文档库 最新最全的文档下载
当前位置:文档库 › 向量法求异面直线的距离解法探求

向量法求异面直线的距离解法探求

向量法求异面直线的距离解法探求
向量法求异面直线的距离解法探求

向量法求异面直线的距离解法探求

空间异面直线的距离问题是立体几何的重点,难点,同时也是历届高考试题的热点问题。

如何很好地利用向量法求解这类问题又是一个值得探讨与研究的问题。下举例谈谈向量法求解这类问题的基本方法与策略。

一、 定义法:

例1、如图1,正方形ABCD 与ABEF 成600的二面角,且

正大光明方形的边长为,M ,N 分别为BD ,EF 的中点,求异

面直线BD 与EF 的距离。

解析:选取为,,,AB AF AD 基向量。显然AF AD ,的夹

角为600,AD AB ,的夹角为900,AF AB ,的夹角为900,AD AF

AB AD AF AB AD FE DF BD FN DF MD MN 2

121)()(212121-=+-+-=++=++= EF MN EF MN AB AD AB AF AB AD AF FE MN BD MN BD MN a a AB AD AB AF AD AD AF AB AD AD AF BD MN ⊥⊥∴=?-?=?-=?⊥⊥∴=+--=?+?--?=-?-=?∴即又即)(,021)2

1(.,,0002160cos 2

121)21(2022从而MN 为异面直线BD 与EF 的公垂线。

,2

3||434160cos 41)21(||2202222222a a a a a ==+-=+?-=-== 异面直线BD 与EF 的距离为a 2

3。 点评:本题利用向量数量积定义,很好地证明MN 为异面直线的公垂线。然后利用向量

模与数量积的关系,巧妙进行了模与向量的转化,解法自然,回味无穷。

二、射影法:

分别以这两异面直线上任意两点为起点和终点的向量为,与这两条异面直线都垂直的

法向量为,则两异面直线间的距离是在方向上的正射影向量的模设为d ,从而由公式d =

例2、如图2,四棱锥P-ABCD 的底面是正方形,

,PA ABCD ⊥底面33PA AB a ==,求异面直线AB 与PC 的距离。

解析:以A 为坐标原点,AB 为x 轴建立如图所示的直角坐标系,则B

(a,0,0),C(a,a,o),P(0,0,3a),则)3,,(),0,0,(a a a PC a AB -==,

设PC AB ,的公垂线的方向向量为),,(z y x n =由

?

??==??????=-+=?==?z y x az ay ax PC n ax AB n 30030,不妨令x=0,y=1,z=3则有)3,1,0(=n ,又)3,0,0(a AP =,∴AB 与PC 间的距离为:a a d 1010910

9===。 点评:异面直线公垂线难于确定时,可用向量法求异面间的距离。这种方法的关键是利

用待定系数法确定公垂线的方向向量n 。

三、公式法

设异面直线AE ,BF 所成的角为θ,设d 为异面直线的公垂线,E ,F 为直线AE ,BF 上

任一点,若能求出||的长,从而有

d =例3、如图,已知二面角βια--的大小为600

, A ,C 分

别为平面αβ,内一点,过A、C分别作棱ι的垂线,垂足为B,

D,若AC=6,CD=AB=4,求异面直线AB与CD的

距离。

解析:由已知异面直线AB,CD所成的角为60

0,CD BD AB BD ⊥⊥,BD 从而知BD为异面直线的公垂线。 5

2||,20)60cos ||||2|||(|||||60cos ||||2||||||2(2)

()(||022220

2222222222=∴=?-+-==??-++=?+++=?+?+?+++=++?++=?=BD DC AB DC AB AC BD DC AB DC BD AB DC AB DC BD AB CD BD DC AB BD AB DC BD AB DC BD AB DC BD AB AC AC AC )

? 即异面直线AB与CD的距离为52。

点评:利用异面直线两点的距离公式求异面直线的距离主要是理解公式中的具体涵义,

特别要注意“±”的确定及两异面直线所成的角与二面角的大小关系。

四、转化法

如图4,过其中一条异面直线b 上的一点A 作与另一条a 平

行的直线a 1,于是异面直线的距离就可转化为直线 a 到平面α

的距离,最后可转化为在直线 a 上取一点到平面α的距离。从

而可借用向量的射影法求解。

例4、如图5,在底面是菱形的四棱锥P —ABC D中,∠

ABC=600,PA=AB=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1.

求异面直线PB 与CE 的距离。

解析:由PE:ED=2:1知,在BD 上取点F 使BF :BD=2:1,易知

PB//EF ,从而PB//平面CEF ,于是只需求直线PB 到平面CEF 的距离,

即可求点P 到平面CEF 的距离。以A 为坐标原点,AD 为y 轴,建立

如图所示的直角坐标系,由已知, P (0,0,a ))0,21,23(a a C , )0,21,63(a a F ,)3

1,32,0(a a E 则)0,0,3

3(),31,61,23(),32,32,0(a CF a a a CE a a PE -=-=-=,设平面CEF 的法向量为),,(z y x n =则???=+=????

????=-=?=++=?0200330316123z y x ax CF n az ay ax CE n ,于是令

x=0,y=-2,z=1,则)1,2,0(-=n ∴PB 到平面CEF 间的距离为:a a a d 5525

|3234|=---==

,从而异面直线

PB 与CE 的距离为a 552。 点评:本题较好地通过线面平行将异面直线的距离转化为线面距,进而利用平面内任斜

线方向向量到平面一法向量的投影成功求得点面距即为所求的异面直线的距离。转化巧妙,

关键是构造法向量。

五、最值法

在两异面直线a,b 上分别任取两点A ,B ,建立AB 的模的目标函数,函数的最小值即为所求。

例5、设正方体AC 1的棱长为1,E ,F ,M 分别为B 1C 1, C 1 D 1,

A 1

B 1的中点,求异面直线EF 与AM 的距离。

解析:设N 为A 1D 1的中点,连MN , AN ,BE ,FD ,BD ,易证平

面BDEF//平面AMN,于是问题转化成A点到平面BEFD的距

离。如图6,以C为坐标原点,CB为x 轴建立直角坐标系。设

P为平面BEFD内任一点。由P、B、D、E四点共面,则有:

.3

2.32||,949

4)92(89]221[2)()21(||,1),,21()1,1,21()0,0,1()0,1,0(2222222异面直线的距离为且∴≥∴≥++=++++≥++++=∴=++----=--+-+-=++=AP c c c a c b c c a c b c b a c c a c b c b a AE c AD b AB a AP 点评:本题在利用空间图形间的距离定义的基础上构建图形上任意两点所在方向向量模的目标函数,转求函数的最小值,匠心独运,值得欣赏。

六、待定系数法

将异面直线通过转化成面面距或线面距,最终转求点面距时,关键是求作垂足点的位置即平面的垂线。由空间向量的基本定理方向可采用待定系数法设法求得垂线段所在的方向向量使问题加以解决。

如例题5可作PA⊥平面EFDB于P,由P、B、D、E四点共面,则有:

3

2||),1,2,2(92),,21(,92:......30 (2)

50......1),,2

1()1,1,21()0,0,1()0,1,0(=∴-=----=∴-=-=?=?-=?=?=++----=--+-+-=++=AP c c a c b AP c ①②③③c a ②c b ①c b a c c a c b c b a c b a 得由又由且 点评:当异面直线的距离转化为点面距时,垂足点的位置不好确定时,可结合共面向量定理、向量垂直的充要条件等转化成方程组来求解,往往会起到意想不到的效果。

求异面直线间距离的几种常用方法

求异面直线间距离的几种常用方法 1 辅助平面法 (1)线面垂直法,用于两条异面直线互相垂直情况.若已知两条异面直线互相垂直,那么可以寻找一个辅助平面,使它过其中一条直线且垂直于另一条直线,在辅助平面上,过垂足引前一条直线的垂线,就得到这两条异面直线的公垂线,并求其长度. 例1 如图1所示正三棱锥V-ABC的底面边长为a,侧棱为b,求AB与VC的距离. 解:在正三棱锥V-ABC中,△AVC≌△BVC,作BE⊥VC,连AE,则AE⊥VC,且AE =BE, ∴VC⊥平面AEB ∴VC⊥AB 取AB中点D,连DE,则DE⊥AB,又VC⊥DE. ∴DE是异面直线AB与VC的公垂线. 分析:这样求异面直线间距离就化为平面几何中求点到直线的距离了. 作VF⊥BC,则有

(2)线面平行法,用于一般情况.其用法为:过其中一条直线作与另一条直线平行的平面,这样可把求异面直线间的距离转化为求点到面的距离. 例2 如图2所示,长方体ABCD-A1B1C1D1中,AB=a,BB1=a,BC=b,试求异面直线AB与A1C之间的距离. 解:∵AB∥A B,∴AB∥平面A B C,于是AB与平面A B C间的距离即为异面 直线AB与A C之间的距离. (3)面面平行法,求两异面直线的距离,除了上面(2)介绍的转化为线面的距离外,还可以转化为面面的距离,即作两平行的辅助平面,分别过其中的一条,两平行平面间的距离就为此两异面直线的距离. 例3 如图3所示,夹在两平行平面α和β间的异面直线AB、CD,在平面β的射影分别是12cm和2cm,它们与平面β的交角之差是45°,求AC与BD之间的距离.

向量法求空间距离教案

A B C D O S x y z 图2 A B C D α n a b 龙文学校——您值得信赖的专业化个性化辅导学校 龙文学校个性化辅导教案提纲 教师:_______ 学生:_______ 年级:______ 授课时间:_____年___月___日_____——_____段 一、授课目的与考点分析:向量法求空间距离 能用向量方法解决空间距离问题,了解向量方法在研究集合问题中的应用. 二、授课内容及过程: 1、点到平面的距离 方法:已知AB 为平面α的一条斜线段,n 为平面α的法向量, 则A 到平面α的距离d =AB n n ? . 2、两条异面直线距离: 方法:a 、b 为异面直线,a 、b 间的距离为:AB n d n ?= . 其中n 与a 、b 均垂直,A 、B 分别为两异面直线上的任意两点 题型1:异面直线间的距离 例1、如图2,正四棱锥S ABCD -的高2SO =,底边长2AB =。求异面直线BD 和SC 之间的距离? 题型2:点面距离 如图,在长方体1111ABCD A BC D -,中,11,2AD AA AB ===,点E 在棱AD 上移动.(1)证明:11D E A D ⊥; (2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4 π. 解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴, 建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C (1).,0)1,,1(),1,0,1 (,1111E D DA x E D DA ⊥=-=所以因为

异面直线间的距离(高中全部8种方法详细例题)

异面直线间的距离 求异面直线之间距离的常用策略:求异面直线之间的距离是立体几何重、难点之一。常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转为求一元二次函数的最值问题,或用等体积变换的方法来解。 常用方法有: 1、定义法 2、垂直平面法(转化为线面距) 3、转化为面面距 4、代数求极值法 5、公式法 6、射影法 7、向量法 8、等积法 1 定义法就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。

例1 已知:边长a 为的两个正方形ABCD 和CDEF 成1200的二面角,求异面直线CD 与AE 间的距离。 思路分析:由四边形ABCD 和CDEF 是正方形,得 CD ⊥AD ,CD ⊥DE ,即CD ⊥平面ADE ,过D 作DH ⊥AE 于H ,可得DH ⊥AE ,DH ⊥CD ,所以DH 是异面直线AE 、CD 的公垂线。在⊿ADE 中,∠ADE=1200,AD=DE=a ,DH=2 a 。即异面直线CD 与AE 间的距离为2 a 。 2 垂直平面法:转化为线面距离,若a 、b 是两条异面直线,过b 上一点A 作a 的平行线a /,记a /与b 确定的平面α。从而,异面直线a 、b 间的距离等于线面a 、α间的距离。 例1 如图,BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d ,求两条异面直线BF 、AE 间的距离。 思路分析:BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,∠EAB=α,∠FAB=β,AB=d ,在平面Q 内,过B 作BH ‖AE ,将异面直线BF 、AE 间的距离转化为AE 与平面BCD 间的距离,即为A 到平面BCD 间的距离,又因二面角P-AB-Q 是直二面角,过A 作

利用空间向量求空间角和距离

利用空间向量求空间角和距离 A 级——夯基保分练 1.如图所示,在正方体ABCD -A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( ) A.30 30 B .3015 C. 3010 D. 1515 解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→ =(-1,-1,-2),D 1N ―→ =(1,0,-2), ∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→ | |B 1M ―→|·|D 1N ―→|= |-1+4|1+1+4×1+4=30 10 . 2.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =1 3AB ,则DC 1与平面D 1EC 所成角的 正弦值为( ) A.33535 B .277 C.33 D.24 解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), ∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→ =(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ), 则????? n ·D 1E ―→=0,n · D 1C ―→=0,即????? x +y -z =0,3y -z =0,取y =1,得n =(2,1,3). ∴cos DC 1―→,n =DC 1―→·n |DC 1―→|·|n| =33535, ∴DC 1与平面D 1EC 所成的角的正弦值为335 35 .

向量法求空间点到平面的距离教案

学习必备 欢迎下载 向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

学习必备欢迎下载

学习必备 欢迎下载 若AB 是平面α的任一条斜线段,则在BOA Rt ? ABO COS ∠? ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z = 则n AB n AC ⊥⊥,.∵(3,4,0)AB =-,(3,0,2)AC =- ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z ?-=???-=?即340320x y x z -+=??-+=? ∴3432y x z x ?=????=?? 取4x =,则(4,3,6)n = ∴(4,3,6)n =是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E =-=--=设平面EFG 的一个法向量 为(,,)n x y z = 2202420 11(,,1)33 n EF n EG x y x y n ⊥⊥-=?∴?--+=?∴=,

空间直线异面直线间的距离

空间直线(四)—异面直线间的距离 一、 教学目的:(1)理解两条异面直线垂直的概念;(2)了解两条异面直线的公垂线;(3)会求两条异面直线间的距离及主要方法。 二、 教学重点、难点:异面直线间的距离。 三、 教学过程:1、复习: (1)异面直线的定 义: ; (2)两条异面直线所成的 角: ; ?当两条异面直线互相垂直 时 ; 两条异面直线所成的角的范围 是 ; 2、观察正方体ABCD —1111D C B A 中,正方体的棱1AA 和1 1C B 所在的直线,直线11B A 直线1AA 和11D C 直线,直线 。 3 4 练习(1);设上图中,已知正方体ABCD —1111D C B A 的棱为a . (1)则异面直线AB 和11C B 的公垂线为 ;它们的距离 是 ; (2)则异面直线1AA 和C B 1的公垂线为 ;它们的距离 是 ; (3)则异面直线AC 和11D B 的公垂线为 ;它们的距离 是 ; [思考题]:则异面直线AC 和1BD 的公垂线为 ;它们的距离 是 ; [例1]:如图,PA ⊥矩形ABCD ,已知PA=AB=8,BC=15. (1) 求直线PA 、BC 间的距离; (2) 求直线PA 、BD 间的距离; (3) 求直线AD 与PC 所成角的余切值。 [例2]:已知正四面体ABCD 中(各边均相等的四面体),若AB=1。 求:AB 和CD 间的距离。 A B D C 1 P A B C D

练习(2)1、判断题; (1)d c b a ,,,是4条直线,;////,//,//d a d c c b b a ?-------------( ) (2)若b a ,是直线,βα,是平面, 且,,βα??b a 则b a ,一定是异面直线( ) (3)b c a c b a ⊥?⊥,//---------------------------------------------------------------( ) (4)b a c b c a //,?⊥⊥--------------------------------------------------------------( ) 2、填空题: (1)已知b a ,是两条直线,且b a //,φ=?b a ,那么a 与b ; (2)已知c b a ,,是三条直线,且a b a ,//和c 所成的角为030,那么b 和c 所 成的角的大小为 ; (3)1AA 是长方体的一条棱,这个长方体中与1AA 垂直的棱共 有 ; (4)如果b a ,是异面直线,直线c 与b a ,都相交,那么由这三条直线中的 两条所确定的平面共有 个。 3、如图,已知长方体的长和宽都是cm 32, 高是cm 2. (1) BC 和11C A 所成的角是多少度? (2) 1AA 和1BC 所成的角是多少度? 11B A 和1DD ,以及11C B 和CD 的距离各是多少? 作业: P 15 7、8 A B C D A 1 B 1 C 1 D 1

第43讲 利用空间向量求空间角和距离(讲)(解析版)

第43讲 利用空间向量求空间角和距离 思维导图 知识梳理 1.异面直线所成角 设异面直线a ,b 所成的角为θ,则cos θ=|a ·b | |a ||b |, 其中a ,b 分别是直线a ,b 的方向向量. 2.直线与平面所成角 如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n | |a ||n | 3.二面角 (1)若AB ,CD 分别是二面角α-l -β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→ 的夹角,如图(1). (2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α -l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|= |n 1·n 2| |n 1||n 2| ,如图(2)(3). 4.利用空间向量求距离 (1)两点间的距离

设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB ―→ |=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. (2)点到平面的距离 如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO ―→|=|AB ―→ ·n | |n | . 题型归纳 题型1 异面直线所成的角 【例1-1】(2020?济南模拟)已知直角梯形ABCD 中,//AD BC ,AB BC ⊥,1 2 AB AD BC == ,将直角梯形ABCD (及其内部)以AB 所在直线为轴顺时针旋转90?,形成如图所示的几何体,其中M 为CE 的中点. (1)求证:BM DF ⊥; (2)求异面直线BM 与EF 所成角的大小. 【分析】(1)建立空间坐标系,得出BM ,DF 的坐标,根据向量的数量积为0得出直线垂直; (2)计算BM 和EF 的夹角,从而得出异面直线所成角的大小. 【解答】(1)证明: AB BC ⊥,AB BE ⊥,BC BE B =, AB ∴⊥平面BCE , 以B 为原点,以BE ,BC ,BA 为坐标轴建立空间坐标系B xyz -,如图所示: 设1AB AD ==,则(0D ,1,1),(1F ,0,1),(0B ,0,0),M 0), ∴(2BM =,0),(1DF =,1-,0),

用向量法求空间距离

用向量法求空间距离 湖南省冷水江市七中(417500) 李继龙 在高中立体几何中引入空间向量,为解决立体几何问题提供了一种新的解题方法,有时也能降低解题难度.下面通过例题介绍用向量法求空间距离的方法. 一、 求两点之间的距离 用向量求两点间的距离,可以先求出以这两点为始点和终点的向量,然后求出该向量的模,则模就是两点之间的距离. 例1 已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 是AD 1的中点,Q 是BD 上一点, DQ=4 1 DB ,求P 、Q 两点间的距离. 解 如图1,以1DD DC DA 、、所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系D-xyz ,则 0)4 141(Q )21021(,,、,,P , 所以)21 -4141(-,,=. 46= ,即P 、Q 两点的距离为4 6. 二、 求点到直线之间的距离 已知如图2,P 为直线a 外一点,Q 为a 上任意一点,PO ⊥a 于点O ,所以点P 到直线a 的距离为|PO|=d . 则有>= < 故>

例2 在长方体OABC-O 1A 1B 1C 1中,OA=2,AB=3,AA 1=2.求点O 1到直线AC 的距离. 解 建立如图3所示的空间直角坐标系,连结AO 1,则A(2,0,0),C(0,3,0),O 1(0,0,2). 所以0)32-(AC 2)02-(AO 1,,,,,==. 故 d = 13 286 213168=- = 所以点O 1到直线AC 的距离为13 286 2. 三、 求点到平面的距离 如图4设A 是平面α外一点,AB 是平面α的一条斜线,交平面α于点B ,而是平面α的法向量,那么向量 在方向上的射影长就是点A 到平面α的距离d ,所以 d ==>

空间向量的应用----求空间角与距离

空间向量的应用----求空间角与距离 一、考点梳理 1.自新教材实施以来,近几年高考的立体几何大题,在考查常规解题方法的同时,更多地关注向量法(基向量法、坐标法)在解题中的应用。坐标法(法向量的应用),以其问题(数量关系:空间角、空间距离)处理的简单化,而成为高考热点问题。可以预测到,今后的高考中,还会继续体现法向量的应用价值。 2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下: 1)求直线和直线所成的角 若直线AB 、CD 所成的角是α,cos α=|,cos |>

计算公式为: 4).利用法向量求点面距离 如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,则点P 到平面的距离 θcos ||||PA PO d == 5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面 间的距离,以及平行平面间的距离等。其一,这三类距离都可以转化为点面间的距离;其二, 异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即 为所求。n 为异面直线AD 、BC 公共垂直的方向向量,可由0n AD ?=及0n BC ?=求得,其计算公式为: || || n AB d n =。其本质与求点面距离一致。 向量是新课程中引进的一个重要解题工具。而法向量又是向量工具中的一朵厅葩,解题方法新颖,往往能使解题有起死回生的效果,所以在学习中应起足够的重视。 二、范例分析 例1 已知ABCD 是上、下底边长分别为2和6,3将它沿对称轴1 OO n α A P O θ

向量法求空间点到平面的距离教案

向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 剖析:如图, BO 平面 ,垂足为O ,则点B 到平面 的距离是线段BO 的长度。 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

若AB 是平面 的任一条斜线段,则在BOA Rt ABO COS ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z r 则n AB n AC r u u u r r u u u r ,.∵(3,4,0)AB u u u r ,(3,0,2)AC u u u r ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z 即340320x y x z ∴3432y x z x 取4x ,则(4,3,6)n r ∴(4,3,6)n r 是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E u u u r u u u r u u u r 设平面EFG 的一个法向量 为(,,)n x y z r 2202420 11(,,1)33 n EF n EG x y x y n r u u u r r u u u r r ,

求两条异面直线之间距离的两个公式

求两条异面直线之间距离的两个公式 王文彬 (抚州一中 江西 344000) 本文介绍求异面直线距离的两个简捷公式,以及如何定量地确定异面直线公垂线的方法. 1.公式一 如图1,1l 、2l 是异面直线,2l ?平面α,1l A α?=,1l 在α内的射影为l ,设2l l B ?=,且12,l l 与l 所成的角分别为12,θθ,AB m =,则1l 与2l 之间的距离为 d = (1) 证明:设1l 与2l 的公垂线为MN ,如 图1所示,过M 作MH l ⊥于H ,由于1l 在平面α内的射影为l ,故MH ⊥平面α, NM 在α内的射影为NH .由2MN l ⊥知 2NH l ⊥. 在Rt BNH ?中 22cos ()cos BN BH AB AH θθ==- 12(cos )cos m AM θθ=-……………………………① 同理21(cos )cos AM m BN θθ=-…………………② 联立①②解得 图1

212 22 12cos sin 1cos cos m AM θθθθ=- (1.1) 221 22 12cos sin 1cos cos m BN θθθθ=- (1.2) 从而 212 112212cos sin sin sin 1cos cos m MH AM θθθθθθ==?- 221 2222 12 cos sin tan tan 1cos cos m NH BN θθθθθθ==?- () () 2 2 2 2 2 4 22421 212122 2 2 1 2 cos sin sin cos sin tan 1cos cos m MN MH NH θθθθθθθθ∴=+= +- () ()2 2 4242121122 2 2 1 2 sin sin cos sin sin 1cos cos m θθθθθθθ= +- () ()2 22222121212 2 212sin sin cos sin sin 1cos cos m θθθθθθθ= ?+- () ()2 2222221212122 2 2221212sin sin sin sin sin sin sin sin sin sin m θθθθθθθθθθ= ?+-+- 22212 2222 1212sin sin sin sin sin sin m θθθθθθ=+-22212csc csc 1m θθ=+-. 即有公式(1)成立. 运用公式(1)求1l 与2l 之间的距离时,无需知道它们公垂线的位置,但如果要确定公垂线的位置,则可根据公式(1.1)和公式(1.2)分别计算出AM 和BN 的值,进而确定公垂线 MN 具体位置.

向量法求空间距离和角

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法 向量, 则斜线l 与平 面 α 所成的角 α=arcsin | ||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角 l αβ--的平面角α=arccos |||| a b a b 法二、设12,,n n 是二面角l αβ--的两

个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角 l αβ--的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 法一、找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ==(此方法移植于点面距离的求法).

用向量法求空间距离

A B C D m n 1 图向量法求空间距离 向量融形、数于一体,具有几何形式和代数形式的“双重身份”,向量成为中学数学知识的一个交汇点,空间向量将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值计算,化繁难为简易,化复杂为简单,成为解决立体几何问题的重要工具。 1.异面直线n m 、的距离 分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的向量,分别在 n m 、上各取一个定点B A 、,则异面直线n m 、的距离 d 等于在上的射影长,即| |n d = 证明:如图1,设CD 为公垂线段,取b a ==, | |||)(?=?∴?++=?∴++= | |||||n n AB d ?= =∴ 2平面外一点P 到平面α的距离 如图2,先求出平面α的法向量,在平面内任取一定 点A ,则点p 到平面α的距离d 等于在上的射影长,即| |n d = 因为空间中任何向量均可由不共面的三个基向量来线性表示,所以在解题时往往根据问题条件首先选择适当的基向量,把相关线段根据向量的加法、数乘运算法则与基向量联系起来。再通过向量的代数运算,达到计算或证明的目的。一般情况下,选择共点且不共面的三个已知向量作为基向量。 [例 1] 如图3,已知正三棱柱111C B A ABC -的侧棱长为2, 底面边长为1,M 是BC 的中点,当1AB MN ⊥时,求点1A 到平面AMN 的距离。 图2 A B C M N 1 A 1 B 1 C 图3

几何体中容易找到共点不共面且互相垂直的三个向量,于是有如下解法: 解:当1AB MN ⊥时,如图4 , 、)0,0,0(A )81 ,1,0()0,43,43()2,21,23(1N M B 、、、)2,0,0(1A ,则 )2,0,0(),0,4 3,43( ),8 1 ,41,43(1==- =AA AM MN , 设向量),,(z y x n =与平面AMN 垂直,则有 )0()1,1,3(8 ),81,83( 8183 0434********>-=-=∴?????? ?-==?=???????=+=++-??????⊥⊥z z z z z n z y z x y x z y x AM n MN n 取)1,1,3(0-=n 向量1AA 在0n 上的射影长即为1A 到平面AMN 的距离,设为d ,于是 5 5 21)1()3(|)1,1,3()2,0,0(||||,cos |||2 2201011011= +-+-?= =>

利用空间向量求点到平面的距离及异面直线间距离

第五节利用空间向量求点到平面的距离及异面直线间距离 一、 点到平面的距离 设A 是平面α外一点,B 是α内一点,n ρ 为α的一个法向量,则点A 到平面α的 距离n n AB d ρρ?= 例1、 如图,已知ABCD 是边长为4的正方形, E 、 F 分别是AB 、AD 的中点,GC ⊥平面ABCD 且GC=2,求点B 到平面EFG 的距离。 例2、 在三棱锥S-ABC 中,ABC ?是边长为4的正三角形, 平面SAC ⊥平面ABC ,SA=SC=32,M 、N 分别是 AB 、SB 的中点。(04福建) (1)证明AC ⊥SB ; (2)求二面角N-CM-B 的大小; (3)求点B 到平面CMN 的距离。 练习:已知ABCD 是边长为1的正方形,PD ⊥平面ABCD 且PD=1,E 、F 分别是AB 、BC 的中点. (1) 求点D 到平面PEF 的距离; (2) 求直线AC 到平面PEF 的距离。 二、 异面直线间距离 设n ρ是异面直线a 、b 的公垂向量,C 为a 上任一点, D 为b 上任一点,则a 、b 间的距离n n CD d ρρ ?=. 例3、 在正方体ABCD-A 1B 1C 1D 1中,棱长为a. (1) 求异面直线BD 与B 1C 间的距离; (2) 求异面直线AA 1与BD 1间的距离。 三、 证线面平行 若a 是平面α外一直线,所在向量为a ρ,n ρ是α的一个法向量,若a ρ⊥n ρ ,则a ∥α. 例4、 在直三棱柱ABC-A 1B 1C 1中,AC ⊥BC , AC=3,BC=4,AA 1=4,点D 是AB 的中点。 (1) 求证:AC ⊥BC 1; (2) 求证:AC 1∥平面CDB 1; (3) 求异面直线AC 1与B 1C 所成角的余 弦值。(05北京文) 作业:1、如图所示,在正方体 ABCD-A 1B 1C 1D 1中,棱长为a. (1)求异面直线AA 1与B 1D 1间的距离; (2)求异面直线A 1B 与B 1D 1间的距离。 F E G D C B A N M S C B A P F E D C B A D 1 D C 1 C B 1 B A A 1 D 1 D C 1 C B 1 B A 1 A

《用向量法求异面直线所成的角》教案

第一讲:立体几何中的向量方法 ——利用空间向量求异面直线所成的角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对线线角的求法进行总结。 教学目标 1.使学生学会求异面直线所成的角的向量方法; 2.使学生能够应用向量方法解决一些简单的立体几何问题; 3.使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求解异面直线所成的角的向量法. 教学难点 求解异面直线所成的角的向量法. 教学过程

Ⅰ、复习回顾 一、回顾有关知识: 1、两异直线所成的角:(范围:) (1)定义:过空间任意一点o分别作异面直线a与b的平行线a′与b′,那么直线a′与b′所成的锐角或直角,叫做异面直线a与b 所成的角. (2)用向量法求异面直线所成角,设两异面直线a、b 的方向向量分别为和, 问题1:当与的夹角不大于90°时,异面直线a、b 所成 的角与和的夹角的关系? 问题2:与的夹角大于90°时,,异面直线a、b 所成的角与和的夹角的关系? 两向量数量积的定义: a b O

§9.2空间直线 异面直线间距离的一个简明公式_334

异面直线间距离的一个简明公式 本文先给出两条异面直线间的距离公式,然后指出其在解题中的应用. 定理 如图1,异面直线AB ,CD 分别在二面角α—AC —β的面α和β内,二面角α—AC —β的大小为θ,AC =l ,∠ACD =x ,∠BAC =y .那么异面直线AB 与CD 间的距离 d =.cos ctg ctg 2ctg ctg sin sin 222θθθ y x y x l +++ 证:如图1,过点D 作平面α的垂线DF ,F 为垂足.在平面α内,过点F 作FG ⊥AB 于G ,FE ⊥AC 于E ,连结DE ,DG . 则∠DEF =θ,且(DG )min =d . 设DF =t ,在Rt △DFE 中,EF =t ctg θ. 在Rt △DEC 中,EC =DE ctg x =t csc θ·ctg x . ∴AE =AC -EC =l -t csc θctg x . 图1 图2 在四边形AEFG 中(图2),过点F 作AE 的平行线交AG 于M ,过点M 作MN ⊥AE 于N .则 MF =NE =AE -AN =.ctg ctg ctg csc ctg )ctg csc (y t x t l y EF x t l θ-θ-=-θ- 在Rt △MGF 中,FG =.sin )ctg ctg ctg csc (sin y y t x t l y MF θ-θ-= 所以在22222]sin )ctg ctg ctg csc [(,Rt y y t x t l t DF GF GD DGF θ-θ-+=+=?中 .sin )cos ctg sin sin ctg (sin 2])cos ctg sin sin ctg (1[2222y l t y y x y l t y y x +θ+θ ?-θ+θ+= 根据二次函数的极值公式可得 )4/()4()(2min 2a b ac GD -=

用空间向量解决空间中“夹角”问题

利用空间向量解决空间中的“夹角”问题 学习目标 : 1.学会求异面直线所成的角、直线与平面所成的角、二面角的向量方法; 2.能够应用向量方法解决一些简单的立体几何问题; 3.提高分析与推理能力和空间想象能力。 重点 : 利用空间向量解决空间中的“夹角” 难点 : 向量夹角与空间中的“夹角”的关系 一、复习引入 1.用空间向量解决立体几何问题的“三步曲” (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) 2.向量的有关知识: (1)两向量数量积的定义:><=?,cos |||| (2)两向量夹角公式:| |||,cos b a >= < (3)平面的法向量:与平面垂直的向量 二、知识讲解与典例分析 知识点1:异面直线所成的角(范围:]2 , 0(π θ∈) (1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a′与b′,那么直线a′与b′ 所成的锐角或直角,叫做异面直线a 与b 所成的角. (2)用向量法求异面直线所成角 设两异面直线a 、b 的方向向量分别为和, 问题1: 当与的夹角不大于90 的角θ与 和 的夹角的关系?问题 2:a 与b 的夹角大于90°时,,异面直线a θ与a 和b 的夹角的关系? 结论:异面直线a 、b 所成的角的余弦值为| ||||,cos |cos n m = ><=θ a

例1如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和1CB 所成的角. 解法步骤:1.写出异面直线的方向向量的坐标。 2.利用空间两个向量的夹角公式求出夹角。 解:如图建立空间直角坐标系xyz A -,则 )2,,0(),0,21,23(),2,21,23(),0,0,0(11a a B a a C a a a C A -- ∴ )2,21,23(1a a a AC -=,)2,21 ,23(1a a a CB = 即21 323||||,cos 22 111111==>=<,与θ的关系? 例2、如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和B B AA 11面所成角的正弦值. 分析:直线与平面所成的角步骤: 1. 求出平面的法向量 2. 求出直线的方向向量 3. 求以上两个向量的夹角,(锐角)其余角为所求角 解:如图建立空间直角坐标系xyz A -,则),0,,0(),2,0,0(1a a AA ==)2,21 ,23(1a a a AC -= 设平面B B AA 11的法向量为),,(z y x n = x y

求异面直线之间距离的常用策略

求异面直线之间距离的常用策略 求异面直线之间的距离是立体几何重、难点之一。常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转化为求一元二次函数的最值问题,或用等体积变换的方法来解。 1 定义法 就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。 例1 已知:边长a 为的两个正方形ABCD 和CDEF 成1200的二面角,求异面直线CD 与AE 间的距离。 思路分析:由四边形ABCD 和CDEF 是正方形,得 CD ⊥AD ,CD ⊥DE ,即CD ⊥平面ADE ,过D 作DH ⊥AE 于H ,可得DH ⊥AE ,DH ⊥CD ,所以DH 是异面直线AE 、CD 的公垂 线。在⊿ADE 中,∠ADE=1200 ,AD=DE=a ,DH=2a 。即异面直线CD 与AE 间的距离为2 a 。 2 转化为线面距离 若a 、b 是两条异面直线,过b 上一点A 作a 的平行线a /,记a /与b 确定的平面α。从而,异面直线a 、b 间的距离等于线面a 、α间的距离。 例2 如图,BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d ,求两条异面直线BF 、AE 间的距离。 思路分析:BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,∠EAB=α,∠FAB=β,AB=d ,在平面Q 内,过B 作BH ‖AE ,将异面直线BF 、AE 间的距离转化为AE 与平面BCD 间的距离,即为A 到平面BCD 间的距离,又因二面角P-AB-Q 是直二面角,过A 作 AC ⊥AB 交BF 于C ,即AC ⊥平面ABD ,过A 作AD ⊥BD 交于D ,连结CD 。设A 到平面BCD 的距离为h 。由体积法V A-BCD =V C-ABD , 得 h= β αβα2 2 cos cos 1sin sin -d 3转化为面面距离 若a 、b 是两条异面直线,则存在两个平行平面α、β,且a ∈α、b ∈β。求a 、b 两条异面直线的距离转化为平行平面α、β间的距离。 例3已知:三棱锥S-ABC 中,SA=BC=13,SB=AC=14,SC=AB=15,求异面直线AD 与BC 的距离。 思路分析:这是一不易直接求解的几何题,把它补成一个易求解的几何体的典型例子,常常有时还常把残缺形体补成完整形体;不规则形体补成规则形体;不熟悉形体补成熟悉形体等。所以,把三棱锥的四个面联想到长方体割去四个直三棱锥所得,因此,将三棱锥补形转化为长方体, 设长方形的长、宽、高分别为x 、y 、z ,

相关文档
相关文档 最新文档