视觉注意机制引入到Mean Shift跟踪中,提出了基于视觉显著图的Mean Shift跟踪方法。此方法在显著图基础上建立目标模型,由此得到的目标模型是用多种特征来描述的,同时可以降低背景对目标的干扰。 2 基于视觉显著图的Mean Shift跟踪方法

TLD目标跟踪算法

TLD目标跟踪算法 一、算法的背景 TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek 出的一种新的单目标长时间(long term tracking)跟踪算法。该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生的形变、部分遮挡等问题。同时,通过一种改进的在线学习机制不断更新跟踪模块的“显著特征点”和检测模块的目标模型及相关参数,从而使得跟踪效果更加稳定、鲁棒、可靠。 对于长时间跟踪而言,一个关键的问题是:当目标重新出现在相机视野中时,系统应该能重新检测到它,并开始重新跟踪。但是,长时间跟踪过程中,被跟踪目标将不可避免的发生形状变化、光照条件变化、尺度变化、遮挡等情况。传统的跟踪算法,前端需要跟检测模块相互配合,当检测到被跟踪目标之后,就开始进入跟踪模块,而此后,检测模块就不会介入到跟踪过程中。但这种方法有一个致命的缺陷:即,当被跟踪目标存在形状变化或遮挡时,跟踪就很容易失败;因此,对于长时间跟踪,或者被跟踪目标存在形状变化情况下的跟踪,很多人采用检测的方法来代替跟踪。该方法虽然在某些情况下可以改进跟踪效果,但它需要一个离线的学习过程。即:在检测之前,需要挑选大量的被跟踪目标的样本来进行学习和训练。这也就意味着,训练样本要涵盖被跟踪目标可能发生的各种形变和各种尺度、姿态变化和光照变化的情况。换言之,利用检测的方法来达到长时间跟踪的目的,对于训练样本的选择至关重要,否则,跟踪的鲁棒性就难以保证。 考虑到单纯的跟踪或者单纯的检测算法都无法在长时间跟踪过程中达到理想的效果,所以,TLD方法就考虑将两者予以结合,并加入一种改进的在线学习机制,从而使得整体的目标跟踪更加稳定、有效。 简单来说,TLD算法由三部分组成:跟踪模块、检测模块、学习模块;如下图所示 其运行机制为:检测模块和跟踪模块互补干涉的并行进行处理。首先,跟踪模块假设相邻视频帧之间物体的运动是有限的,且被跟踪目标是可见的,以此来估计目标的运动。 如果目标在相机视野中消失,将造成跟踪失败。检测模块假设每一个视帧都是彼此独立的,并且根据以往检测和学习到的目标模型,对每一帧图片进行全图搜索以定位目标可能出现的区域。同其它目标检测方法一样,TLD中的检测模块也有可能出现错误,且错误无非是错误的负样例和错误的正样例这两种情况。而学习模块则根据跟踪模块的结果对检测模块的这两种错误进行评估,并根据评估结果生成训练样本对检测模块的目标模型进行更新,同时对跟踪模块的“关键特征点”进行更新,以此来避免以后出现类似的

目标跟踪算法的分类

目标跟踪算法的分类

主要基于两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一.运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测 (一)静态背景 1.背景差 2.帧差 3.GMM 4.光流 背景减算法可以对背景的光照变化、噪声干扰以及周期性运动等进行建模,在各种不同情况下它都可以准确地检测出运动目标。因此对于固定

个关键技术: a)匹配法则,如最大相关、最小误差等 b)搜索方法,如三步搜索法、交叉搜索法等。 c) 块大小的确定,如分级、自适应等。 光流法 光流估计的方法都是基于以下假设:图像灰度分布的变化完全是目标或者场景的运动引起的,也就是说,目标与场景的灰度不随时间变化。这使得光流方法抗噪声能力较差,其应用范围一般局限于目标与场景的灰度保持不变这个假设条件下。另外,大多数的光流计算方法相当复杂,如果没有特别的硬件装置,其处理速度相当慢,达不到实时处理的要求。 二.目标跟踪 运动目标的跟踪,即通过目标的有效表达,在图像序列中寻找与目标模板最相似候选目标区位置的过程。简单说,就是在序列图像中为目标定位。运动目标的有效表达除了对运动目标建模外,目标跟踪中常用到的目标特性表达主要包括视觉特征 (图像边缘、轮廓、形状、纹理、区域)、统计特征 (直方图、各种矩特征)、变换系数特

卡尔曼滤波算法(C--C++两种实现代码)

卡尔曼滤波算法实现代码 C++实现代码如下: ============================kalman.h================= =============== // kalman.h: interface for the kalman class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_ #if _MSC_VER > 1000 #pragma once #endif// _MSC_VER > 1000 #include #include "cv.h" class kalman { public: void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state; CvMat* process_noise; CvMat* measurement; const CvMat* prediction; CvPoint2D32f get_predict(float x, float y);

kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman(); }; #endif// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_) ============================kalman.cpp=============== ================= #include "kalman.h" #include /* tester de printer toutes les valeurs des vecteurs*/ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */ CvRandState rng; const double T = 0.1; kalman::kalman(int x,int xv,int y,int yv) { cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 ); process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;

目标跟踪算法的分类

运动目标跟踪就是在一段序列图像中的每幅图像中实时地找到所感兴趣的运动目标 (包括位置、速度及加速度等运动参数)。在运动目标跟踪问题的研究上,总体来说有两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一、运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测。 静态背景下运动检测就是摄像机在整个监视过程中不发生移动,只有被监视目标在摄像机视场内运动,这个过程只有目标相对于摄像机的运动;动态背景下运动检测就是摄像机在整个监视过程中发生了移动 (如平动、旋转或多自由度运动),被监视目标在摄像机视场内也发生了运动,这个过程就产生了目标与摄像机之间复杂的相对运动。 1、静态背景 背景差分法 背景差分法是利用当前图像与背景图像的差分来检测运动区域的一种技术。它一般能够提供最完全的特征数据,但对于动态场景的变化,如天气、光照、背景扰动及背景物移入移出等特别敏感,运动目标的阴影也会影响检测结果的准确性及跟踪的精确性。其基本思想就是首先获得一个背景模型,然后将当前帧与背景模型相减,如果像素差值大于某一阈值,则判断此像素属于运动目标,否则属于背景图像。背景模型的建立与更新、阴影的去除等对跟踪结果的好坏至关重要。 帧间差分法 相邻帧间差分法是通过相邻两帧图像的差值计算,获得运动物体位置和形状等信息的运动目标检测方法。其对环境的适应性较强,特别是对于光照的变化适应性强,但由于运动目标上像素的纹理、灰度等信息比较相近,不能检测出完整

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.wendangku.net/doc/a28427938.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

利润预测及计划

【课题】利润预测及计划 【教材版本】 张海林.中等职业教育国家规划教材——财务管理(第三版).北京:高等教育出版社, 张海林.中等职业教育国家规划教材配套教学用书——财务管理教学参考书(第三版).北京:高等教育出版社, 张海林.中等职业教育国家规划教材配套教学用书——财务管理习题集(第三版).北京:高等教育出版社, 【教学目标】 通过本节内容的学习,要求学生了解利润预测、利润计划的涵义,学会利润预测与利润计划的方法。 【教学重点、难点】 教学重点:利润预测的方法中的量本利分析法。 教学难点:理解收入、成本与利润的关系。 【教学方法】 采用讲授法、举例法、讨论法等不同的教学方法。 【课时安排】 2课时(90分钟)。 【教学过程】 一、导入(2分钟) 通过上次课的学习,我们明确了利润的构成情况,那么如何制定企业年度目标利润,运用何种方法进行预测并编制利润计划就成为本次课学习的重点。 二、新授课(68分钟) (一)利润预测 1.利润预测 利润预测是指企业在营业收入预测的基础上,通过对销售量、商品或服务成本、营业费用以及其他对利润发生影响的因素进行分析与研究,进而对企业在未来某一时期内可以实现的利润预期数进行预计和测算。 教师分析讲解:

从字面上来看,利润预测主要取决于两个因素:一个是收入,另一个是成本费用。只要我们运用合理的方法对影响利润的各个因素进行分析,就能确定企业可能实现的利润数。所以,利润预测方法就是本次课学习的重点。下面,先让我们了解利润预测的作用、内容和步骤。 2.利润预测的作用 教师设疑引导学生共同讨论: 企业为什么要进行利润预测,它有什么作用 学生回答: 正确的利润预测是企业编制利润计划的前提,有利于企业实现目标利润,并进一步调动广大职工的生产积极性。 3.利润预测的内容 教师提问: 企业利润预测包括哪些部分其中哪个部分是利润预测的重点 学生回答: 利润预测应该包括营业利润预测、投资收益预测、补贴收入预测和营业外收支预测等内容。其中营业利润在利润总额中所占比重最大,因而营业利润预测应是利润预测的重点。 4.利润预测的步骤 教师引导提问: 通过利润预测可以确定企业的目标利润,那么请问什么是目标利润企业利润的主要组成部分是主营业务利润,因而请问预测主营业务利润的步骤包括哪几步学生回答: 目标利润是企业在计划期经过努力能够达到的利润水平,是企业计划期生产经营活动综合经济效益的集中表现。 主营业务利润预测的具体步骤包括: ①提出计划期利润目标的理想数额。 ②采用科学的方法测算计划期可能实现的目标利润数额。 ③将计划利润目标的理想数额与可能实现数额进行比较,最后确定目标利润数额。 5.利润预测的方法 教师分析讲解:

目标跟踪算法的研究毕业论文

目录 摘要 (1) ABSTRACT (2) 第一章绪论 (4) 1.1课题研究背景和意义 (4) 1.2国外研究现状 (5) 1.3本文的具体结构安排 (7) 第二章运动目标检测 (8) 2.1检测算法及概述 (8) 2.1.1连续帧间差分法 (9) 2.1.2背景去除法 (11) 2.1.3光流法 (13) 第三章运动目标跟踪方法 (16) 3.1引言 (16) 3.2运动目标跟踪方法 (16) 3.2.1基于特征匹配的跟踪方法 (16) 3.2.2基于区域匹配的跟踪方法 (17) 3.2.3基于模型匹配的跟踪方法 (18) 3.3运动目标搜索算法 (18) 3.3.1绝对平衡搜索法 (18) 3.4绝对平衡搜索法实验结果 (19) 3.4.1归一化互相关搜索法 (21)

3.5归一化互相关搜索法实验结果及分析 (22) 第四章模板更新与轨迹预测 (26) 4.1模板更新简述及策略 (26) 4.2轨迹预测 (28) 4.2.1线性预测 (29) 4.2.2平方预测器 (30) 4.3实验结果及分析: (31) 致 (36) 参考文献 (37) 毕业设计小结 (38)

摘要 图像序列目标跟踪是计算机视觉中的经典问题,它是指在一组图像序列中,根据所需目标模型,实时确定图像中目标所在位置的过程。它最初吸引了军方的关注,逐渐被应用于电视制导炸弹、火控系统等军用备中。序列图像运动目标跟踪是通过对传感器拍摄到的图像序列进行分析,计算出目标在每帧图像上的位置。它是计算机视觉系统的核心,是一项融合了图像处理、模式识别、人工只能和自动控制等领域先进成果的高技术课题,在航天、监控、生物医学和机器人技术等多种领域都有广泛应用。因此,非常有必要研究运动目标的跟踪。 本论文就图像的单目标跟踪问题,本文重点研究了帧间差分法和背景去除法等目标检测方法,研究了模板相关匹配跟踪算法主要是:最小均方误差函数(MES),最小平均绝对差值函数(MAD)和最大匹配像素统计(MPC)的跟踪算法。在跟踪过程中,由于跟踪设备与目标的相对运动, 视野中的目标可能出现大小、形状、姿态等变化, 加上外界环境中的各种干扰, 所要跟踪的目标和目标所在的场景都发生了变化, 有可能丢失跟踪目标。为了保证跟踪的稳定性和正确性, 需要对模板图像进行自适应更新。由于目标运动有一定得规律,可以采取轨迹预测以提高跟踪精度,本文采用了线性预测法。 对比分析了相关匹配算法的跟踪精度和跟踪速度;对比不采用模板更新和模板跟新的跟踪进度和差别,实验表明,跟踪算法加上轨迹预测及模板跟新在很大程度上提高了跟踪帧数,提高了跟踪精度,具有一定的抗噪声性能。

Kalman滤波算法

Kalman 滤波算法 姓名:刘金强 专业:控制理论与控制工程 学号:2007255 ◆实验目的: (1)、掌握klman 滤波实现的原理和方法 (2)、掌握状态向量预测公式的实现过程 (3)、了解Riccati 差分方程实现的过程和新息的基本性质和过程的计算 ◆实验要求: 问题: F=[a1,a2,a3],其中a1=[1.0 0 0]的转置,a2=[0.3 1.0 0]的转置,a3=[0.1 0.2 0.4]的转置,x(0)=[3,-1,2]的转置;C=[b1,b2,b3],其中b1=[0.3 0.5]的转置,b2=[1,0.4]的转置,b3=[0.8 -0.7]的转置;V1(n)=[0 0 n1(n)sin(0.1n)]的转置,V2(n)=[n2(n) n3(n)];n1(n)为均值为零,方差为1的均匀分布白噪声;n2(n),n3(n)为均值为0,方差为0.1的均匀分布白噪声,n1(n),n2(n),n3(n)相互独立,试用卡尔曼滤波器算法估计x^(n). ◆实验原理: 初始条件: 1?(1)x =E{x(1)} K(1,0)=E{[x(1)- (1)x ][x(1)- (1)H x ]},其中(1)x =E{x(1)} 输入观测向量过程: 观测向量序列={y(1),…………y(n)} 已知参数: 状态转移矩阵F(n+1,n) 观测矩阵C(n) 过程噪声向量的相关矩阵1()Q n 观测噪声向量的相关矩阵2()Q n 计算:n=1,2,3,………………. G(n)=F(n+1,n)K(n,n+1) ()H C n 12[()(,1)()()]H C n K n n C n Q n --+ Kalman 滤波器是一种线性的离散时间有限维系统。Kalman 滤波器的估计性能是:它使滤波后的状态估计误差的相关矩阵P(n)的迹最小化。这意味着,kalman 滤波器是状态向量x(n)的线性最小方差估计。 ◆实验结果: ◆程序代码: (1)主程序

经济预测方法概论1

经济预测与决策作为一门方法论性质的社会科学与哲学.政治经济学.统计学.计量经济学和数学有着密切的联系马克思主义哲学关于实践可以认识世界的观点,为经济预测与决策成为科学奠定了理论基础. 数学的发展为经济预测和决策提供了有效的定量分析方法,促进了经济预测和决策的数学化、模型和计算机化. 经济决策按方法不同,分为定性决策和定量决策. 经济决策按问题是否重复出现,分为程序化决策和非程序化决策. 经济决策按涉及的范围不同分为宏观经济决策和微观经济决策. 经济决策按决策者的地位不同,分为高层决策、中层决策和基层决策 经济决策按所处的条件不同,分为确定型和非确定性决策以及风险型决策. 经济预测按方法的性质不同,可分为定性经济预测和定量经济预测. 经济预测按预测的时态分为静态经济预测和动态经济预测. 专家评估法的步骤包括准备阶段、征询阶段、数据处理阶段. 数学的发展为经济预测和决策提供了有效的.定量分析方法,促进了预测和决策的数学化、模型化和计算机化. 经济预测按时间长短不同可分为长期经济预测、中期经济预测、短期经济预测和近期预测. 要优选方案,首先要对方案进行分析评价,这是涉及决策成败的关键. 在加权移动平均法中,权重的选择原则是近期数据的权数大,远期数据的权重数小. 移动平均法是根据时间序列资料,逐项推移,依次计算包含一定项数的序列平均数,以反映长期趋势的方法. 在执行决策时,只有不断完善和做好每一步工作,才能作出科学的决策保证决策目标和决策方案的顺利实现. 预测误差的大小反映了的准确程序 从资料中筛选与预测项目有密切关系的资料.其筛选搜集的标准有三个.一是直接有关性.二是可靠.三是最新性德尔菲法是美国兰德公司在20世纪40年代末发展起来的,后来成为在世界得到广泛采用的一种专家评估预测方法经济决策按涉及的范围不同分可为宏观经济决策和微观决策. 经济决策按决策者的地位不同,分为高层决策、中层决策和基层决策. 定量预测是由预测者利用模型,由自由变量估计因变量. 从资料中筛选与预测项目有密切关系的资料.其筛选搜集的标准有三个.一是直接有关性.二是可靠性三是最新性经济决策按方法不同,分为定量经济决策和定性经济决策 经济决策按目标的性质和行动时间的长短不同分为战略决策和战术决策. 经济预测按时间长短不同可分为长期经济预测、中期、短期经济预测. 时间序列是由长期趋势季节变动循环变动和不规则变动这四类因素组成 时间序列是由长期趋势、季节变动、循环变动和不规则变动这四类因素组成下列预测法哪一种是定性预测法专家 评估法 资料的可比性不包括在数量上是否一 致 专家评估法又称为(德尔菲法) 下列预测法哪一种是定量预测法…… 时间序列预测法 下面哪个预测方法可以离开数学模 型……①专家预测 经济决策按目的性质和行动时间长短 不同,分为②战略决策与战术决策 下列哪个不是专家评估法的缺点④有 相当的主观任意性 下列预测法中哪一种是定性预测法… ①市场调查预测法 下列预测法哪一种是定性预测法…④ 市场调查预测法 下列属于折衷决策方法是③赫威斯决 策准则 不是市场调查预测方法的是①专家意 见调查预测法 下列哪种预测法不是市场调查预测法 ④专家意见调查预测法 13、下列哪种决策方法反映了决策者的 悲观情绪,属于一种保守的决策方法的 是①最大最小决策准则 哪种预测法是专家评估法①德尔菲法 预测方法不需要使用数学模型( 1 ) ①专家预测法 微观经济预测答:微观经济预测,是 指基层单位的经济活动为范围进行的 各种经济预测。它以个别经济单位产生 经营发展的前景作为考察对象,研究微 观经济中各项有关指标之间的联系和 发展变化. 定量决策答:定量决策P279,是决策 者,使用统计方法和数学模型,对能用 数量表现决策目标和未来行动的决定。 如对投资和生产规模、销售任务、费用 水平、利润水平和价格水平的确定. 动念经济预测:动态经济预测.是指包 含时间变动因素.根据经济现象发展的 历史和现状.对其未来发展前景的预测. 市场调查预测法答:市场调查预测法, 是指预测者深入实际进行市场调查研 究,取得必要的经济信息,根据自己的 经验和专业水平,对市场商情发展变化 前景的分析判断. 确定型决策答:确定型决策,是指已 掌握决策的条件、因素和完整的信息资 料,有明确的目标,一个决策行动方案 只有一种确定的结果,无不确定因素所 作出的决策. 中期经济预测答:中期经济预测,是 指对1年以上5年以下经济发展前景的 预测。它是制定国民经济和企业生产经 营发展的五年计划,规定经济5年发展 任务的依据. 宏观经济预测答:宏观经济预测,是 指以国民经济、部门、地区的经济活动 为范围进行的各种经济预测。它以整个 社会经济发展的总图作为考察对象,研 究经济发展中各项有关指标之间的联 系和发展变化. 相关分析答:相关分析,是研究两个 或两个以上变量之间相互依存关系的 紧密程度. 简述定性预测的优缺点答:定性预测比 较简单易行.可利于有关人员的丰富经 验.专门知识及掌握的实际情况.考虑不 定量的因素的影响.进行比较切合实际 的预测.其缺点在于.预测者由于工作岗 位不同.掌握的情况不同.理论水平与实 践经验各异,进行预测时包含的主观因 素较多,往往会过分乐观而估计浮夸, 或偏于保守而估计过低,对同一问题不 同人会作出不同判断,得出不同结论 什么是多目标决策?它有何特点? 答:两个目标以上的决策,称为多目标 决策。多目标决策问题的共同特点是: ①目标之间的不可公度性;②目标之间 的矛盾性。 简述提高定性预测的准确程度应注意 哪些问题。答:应注意以下几个问题: ①应加强经济调查研究,努力掌握影响 经济发展的有利条件、不利因素和各种 活的情况;②进行经济调查研究,搜集 资料时,应数据和情况并重,使定性分 析数量化;③应将定性预测和定量预测 相结合,提高经济预测质量。 什么是时间序列?影响时间序列变动的 因素有哪些?答:时间序列是指某种统 计指标的数值,按照时间先后顺序排列 起来的数列。时间序列分析通常对各种 可能发生影响的因素按性质不同分为 四大类:长期趋势、季节变动、循环变 动和不规则变动。 简述经济决策的作用。答:①科学决策 是提高经济管理水平的手段;②科学决 策有利于提高经济效益;③科学决策是 培养新型经济管理人才的工具。 简述科学的经济决策应具备哪些条件。 答:其应具备的条件如下:①有明确的 目标和已预计出损益值的几种可供选 择的方案;②要有客观依据,符合实际 情况;③经济决策执行的结果能够为社 会带来令人满意的经济效益。 简述战略决策与战术决策二者有什么 关系答:战略决策,是指对经济发展方 向和远景规划作出的重大决策,对经济 发展的长远战略目标、战略重点、战略 措施作出的决策。战术决策,是指对为 了实现战略目标所采取手段的决定,是 对局部的战术性问题的决策。战略决策 是决战术决策的前提,战术决策是战略 决策的保证。战术决策应服从战略决策 的要求,战略决策通过大量战术决策来 体现。应将二者有机地结合起来,才有 利于决策科学化。 什么是定量预测?定量预测有什么缺点? 答:定量决策,是决策者,使用统计方 法和数学模型,对能用数量表现决策目 标和未来行动的决定。如对投资和生产 规模、销售任务、费用水平、利润水平 和价格水平的确定。 简述经济预测的基本原则。答:为了充 分发挥经济预测的作用,必须遵循以下 几个基本原则:①坚持事实求是的原 则;②用联系和发展的观点看问题;③ 坚持连贯性和类推性原则;④正确选择 和运用预测方法。

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。 在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

目标跟踪算法综述

。 目标跟踪算法综述 大连理工大学卢湖川一、引言 目标跟踪是计算机视觉领域的一个重 要问题,在运动分析、视频压缩、行为识 别、视频监控、智能交通和机器人导航等 很多研究方向上都有着广泛的应用。目标 跟踪的主要任务是给定目标物体在第一帧 视频图像中的位置,通过外观模型和运动 模型估计目标在接下来的视频图像中的状 态。如图1所示。目标跟踪主要可以分为5 部分,分别是运动模型、特征提取、外观 模型、目标定位和模型更新。运动模型可 以依据上一帧目标的位置来预测在当前帧 目标可能出现的区域,现在大部分算法采用的是粒子滤波或相关滤波的方法来建模目标运动。随后,提取粒子图像块特征,利用外观模型来验证运动模型预测的区域是被跟踪目标的可能性,进行目标定位。由于跟踪物体先验信息的缺乏,需要在跟踪过程中实时进行模型更新,使得跟踪器能够适应目标外观和环境的变化。尽管在线目标跟踪的研究在过去几十年里有很大进展,但是由被跟踪目标外观及周围环境变化带来的困难使得设计一个鲁棒的在线跟踪算法仍然是一个富有挑战性的课题。本文将对最近几年本领域相关算法进行综述。 二、目标跟踪研究现状 1. 基于相关滤波的目标跟踪算法 在相关滤波目标跟踪算法出现之前,大部分目标跟踪算法采用粒子滤波框架来进行目标跟踪,粒子数量往往成为限制算法速度的一个重要原因。相关滤波提出了 一种新颖的循环采样方法,并利用循环样 本构建循环矩阵。利用循环矩阵时域频域 转换的特殊性质,将运算转换到频域内进 行计算,大大加快的分类器的训练。同时, 在目标检测阶段,分类器可以同时得到所 有循环样本得分组成的响应图像,根据最 大值位置进行目标定位。相关滤波用于目 标跟踪最早是在MOSSE算法[1]中提出 的。发展至今,很多基于相关滤波的改进 工作在目标跟踪领域已经取得很多可喜的 成果。 1.1. 特征部分改进 MOSSE[1] 算法及在此基础上引入循 环矩阵快速计算的CSK[2]算法均采用简单 灰度特征,这种特征很容易受到外界环境 的干扰,导致跟踪不准确。为了提升算法 性能,CN算法[3]对特征部分进行了优 化,提出CN(Color Name)空间,该空 间通道数为11(包括黑、蓝、棕、灰、绿、 橙、粉、紫、红、白和黄),颜色空间的引 入大大提升了算法的精度。 与此类似,KCF算法[4]采用方向梯度 直方图(HOG)特征与相关滤波算法结合, 同时提出一种将多通道特征融入相关滤波 的方法。这种特征对于可以提取物体的边 缘信息,对于光照和颜色变化等比较鲁棒。 方向梯度直方图(HOG)特征对于运 动模糊、光照变化及颜色变化等鲁棒性良 好,但对于形变的鲁棒性较差;颜色特征 对于形变鲁棒性较好,但对于光照变化不 够鲁棒。STAPLE算法[5]将两种特征进行 有效地结合,使用方向直方图特征得到相 关滤波的响应图,使用颜色直方图得到的 统计得分,两者融合得到最后的响应图像 并估计目标位置,提高了跟踪算法的准确 度,但也使得计算稍微复杂了一些。 图1 目标跟踪算法流程图

目标跟踪算法

clc; clear; x=[0 16 25 33 50 65 75 82 100]; y=[0 172.5 227.5 324.2 330.7 286.1 237.7 201.7 0]; plot(xx,yy); 的图为 xx = 0:.01:100; yy = spline(x,y,xx); plot(xx,yy)

Matlab画平滑曲线的两种方法(拟合或插值后再用plot即可) 分类:MATLAB2012-12-02 11:15 25540人阅读评论(4) 收藏举报自然状态下,用plot画的是折线,而不是平滑曲线。 有两种方法可以画平滑曲线,第一种是拟合的方法,第二种是用spcrv,其实原理应该都一样就是插值。下面是源程序,大家可以根据需要自行选择,更改拟合的参数。 clc,clear; a = 1:1:6; %横坐标 b = [8.0 9.0 10.0 15.0 35.0 40.0]; %纵坐标

plot(a, b, 'b'); %自然状态的画图效果 hold on; %第一种,画平滑曲线的方法 c = polyfit(a, b, 2); %进行拟合,c为2次拟合后的系数 d = polyval(c, a, 1); %拟合后,每一个横坐标对应的值即为d plot(a, d, 'r'); %拟合后的曲线 plot(a, b, '*'); %将每个点用*画出来 hold on; %第二种,画平滑曲线的方法 values = spcrv([[a(1) a a(end)];[b(1) b b(end)]],3); plot(values(1,:),values(2,:), 'g');

目标定位跟踪算法及仿真程序(修改后)

目标定位跟踪算法及仿真程序 质心算法是最简单的定位算法,如图2-1所示,四个小圆为观测站,实线三角形是目标真实的位置,假设四个圆形观测站都探测到目标的存在,则根据质心定位算法,目标的位置(x,y )可以表示为:4 4 321x x x x x +++= , 4 4 321y y y y y +++= ,这里观测站得位置为),(i i y x ,同理,当观测站数目为N 时,这时候的质心定位算法可以表示为: ???? ? ??? ????=??????∑ ∑ ==N i i N i i y N x N y x 1 1 11 图1 质心定位 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 质心定位算法Matlab 程序 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function main % 定位初始化 Length=100; % 场地空间,单位:米 Width=100; % 场地空间,单位:米 d=50; % 目标离观测站50米以内都能探测到,反之则不能 Node_number=6; % 观测站的个数 for i=1:Node_number % 观测站的位置初始化,这里位置是随机给定的 Node(i).x=Width*rand; Node(i).y=Length*rand; end % 目标的真实位置,这里也随机给定 Target.x=Width*rand; Target.y=Length*rand; % 观测站探测目标 X=[]; for i=1:Node_number

相关文档