文档库 最新最全的文档下载
当前位置:文档库 › AXI总线中文详解

AXI总线中文详解

AXI总线中文详解
AXI总线中文详解

AXI总线协议资料整理

第一部分:

1、AXI简介:。

2、 AXI 特点:单向通道体系结构。信息流只以单方向传输,简化时钟域间的桥接,减少门数量。当信号经过复杂的片上系统时,减少延时。

支持多项数据交换。通过并行执行猝发操作,极大地提高了数据吞吐能力,可在更短的时间内完成任务,在满足高性能要求的同时,又减少了功耗。

独立的地址和数据通道。地址和数据通道分开,能对每一个通道进行单独优化,可以根据需要控制时序通道,将时钟频率提到最高,并将延时降到最低。

第二部分:

第一章

本章主要介绍AXI协议和AXI协议定义的基础事务。

1、 AXI总线共有5个通道分别是read address channel

、 write address channel 、 read data channel 、 write data channel、write response channel。每一个AXI传输通道都是单方向的。

2、每一个事务都有地址和控制信息在地址通道(address channel)中,用来描述被传输数据的性质。

3、读事务的结构图如下:

4、写事务的结构图如下:

5、这5条独立的通道都包含一个信息信号和一个双路的VALD、READY握手机制。

6、信息源通过VALID信号来指示通道中的数据和控制信息什么时候有效。目地源用READY信号来表示何时能够接收数据。读数据和写数据通道都包括一个LAST 信号,用来指明一个事物传输的最后一个数据。

7、读和写事务都有他们自己的地址通道,这地址通道携带着传输事务所必须的地址和信息。

8、读数据通道传送着从设备到主机的读数据和读响应信息。读响应信息指明读事务的完成状态。

9、写数据通路传送着主机向设备的写数据。每八个数据都会有一个byte

lane ,用来指明数据总线上面的哪些byte有效。写响应通道提供了设备响应写事务的一种方式。这完成信号每一次突发式读写会产生一个。

10、主机和设备的接口和互联图如下:

11、传输地址信息和数据都是在VALID和READY同时为高时有效。

12、突发式读的时序图如下:

当地址出现在地址总线后,传输的数据将出现在读数据通道上。设备保持VALID 为低直到读数据有效。为了表明一次突发式读写的完成,设备用RLAST信号来表示最后一个被传输的数据。

13、重叠突发式读时序图如下:

设备会在第一次突发式读完成后处理第二次突发式读数据。也就意味着,主机一开始传送了两个地址给设备。设备在完全处理完第一个地址的数据之后才开始处理第二个地址的数据。

14、突发式写时序图如下:

这一过程的开始时,主机发送地址和控制信息到写地址通道中,然后主机发送每一个写数据到写数据通道中。当主机发送最后一个数据时,WLAST信号就变为高。当设备接收完所有数据之后他将一个写响应发送回主机来表明写事务完成。15、AXI协议支持乱序传输。他给每一个通过接口的事务一个IDtag。协议要求相同ID tag的事务必须有序完成,而不同ID tag可以乱序完成。

第二章

本章主要介绍一些信号描述,其中包括全局信号、写地址通道信号、写数据通道信号、写响应通道信号、读地址通道信号、读数据通道信号、低功耗接口信号。本章的所有表都是以32位的数据总线、4位的写数据闸门、4位的ID段。

1、全局信号

2、写地址通道信号

3、写数据通道信号

4、写响应通道信号

5、读地址通道信号

6、读数据通道信号

7、低功耗接口信号

第三章

本章介绍主机/设备之间的握手过程以及READY和VALD握手信号的关系以及默认值。

1、全部5个通道使用相同的VALID/READY握手机制传输数据及控制信息。传输源产生VLAID信号来指明何时数据或控制信息有效。而目地源产生READY信号来指明已经准备好接受数据或控制信息。传输发生在VALID和READY信号同时为高的时候。VALID和READY信号的出现有三种关系。

(1)VALID先变高READY后变高。时序图如下:

在箭头处信息传输发生。

(2)READY先变高VALID后变高。时序图如下:

同样在箭头处信息传输发生。

(3)VALID和READY信号同时变高。时序图如下:

在这种情况下,信息传输立马发生,如图箭头处指明信息传输发生。

2、通道之间的关系

地址、读、写和写响应通道之间的关系是灵活的。

例如,写数据可以出现在接口上早于与其相关联的写地址。也有可能写数据与写地址在一个周期中出现。

两种关系必须被保持:

(1)读数据必须总是跟在与其数据相关联的地址之后。

(2)写响应必须总是跟在与其相关联的写事务的最后出现。

3、通道握手信号之间的依赖性

读事务握手依赖关系如图:

(1)设备可以在ARVALID出现的时候在给出ARREADY信号,也可以先给出ARREADY信号,再等待ARVALID信号。

(2)但是设备必须等待ARVALID和ARREADY信号都有效才能给出RVALID信号,开始数据传输。

写事务握手依赖关系如图:

(1)主机必须不能够等待设备先给出AWREADY或WREADY信号信号后再给出信号AWVALID或WVLAID。

(2)设备可以等待信号AWVALID或WVALID信号有效或者两个都有效之后再给出AWREADY信号。

(3)设备可以等待AWVALID或WVALID信号有效或者两个信号都有效之后再给出WREADY信号。

第四章

本章主要介绍AXI突发式读写的类型和在一次突发式读写事务内如何计算地址和byte lanes。

1、突发式读写的地址必须以4KB对齐。

2、信号AWLEN或信号ARLEN指定每一次突发式读写所传输的数据的个数。

具体信息如下图:

3、ARSIZE信号或AWSIZE信号指定每一个时钟节拍所传输的数据的最大位数。具体信息如下图:

需要注意的是任何传输的SIZE都不能超过数据总线的宽度。

4、AXI协议定义了三种突发式读写的类型:固定式的突发读写、增值式突发读写、包装式突发读写。用信号ARBURST或AWBURST来选择突发式读写的类型。具体信息如下图:

(1)固定式突发读写是指地址是固定的,每一次传输的地址都不变。这样的突发式读写是重复的对一个相同的位置进行存取。例如FIFO。

(2)增值式突发读写是指每一次读写的地址都比上一次的地址增加一个固定的值。

(3)包装式突发读写跟增值式突发读写类似。包装式突发读写的地址是包数据的低地址当到达一个包边界。

包装式突发读写有两个限制:

◇起始地址必须以传输的size对齐。

◇突发式读写的长度必须是2、4、8或者16。

5、关于一些地址的计算公式。

Start_Address 主机发送的起始地址

Number_Bytes 每一次数据传输所能传输的数据byte的最大数量

Data_Bus_Bytes 数据总线上面byte lanes的数量

Aligned_Address 对齐版本的起始地址

Burst_Length 一次突发式读写所传输的数据的个数

Address_N 每一次突发式读写所传输的地址数量,范围是2-16

Wrap_Boundary 包装式突发读写的最低地址

Lower_Byte_Lane 传输的最低地址的byte lane

Upper_Byte_Lane 传输的最高地址的byte lane

INT(x) 对x进行向下取整

下面是计算公式:

Start_Address = ADDR

Number_Bytes = 2SIZE

Burst_Length = LEN + 1

Aligned_Address = (INT(Start_Address / Number_Bytes) ) x Number_Bytes Address_1 = Start_Address

Address_N = Aligned_Address + (N – 1) x Number_Bytes

Wrap_Boundary = (INT(Start_Address / (Number_Bytes x Burst_Length))) x (Number_Bytes x Burst_Length)

如果有Address_N = Wrap_Boundary + (Number_Bytes x Burst_Length),则后面的公式成立Address_N = Wrap_Boundary。

第一次突发式读写:

Lower_Byte_Lane = Start_Address - (INT(Start_Address / Data_Bus_Bytes)) x Data_Bus_Bytes

Upper_Byte_Lane = Aligned_Address + (Number_Bytes - 1) -

(INT(Start_Address / Data_Bus_Bytes)) x Data_Bus_Bytes

除了第一次读写之后的读写:

Lower_Byte_Lane = Address_N – (INT(Address_N / Data_Bus_Bytes))

x Data_Bus_Bytes

Upper_Byte_Lane = Lower_Byte_Lane + Number_Bytes – 1

DATA[(8 x Upper_Byte_Lane) + 7 : (8 x Lower_Byte_Lane)]。

第五章

本章描述了AXI协议支持的系统级的Cache和保护单元。

1、ARCACHE[3:0]和AWCACHE[3:0]的编码如下图:

在一些情况下,信号AWACAHE可以用来确定哪个部件来提供写响应。如果写事务被指定为bufferable ,那么他接受来自桥或者系统级的cache提供的写响应。如果事务被指定为non-bufferable,那么写响应必须有最终目的源提供。

2、AWPROT或者ARPROT信号提供三种级别的存取保护:

(1)正常存取或者特权存取, ARPROT[0] 和 AWPROT[0]

(2)安全性存取或者没有安全性存取, ARPROT[1] 和 AWPROT[1]

(3)指令存取或者数据存取 ARPROT[2] 和 AWPROT[2]

信号ARPROT[2:0] 和信号AWPROT[2:0]的编码如下图:

第六章

本章描述了AXI协议工具的独占式存取和锁存取机制。

1、当对自动存取时能之后,可以通过信号ARLOCK[1:0]或信号AWLOCK[1:0]来配置独占式存取和锁存取。编码如下图:

我们通过信号ARLOCK[1:0]或AWLOCK[1:0]来选择独占式存取,用信号RRESP[1:0]或BRESP[1:0]来指明独占式存取的成功与否。

2、主机在请求独占式存取时,设备会返回两个响应分别是EXOKAY和OKAY。EXOKAY是指设备支持独占式存取,而OKAY是指设备不支持独占式存取。、

3、如果一个设备不支持独占式存取,可以忽略信号ARLOCK[1:0]和

AWLOCK[1:0]。他必须提供OKAY响应对正常式存取和独占式存取。如果一个设备要支持独占式存取则必须有硬件监视器。

4、通过信号ARLOCK[1:0]或信号AWLOCK[1:0]对事务加锁,需要确定只允许主机存取设备区域直到一个未加锁的事务从同一个主机完成。此处推荐锁存取只用来支持legacy devices。

5、推荐遵循下面两天建议,但是不强制:

(1)保持所有锁事务序列都在相同的4KB地址区域内。

(2)限制用琐事务序列对两个事务加锁。

第七章

本章描述了AXI读写事务的四个设备响应。

1、AXI协议对读事务和写事务都有响应。对于读事务,读响应与读数据一起发送给主机,而写事务将写响应通过写响应通道传送。AXI协议的响应类型有OKAY、EXOKAY、SLVERR、DECERR。

2、通过信号RRESP[1:0]和BRESP[1:0]来编码响应信号,具体如下图:

协议规定请求的需要传输的数据数量必须被执行,即使有错误报告。在一次突发式读写的剩余数据不会被取消传输,即使有单个错误报告。

3、AXI协议的四种响应类型:正常存取成功、独占式存取、设备错误、译码错误。AXI协议要求,在一个传输事务中的所有数据必须传输完成,即使有错误状态发生。

第八章

本章描述AXI协议用事务ID tags来处理多地址和乱序传输。

1、下面介绍5中事务IDs:

(1)AWID 这个ID tag是写地址群组信号。

(2)WID 这个是写ID tag在写事务中,与写数据在一起,主机传送一个WID去匹配与地址相一致的AWID。

(3)BID 这个ID tag是写响应事务中。设备会传送BID去匹配与AWID

和WID相一致的事务。

(4)ARID 这个ID tag是读地址群组信号。

(5)RID 这个ID tag是在读事务中。设备传送RID去匹配与ARID相一致的事务。

2、主机可以使用一个事务的ARID或者AWID段提供的附加信息排序主机的需要。事务序列规则如下:

(1)从不同主机传输的事务没有先后顺序限制。他们可以以任意顺序完成。(2)从同一个主机传输的不同ID事务,也没有先后顺序限制。他们可以以任意顺序完成。

(3)相同数值的AWID写事务数据序列必须按照顺序依次写入主机发送的地址内。

(4)相同数值的ARID读事务数据序列必须遵循下面的顺序:

◇当从相同设备读相同的ARID时,设备必须确保读数据按照相同的地址顺序接受。

◇当从不同的设备读相同的ARID时,接口处必须确保读数据按照主机发送的相同的地址顺序。

(5)在相同的AWID和ARID的读事务和写事务之间没有先后顺序限制。如果主机要求有顺序限制,那么必须确保第一次事务完全完成后才开始执行第二个事务。

3、当一个主机接口与interconnect相连时,interconnect会在信号ARID、AWID、WID段添加一位,每一个主机端口都是独一无二的。

这样做有两个影响:

(1)主机不需要去知道其他主机的ID数值,因为interconnect是ID值是唯一的,当将主机number添加到段中。

(2)在设备接口处的ID段的宽度要比主机接口处的ID段宽。

对于读数据,interconnect附加一位到RID段中,用来判断哪个主机端口读取数据。Interconnect会移除RID段中的这一位在将RID的值送往正确的主机端口之前。

第九章

本章描述了AXI读写数据总线传输的不同大小和接口如何用字节不变endian去握手混合endian传输。

1、Narrow传输,当主机产生的数据宽度小于数据总线宽度时,地址和控制信息决定哪一个byte lanes为有效的数据。下面是两个应用byte lanes的例子:Example 1:

Example 2:

2、下面是一个数据不变性存取需求的数据结构的例子。他包含头信息,例如source、destination identifiers这些信息是采用little-endian格式,但是payload是big-endian 字节流,具体情况如下图:

数据不变性确保在数据结构中little-endian存取头信息的部分不会破坏其他big-endian数据。

第十章

本章描述AXI协议不对齐握手传输。

1、AXI协议允许主机使用低阶地址行去标示一个不对齐的起始地址在突发读写中。低阶地址行的信息必须包含byte lane strobes信息。

2、下面是几个例子来表明数据以对齐或者不对齐的地址为起始地址,分别在32位和64位数据总线上面传输的情况。其中暗色的框表示没有传输的数据。

第十一章

本章主要描述AXI时钟和复位信号的时序。

1、在复位期间,以下接口必须遵循:

(1)主机接口必须将ARVALID、AWVALID、WVALID信号置低。

(2)设备接口必须将RVALID、BVALID信号置低。

(3)所有其它信号可以为任意值。

2、主机接口必须开始将ARVALID、AWVLAID或WVALID置高仅仅在ARESETn信号变高后的ACK的第一个上升沿。具体情况如下图:

第十二章

本章主要描述AXI协议在进入和离开低功耗状态期间的时钟控制接口。1、低功耗时钟控制接口包括下面两个信号:

(1)来自外围设备的信号,用于指明什么时候时钟使能能或者禁能。

(2)两个握手信号用于系统时钟控制器请求退出或者进入低功耗状态。

2、时钟控制接口的一个主要信号时CACTIVE,外围设备用这个信号来指明请求时钟使能。外围设备置CACTIVE有效去请求时钟,系统时钟控制器必须马上使能时钟。如果外围设备将CACTIVE置为无效,则系统时钟控制器将自己决定是否使能或者禁能外围设备时钟。

3、AXI协议提供双线 request/acknowledge 握手来支持请求:

(1)CSYSREQ 当外围设备请求进入低功耗状态时,系统时钟控制器将CSYSREQ 置低,平时CSYSREQ都是置高的。

(2)CSYSACK 外围设备用CSYSACK信号作为进入低功耗状态和离开低功耗状态的应答信号。

下面是CSYSREQ和CSYSACK信号之间的时序图:

系统时钟控制器在T1时刻发出请求,外围设备在T2时刻给予应答,此时进入低功耗状态。在T3时刻,CSYSREQ变高,请求离开低功耗状态,在T4时刻得到应答,此时离开低功耗状态进入正常模式。

4、外围设备可以选择接受请求也可以选择不接受请求。主要通过信号CACTIVE 来决定。

接受请求的情况:

不接受请求的情况:

5、既可以通过系统也可以通过外围设备来退出低功耗状态。只要置信号CACTIVE 和CSYSREQ这两个信号中的一个为高就可以退出低功耗模式。

而系统可以通过置CSYSREQ为高来退出低功耗模式。

6、时钟控制框图如下:

现场总线技术的特点及发展趋势

现场总线技术的特点及发展趋势 摘要现场仪表与控制室仪表之间的数字通信统称为现场总线。现场总线技术自20世纪90年代出现以来已成为世界范围内自动化技术发展的热点之一,广泛用于过程自动化、制造自动化、楼宇自动化等领域的现场智能设备互连通讯网络。它作为工厂数字通信网络的基础,沟通了生产过程现场及控制设备之间及其与更高控制管理层次之间的联系,被誉为“自动化仪表与控制系统的一次变革”。我国自20世纪90年代后期即开始引入并研究总线技术,将其作为今后工业过程控制技术研究的重点,并于1996年正式将现场总线技术的研究和产品开发列入九五国家重点科技攻关项目。 关键词现场总线数字通讯集散系统 现场仪表与控制室仪表之间的数字通信统称为现场总线。现场总线技术自20世纪90 年代出现以来已成为世界范围内自动化技术发展的热点之一,广泛用于过程自动化、制造自动化、楼宇自动化等领域的现场智能设备互连通讯网络。它作为工厂数字通信网络的基础,沟通了生产过程现场及控制设备之间及其与更高控制管理层次之间的联系,被誉为“自动化仪表与控制系统的一次变革”。我国自20世纪90年代后期即开始引入并研究总线技术,将其作为今后工业过程控制技术研究的重点,并于1996年正式将现场总线技术的研究和产品开发列入九五国家重点科技攻关项目。现场总线不仅是一个基层网络,而且还是一种开放式、新型全分布控制系统。这项以智能传感、控制、计算机、数字通讯等技术为主要内容的综合技术,受到世界范围的关注,成为自动化技术发展的热点,并将导致自动化系统结构与设备的深刻变革。国际上许多有实力、有影响的公司都先后在不同程度上进行了现场总线技术与产品的开发。 人们把50年代前的气动信号控制系统PCS称作第一代控制系统,把4~20mA等电动模拟信号控制系统称为第二代控制系统,把数字计算机集中式控制系统称为第三代控制系统,把70年代中期以来的集散式分布控制系统DCS称作第四代控制系统,把现场总线系统称为第五代控制系统,也称作FCS——现场总线控制系统。作为新一代控制系统,它一方面突破了DCS系统采用通信专用网络的局限,采用了基于公开化、标准化的解决方案,克服了封闭系统所造成的缺陷;另一方面把DCS的集中与分散相结合的集散系统结构,变成了新型全分布式结构,把控制功能彻底下放到现场。开放性、分散性与数字通讯是现场总线系统最显著的特征。 现有较强实力和影响的现场总线技术有:FoudationFieldbus(FF)、LonWorks、Profibus、HART、CAN、Dupline等。它们具有各自的特色,在不同应用领域形成了自己的优势。 一、现场总线的技术特点 1、具有良好的系统开放性。现场总线技术通信协议公开,相关标准的一致,它可以与任何遵守相同标准的其它设备或系统相连,各不同厂家的设备之间可进行互连并实现信息交换。用户可按自己需要的大小把来自不同供应商的产品随意组成不同的系统。 2、系统结构的高度分散性。因为自控技术的飞速发展,现场设备本身已经具备自动控制的基本功能,所以现场总线技术采用了全分布式控制系统的体系结构。这种体系结构从根本上改变了现有DCS的集散控制系统体系,简化了系统结构,提高了系统可靠性。 3、互可操作性与互用性。现场总线技术可实现互连设备间、系统间的信息传送与沟通,可实行点对点,一点对多点的数字通信。互用性意味着不同生产厂家的性能类似的设备可进行互换而实现互用。 4、现场设备的智能化与功能自治性。它将传感测量、补偿计算、流量处理与控制等功能分散到现场设备中完成,仅靠现场设备即可完成自动控制的基本功能,并可随时诊断设备的运行状态。

AMBA_AXI总线中文详解

AXI总线协议资料整理 第一部分: 1、AXI简介:AXI(Advanced eXtensible Interface)是一种总线协议,该协议是ARM公司提出的AMBA(Advanced Microcontroller Bus Architecture)3.0协议中最重要的部分,是一种面向高性能、高带宽、低延迟的片内总线。它的地址/控制和数据相位是分离的,支持不对齐的数据传输,同时在突发传输中,只需要首地址,同时分离的读写数据通道、并支持显著传输访问和乱序访问,并更加容易就行时序收敛。AXI 是AMBA 中一个新的高性能协议。AXI 技术丰富了现有的AMBA 标准内容,满足超高性能和复杂的片上系统(SoC)设计的需求。 2、AXI 特点:单向通道体系结构。信息流只以单方向传输,简化时钟域间的桥接,减少门数量。当信号经过复杂的片上系统时,减少延时。 支持多项数据交换。通过并行执行猝发操作,极大地提高了数据吞吐能力,可在更短的时间内完成任务,在满足高性能要求的同时,又减少了功耗。 独立的地址和数据通道。地址和数据通道分开,能对每一个通道进行单独优化,可以根据需要控制时序通道,将时钟频率提到最高,并将延时降到最低。第二部分: 本部分对AXI1.0协议的各章进行整理。 第一章 本章主要介绍AXI协议和AXI协议定义的基础事务。 1、AXI总线共有5个通道分别是read address channel 、write address channel 、read data channel 、write data channel、write response channel。每一个AXI传输通道都是单方向的。 2、每一个事务都有地址和控制信息在地址通道(address channel)中,用来描述被传输数据的性质。 3、读事务的结构图如下:

几种现场总线技术的介绍比较

几种现场总线技术的介绍比较 ---- [编者按]: 现场总线技术是自动化领域计算机、通讯和网络技术的发展而发展起来的新兴技术,它是先进的电子技术、仪表技术、计算机技术和网络技术的集成体。现场总线(Filedbus)是在生产现场用于连接智能现场设备的数字式、双向传输、多分支结构的通讯网络,现场总线控制系统FCS(Filedbus control system)则是基于现场总线的自动控制系统,即以现场总线作为工厂底层网络,通过网络集成而构成的自动控制系统网络,按照公开、规范的通讯协议在智能设备之间、智能设备与远程计算机之间实现数据传输和信息交换,从而实现控制与管理一体化的综合自动控制系统。纵观控制系统的发展过程,任何一种新的控制系统的出现都是针对旧的控制系统存在的缺陷而给出的解决方案,并在用户需求和市场竞争等外部因素的推动下占据主导地位,现场总线和现场总线控制系统的产生和发展也经历了同样的过程。[FCS的发展与历史] 现场总线技术(FCS)简介 现场总线(Fieldbus)是80年代末、90年代初国际上发展形成的,用于过程自动化、 制造自动化、楼宇自动化等领域的现场智能设备互连通讯网络。它作为工厂数字通信网络的 基础,沟通了生产过程现场及控制设备之间及其与更高控制管理层次之间的联系。它不仅是 一个基层网络,而且还是一种开放式、新型全分布控制系统。这项以智能传感、控制、计算 机、数字通讯等技术为主要内容的综合技术,已经受到世界范围的关注,成为自动化技术发 展的热点,并将导致自动化系统结构与设备的深刻变革。国际上许多实力、有影响的公司都 先后在不同程度上进行了现场总线技术与产品的开发。现场总线设备的工作环境处于过程设 备的底层,作为工厂设备级基础通讯网络,要求具有协议简单、容错能力强、安全性好、成 本低的特点 :具有一定的时间确定性和较高的实时性要求,还具有网络负载稳定,多数为短 帧传送、信息交换频繁等特点。 由于上述特点,现场总线系统从网络结构到通讯技术,都具有不同上层高速数据通信网 的特色。所谓PAC,ARC咨询公司率先提出这一概念,他们提出,“目前自动化技术领域出 现了一种新的发展趋势,即高端PLC的功能正在接近小型DCS和SCADA系统的功能,而同时 一种新兴的技术——可编程自动化控制器(PAC)的出现,开始改变PLC市场格局。相比PLC, 这种PAC产品具有更强的通讯能力,更大的存储容量和更快的CPU速度,使PLC成为一种通 用的自动化平台组件。”同时,他们还对PAC的概念进行了详细定义:诸如在一种平台上实 现逻辑控制、传动控制、运动控制和过程控制等多种功能;具有公用对象标记和统一数据库 的多学科开发平台;控制软件允许用户根据多个设备或多个过程单元之间的过程流进行控制 设计具有开放和模块化的结构,无论是工厂的机械设计还是过程行业的单元运行,都能满足 其生产过程特点;网络接口和编程语言等都采用事实上的工业标准,能够实现不同供应商的

AMBAAXI总线详解

AXI 总线协议资料整理 第一部分: 1、AXI 简介:AXI (Adva need eXte nsible In terface 是一种总线协议,该协议是ARM 公司提出的AMBA( Advanced Microcontroller Bus Architecture)3.0 协议中最重要的部分,是一种面向高性能、高带宽、低延迟的片内总线。它的地址/控 制和数据相位是分离的,支持不对齐的数据传输,同时在突发传输中,只需要首 地址,同时分离的读写数据通道、并支持显著传输访问和乱序访问,并更加容易就行时序收敛。AXI 是AMBA 中一个新的高性能协议。AXI 技术丰富了现有的AMBA标准内容,满足超高性能和复杂的片上系统(SoC)设计的需求。 2、AXI 特点:单向通道体系结构。信息流只以单方向传输,简化时钟域间的桥接,减少门数量。当信号经过复杂的片上系统时,减少延时。 支持多项数据交换。通过并行执行猝发操作,极大地提高了数据吞吐能力,可在更短的时间内完成任务,在满足高性能要求的同时,又减少了功耗。 独立的地址和数据通道。地址和数据通道分开,能对每一个通道进行单独优化,可以根据需要控制时序通道,将时钟频率提到最高,并将延时降到最低。第二部分: 本部分对AXI1.0 协议的各章进行整理。 第一章 本章主要介绍AXI 协议和AXI 协议定义的基础事务。 1 、AXI 总线共有5 个通道分别是read address channel 、write address channel 、read data channel、write data channe、l write response ehanne。每一个AXI传输通道都是单方向的。 2、每一个事务都有地址和控制信息在地址通道( address channel 中,用来描述被传输数据的性质。 3、读事务的结构图如下:

AXI_reference_guide(AXI总线设计参考指南)

[Guide Subtitle] [optional] UG761 (v13.1) March 7, 2011 [optional]AXI Reference Guide UG761 (v13.1) March 7, 2011

Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. Y ou are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSL Y DISCLAIMS ANY WARRANTY WHA TSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENT ATIONS THAT THIS IMPLEMENTA TION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A P ARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. ? 2011 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners. ARM? and AMBA? are registered trademarks of ARM in the EU and other countries. All other trademarks are the property of their respective owners. Revision History The following table shows the revision history for this document: Date Version Description of Revisions 09/21/2010 1.0Initial Xilinx release in 12.4. 03/01/2011 2.0Second Xilinx release in 13.1. Added new AXI Interconnect features. Corrected ARESETN description in Appendix A. 03/07/2011 3.0Corrected broken link. AXI Reference Guide https://www.wendangku.net/doc/a715161626.html, UG761 (v13.1) March 7, 2011

现场总线的概念和特点

现场总线的概念和特点 1.什么是现场总线随着网络技术发展和市场需求的变化,工业设备实 现网络化管理控制已经成为一种必然趋势,改善工业控制系统同样也需要在不同生产设备之间实现高效、可靠、标准化的互联,经过多年的努力,国际上最后公布了8 种现场总线。制定总线的初衷在于不同厂家的设备进行互连,可是,这8 种总线目前是不能完全互连的。 所谓现场总线,是指将现场设备(如数字传感器、变送器、仪表与执行机构等)与工业过程控制单元、现场操作站等互连而成的计算机网络,具有全数字化、分散、双向传输和多分支的特点,是工业控制网络向现场级发展的产物。现场总线控制系统FCS 是集当今计算机技术、网络技术和控制技术为一体的当代最先进的计算机控制技术,它适用于工业过程控制、制造业及楼宇自动化等领域,将成为现代计算机控制系统的主流。具有可靠性高、稳定性好、抗干扰能力强、通信速率快、系统安全、造价低廉、维护成本低等特点。现场总线技术使现场级设备的信息作为整个企业信息网的基础,提高了控制系统的信息处理能力和运行可靠性,节省了系统的硬件和布线费用,方便了用户对系统的组态、管理和维护。 现场总线(Field b 山)技术是工业自动化最深刻变革之一。PLC 和工控机采用现场总线后可方便地作为νo 站和监控站连接在DCS 系统中。现场总线可以更容易地从现场获取设备信息,工厂操作员和管理人员能够对其过程进行更严格的控制,从而改进性能、增加过程的可用性和一致性。 当前,国际上具有代表性的现场总线技术与产品是Profibus、CanBus 与LonWorks,CC-link,DeviceNet,Modbus 等,后面分别予以简要说明。2.现场总线技术特征

AXI总线的一些知识

AXI总线的一些知识 AXI-stream总线简介-LDD 本节介绍的AXI是个什么东西呢,它其实不属于Zynq,不属于Xilinx,而是属于ARM。它是ARM最新的总线接口,以前叫做AMBA,从3.0以后就称为AXI了。 Zynq是以ARM作为核心的,运行时也是第一个“醒”过来,然后找可执行代码,找到后进入FSBL(第一引导阶段),接着找配置逻辑部分的bit文件,找到后就叫醒PL按照bit中的方式运行,再接着找可执行代码,进入SSBL(第二引导阶段),这时就可以初始化操作系统的运行环境,引导像Linux这样的大型程序,随后将控制权交给Linux。Linux运行时可以跟PL进行数据交互。注意了,就在这时候,数据交互的通路,就是我们本节要讲的AXI总线。 说白了,AXI就是负责ARM与FPGA之间通信的专用数据通道。 ARM内部用硬件实现了AXI总线协议,包括9个物理接口,分别为AXI-GP0~AXI-GP3,AXI-HP0~AXI-HP3,AXI-ACP接口。如下图黄圈所示。 可以看到,只有两个AXI-GP是Master Port,即主机接口,其余7个口都是Slave Port(从机接口)。主机接口具有发起读写的权限,ARM可以利用两个AXI-GP主机接口主动访问PL 逻辑,其实就是把PL映射到某个地址,读写PL寄存器如同在读写自己的存储器。其余从机接口就属于被动接口,接受来自PL的读写,逆来顺受。 这9个AXI接口性能也是不同的。GP接口是32位的低性能接口,理论带宽600MB/s,而HP和ACP接口为64位高性能接口,理论带宽1200MB/s。 有人会问,为什么高性能接口不做成主机接口呢?这样可以由ARM发起高速数据传输。答案是高性能接口根本不需要ARM CPU来负责数据搬移,真正的搬运工是位于PL中的DMA 控制器。 位于PS端的ARM直接有硬件支持AXI接口,而PL则需要使用逻辑实现相应的AXI协议。Xilinx提供现成IP如AXI-DMA,AXI-GPIO,AXI-Datamover都实现了相应的接口,使用时直接从XPS的IP列表中添加即可实现相应的功能。 有时,用户需要开发自己定义的IP同PS进行通信,这时可以利用XPS向导生成对应的IP。xps中用户自定义IP核可以拥有AXI-Lite,AXI4,AXI-Stream,PLB和FSL这些接口。 后两种由于ARM这一端不支持,所以不用。

现场总线基础知识

现场总线基础知识 现场总线技术综述 现场总线(Fieldbus)是80年代末、90年代初国际上发展形成的,用于过程自动化、制造自动化、楼宇自动化等领域的现场智能设备互连通讯网络。它作为工厂数字通信网络的基础,沟通了生产过程现场及控制设备之间及其与更高控制管理层次之间的联系。它不仅是一个基层网络,而且还是一种开放式、新型全分布控制系统。这项以智能传感、控制、计算机、数字通讯等技术为主要内容的综合技术,已经受到世界范围的关注,成为自动化技术发展的热点,并将导致自动化系统结构与设备的深刻变革。国际上许多实力、有影响的公司都先后在不同程度上进行了现场总线技术与产品的开发。现场总线设备的工作环境处于过程设备的底层,作为工厂设备级基础通讯网络,要求具有协议简单、容错能力强、安全性好、成本低的特点。 具有一定的时间确定性和较高的实时性要求,还具有网络负载稳定,多数为短帧传送、信息交换频繁等特点。由于上述特点,现场总线系统从网络结构到通讯技术,都具有不同上层高速数据通信网的特色。 一般把现场总线系统称为第五代控制系统,也称作FCS——现场总线控制系统。人们一般把50年代前的气动信号控制系统PCS称作第一代,把4~20mA等电动模拟信号控制系统称为第二代,把数字计算机集中式控制系统称为第三代,而把70年代中期以来的集散式分布控制系统DCS称作第四代。现场总线控制系统FCS作为新一代控制系统,一方面,突破了DCS系统采用通信专用网络的局限,采用了基于公开化、标准化的解决方案,克服了封闭系统所造成的缺陷;另一方面把DCS的集中与分散相结合的集散系统结构,变成了新型全分布式结构,把控制功能彻底下放到现场。可以说,开放性、分散性与数字通讯是现场总线系统最显著的特征。 现场总线技术在历经了群雄并起,分散割据的初始阶段后,尽管已有一定范围的磋商合并,但至今尚未形成完整统一的国际标准。其中有较强实力和影响的有:FoudationFieldbus (FF)、LonWorks、Profibus、HART、CAN、Dupline等。它们具有各自的特色,在不同应用领域形成了自己的优势。本文将在简要描述现场总线技术特点的基础,紧扣系统的可靠性、实用性等,介绍现场总线网络结构、体系结构等关键技术及目前较为流行的几种有实力的现场总线技术的现状,最后阐述现场总线的发展趋势与技术展望。 一、现场总线的技术特点 1、系统的开放性。开放系统是指通信协议公开,各不同厂家的设备之间可进行互连并实现信息交换,现场总线开发者就是要致力于建立统一的工厂底层网络的开放系统。这里的开放是指对相关标准的一致、公开性,强调对标准的共识与遵从。一个开放系统,它可以与任何遵守相同标准的其它设备或系统相连。一个具有总线功能的现场总线网络系统必须是开放的,开放系统把系统集成的权利交给了用户。用户可按自己的需要和对象把来自不同供应商的产品组成大小随意的系统。 2、互可操作性与互用性,这里的互可操作性,是指实现互连设备间、系统间的信息传送与沟通,可实行点对点,一点对多点的数字通信。而互用性则意味着不同生产厂家的性能类似的设备可进行互换而实现互用。 3、现场设备的智能化与功能自治性。它将传感测量、补偿计算、工程量处理与控制等

AMBA+AXI4总线的研究与实现

硕士学位论文 AMBA AXI4总线的研究与实现 RESEARCH AND IMPLEMENTATION OF AMBA AXI4 BUS 杨舜琪 哈尔滨工业大学 2011年12月

国内图书分类号:TN47 学校代码:10213 国际图书分类号:621.3 密级:公开 工学硕士学位论文 AMBA AXI4总线的研究与实现 硕士研究生 :杨舜琪 导 师 :张岩教授 申请学位 :工学硕士 学科 :微电子学与固体电子学 所在单位 :深圳研究生院 答辩日期 :2011年12月 授予学位单位 :哈尔滨工业大学

Classified Index: TN47 U.D.C: 621.3 Dissertation for the Master Degree in Engineering RESEARCH AND IMPLEMENTATION OF AMBA AXI4 BUS Candidate:Shunqi YANG Supervisor:Prof. Yan ZHANG Academic Degree Applied for:Master of Engineering Speciality:Microelectronics and Solid-State Electronics Affiliation:Shenzhen Graduate School Date of Defence:December, 2011 Degree-Conferring-Institution:Harbin Institute of Technology

哈尔滨工业大学工学硕士学位论文 摘要 随着集成电路设计复杂度的提高和产品上市时间压力的增大,基于IP核复用的SoC(System on Chip)设计已经成为一种重要的设计方法。总线桥的设计和IP核的互连问题已经成为SoC平台中最重要的课题。IP核互连的方法,总线桥的设计以及总线协议决定了SoC平台的性能。AMBA(Advanced Microcontroller Bus Architecture)总线规范由ARM公司定义。它是一组基于ARM核的SoC通信的标准协议。最新的AMBA 4.0总线协议具有带宽高、延迟小和设计灵活等诸多优点,它目前已成为业界首选的高性能总线标准。 本文分析并比较了Wishbone总线标准与AMBA 4.0总线标准的异同。根据AMBA 4.0总线标准中AXI4协议和AXI4-Lite协议,设计并实现了总线桥以及互连模块的VLSI结构。本文研究内容主要包含以下三个部分: 首先,为了扩充AXI4总线可使用的IP核资源,本文设计了基于Wishbone 总线和AXI4总线的总线桥IP核,包括把基于Wishbone总线的主设备集成到AXI4总线系统的WB/AXI4总线桥,把基于Wishbone总线的从设备集成到AXI4总线系统的AXI4/WB总线桥,把基于Wishbone总线的主设备集成到AXI4-Lite总线系统的WB/AXI4-Lite总线桥和把基于Wishbone总线的从设备集成到AXI4-Lite总线系统的AXI4-Lite/WB总线桥。 其次,本文设计了基于AXI4总线的两种互连结构,包括交叉开关(crossbar switch)和分享型总线(share bus)。两种互连结构设计主要模块包括地址解码器和仲裁器。 最后,本文针对设计的总线桥和互连结构,使用Verilog HDL语言进行了硬件实现,在ModelSim环境下通过了功能验证,使用ISE13.1工具进行逻辑综合,分析比较了各IP核的性能。 从验证和综合来看,本文的IP设计严格遵循Wishbone总线和AMBA4.0总线的协议规范,WB/AXI4总线桥,AXI4/WB总线桥,WB/AXI4-Lite总线桥和AXI4-Lite/WB总线桥在Xilinx公司Virtex5的FPGA芯片上达到的时钟频率分别279MHz,346 MHz,442 MHz和427 MHz,AXI4总线的交叉开关互连结构在284MHz的工作频率下,拥有22.5Gbps的数据吞吐量,AXI4总线的分享型互连结构在342MHz的工作频率下,拥有6.7Gbps的数据吞吐量,说明各IP 核都具备高速的数据传输能力,完全可以胜任实际应用。 关键词:互连总线;AMBA AXI4总线;Wishbone总线;协议转换

AXI总线学习

PG021

寄存器空间 全部是小端地址模式: DMA控制寄存器: Bit0:0当前DMA操作完成后停止DMA传输或者S/G方式下未完成的命令或传

输都被清掉。AXI4-Stream outs are potentially terminated early. Descriptors in the update queue are allowed to finish updating to remote memory before engine halt. 1启动DMA传输。 Bit2:软件复位整个DMA引擎。 Bit12:中段完成使能。 Bit13:中段完成延时使能。简单模式下无效。 Bit14:错误中断时能。 Bit23:16中断阈值。最小值为1.每发生一次中断,中断阈值计数器减一,当中断阈值寄存器为0时,DMA引擎向外产生一个中断。简单模式下无效。 Bit31:24中断延时寄存器。用来设置中断超时时间。Interrupt Delay Time Out. This value is used for setting the interrupt timeout value. The interrupt timeout is a mechanism for causing the DMA engine to generate an interrupt after the delay time period has expired. 当中断延时寄存器失效后为了保证仍然可以差生中断。 This is used for cases when the interrupt threshold is not met after a period of time, and the CPU desires an interrupt to be generated. Timer begins counting at the end of a packet and resets with receipt of a new packet or a timeout event occurs. Setting thisvalue to zero disablesthe delay timer interrupt. 如果在一定的时间内,中断阈值寄存器仍然不到0,而且CPU希望产生一个中断。那么在一个数据包完成后,计数器开始计数直到接收到一个新包后或者超时事件发生后复位计数器。 DMA状态寄存器: Bit0:停止状态位。 0=DMA运行 1=DMA通道停止。从DMA控制寄存器的停止位到状态位反映出来有一段时间。Bit1:DMA通道空闲。 Bit3:支持S/G方式否。 Bit4:DMA内部错误。 Bit5:DMA Slave错误。 Bit6:DMA译码错误。 Bit8:SG方式内部错误。 Bit9:SG方式从设备错误。 Bit12:DMA传输完成中断位。如果中断完成了并且中断阈值达到了,就会产生一个AXI DMA中断。

AXI总线中文详解讲解学习

A X I总线中文详解

AXI总线协议资料整理 第一部分: 1、AXI简介:AXI(Advanced eXtensible Interface)是一种总线协议,该协议是ARM公司提出的AMBA(Advanced Microcontroller Bus Architecture)3.0协议中最重要的部分,是一种面向高性能、高带宽、低延迟的片内总线。它的地址/控制和数据相位是分离的,支持不对齐的数据传输,同时在突发传输中,只需要首地址,同时分离的读写数据通道、并支持显著传输访问和乱序访问,并更加容易就行时序收敛。AXI 是AMBA 中一个新的高性能协议。AXI 技术丰富了现有的AMBA 标准内容,满足超高性能和复杂的片上系统(SoC)设计的需求。 2、 AXI 特点:单向通道体系结构。信息流只以单方向传输,简化时钟域间的桥接,减少门数量。当信号经过复杂的片上系统时,减少延时。 支持多项数据交换。通过并行执行猝发操作,极大地提高了数据吞吐能力,可在更短的时间内完成任务,在满足高性能要求的同时,又减少了功耗。 独立的地址和数据通道。地址和数据通道分开,能对每一个通道进行单独优化,可以根据需要控制时序通道,将时钟频率提到最高,并将延时降到最低。 第二部分: 本部分对AXI1.0协议的各章进行整理。 第一章 本章主要介绍AXI协议和AXI协议定义的基础事务。

1、 AXI总线共有5个通道分别是read address channel 、 write address channel 、 read data channel 、 write data channel、 write response channel。每一个AXI传输通道都是单方向的。 2、每一个事务都有地址和控制信息在地址通道(address channel)中,用来描述被传输数据的性质。 3、读事务的结构图如下: 4、写事务的结构图如下:

现场总线技术的优点

现场总线技术的优点 现场总线具有的数字化、开放性、互操作性和互换性及对现场设备环境的适应性等特点决定和派生了其一系列优点: 1、节省硬件数量与投资 可以减少一半以上的隔离器、端子柜、I/O装置,简化了线路的安装与维修,节省了装置的空间。 2、节省安装费用 现场总线系统的接线十分简单,一对双绞线或一条电缆上通常可以挂接多个设备,因而电缆、端子、槽盒、桥架的用量大大减少,连线设计和接头校对的工作也大大减少,当需要增加现场控制设备时,无需增加新的电缆,可就近链接在原有的电缆上,既节省了投资,也减少了设计安装的工程量。据有关典型试验工程的测算资料表明,可节约安装费60%以上。 3、节省维护开销 由于现场控制设备具有诊断与简单故障处理能力,并通过数字通信将相关的诊断维护信息送往控制室,用户可以查询所有设备的运行、诊断和维护信息,以便早期分析故障原因并快速解决故障,缩短维护停工时间。同时由于系统结构简化,连线简单,也减少了维护的工作量。 4、系统具有优异的远程监控功能和强大的远程故障诊断能力 5、用户具有高度的系统集成主动权

用户可以自由选择不同厂商所提供的设备来集成系统,避免因选择了某一品牌的产品而限定了以后使用设备的选择范围,不会出现系统集成中协议、接口不兼容等问题。 6、现场设备更换的准确性和系统扩展更为方便 7、提高系统的准确性和可靠性 用数字信号取代了传统的4~20mA模拟信号,免去了D/A和A/D 转换,提高了系统的精度和可靠性。 8、易于系统调整 由于系统设备的标准化、功能的模块化,使系统具有设计简单、易于根据根据需要进行调整的特点。 9、为企业信息系统的构建创造了重要条件。

现场总线技术与应用做题及答案

8:20:02下午9/12/201915 现场总线技术与应用做题及答案 什么是现场总线? 答:根据国际电工委员会IEC(International Electrotechnical Commision)标准和现场基金会FF(Fieldbus Foundation)的定义,现场 总线的概念一般为:一种用于智能化现场设备和自动化系统的开放式、数 字化、双向串行、多节点的底层通信总线。 现场总线的本质含义表现在哪些方面? 答:1.现场通信网络;2.现场设备互联;3.互操作性;4.分散功能块;5.通信线供电;6.开放式互联网络。 现场总线有哪些优点? 答:1.全数字化;2.全分布;3.双向传输;4.自诊断;5.节省布线及控制室空间;6.多功能仪表;7.开放性;8.互操作性;9.智 能化与自治性 现场总线有哪几种典型类型?它们各有什么特点? 答:常用的现场总线有5种类型,它们的特点如下表所示。

现场总线系统(FCS)与传统的集散型控制系统(DCS)相比较,有哪些特点? 答:1.数字式通信方式取代设备级的模拟量(如4~20mA,0~5V等信号)和开关量信号。 2.在车间级与设备级通信的数字化网络。 3.现场总线是工厂自动化过程中现场级通信的一次数字化革命。 4.现场总线使自控系统与设备加入工厂信息网络,成为企业信息网络底

层,使企业信息沟通的覆盖范围一直延伸到生产现场。 5.在CIMS系统中,现场总线是工厂计算机网络到现场级设备的延伸,是支撑现场级与车间级信息集成的技术基础。 现场设备有哪些部分组成?它们的各自作用是什么? 答:现场设备或现场仪表是指变送器、执行器、服务器和网桥、辅助设备以及监控设备等。这些设备可通过双绞线、同轴电缆、光缆和电源线等传输线 进行互联。 (1)变送器常用的变送器有温度、压力、流量、物位和分析五大类,它既有检测、变换和补偿功能,又有PID控制和运算功能。 (2)执行器常用的执行器有电动和气动两大类。执行器的基本功能是控制信号的驱动和执行,还内含调节阀输出特性补偿、PID控制和 运算功能,另外有阀门特性自动校验和自诊断功能。 (3)服务器和网桥服务器下接H1和H2,上接局域网LAN(Local Area Network);网桥上接H2,下接H1。 (4)辅助设备辅助设备有H1/气压转换器、H1/电流转换器、电流/H1转换器、安全栅、总线电源、便携式编程器等。 (5)监控设备监控设备主要有工程师站、操作员站和计算机站,工程师站提供现场总线控制系统组态,操作员站实现工艺操作与监视, 计算机站用于优化控制和建模。

现场总线技术的特点

现场总线技术的特点、种类及实际中的应用 摘要:随着智能仪表的不断发展和产品成本的降低,智能仪表对模拟仪表的逐步代替,自动化领域控制也会从过去多用的DCS、PLC等控制系统发展到以智能仪表为基础的FCS现场总线 控制系统。现场总线系统(FCS)以它的先进性、通用性、科学性、广泛性和经济性,越 来越多的在多个领域应用和推广。我们公司一直从事化工等领域工程安装和调试工作,也 就是从现在开始,和不久的将来,会遇到越来越多的现场控制系统施工和调试,所以我们 必须研究和探讨现场总线系统控制的工程安装特点、种类和遇到的问题,所以特写此文。关键词:智能化仪表现场总线 (FCS) 1 概述 现场总线的技术基础是一种全数字化、双向、多站的通信系统,是应用于各种计算机控制领域的工业总线,因现场总线潜在着巨大的商机,世界范围内的各大公司投入相当大的人力、物力、财力来进行开发研究。当今现场总线技术一直是国际上各大公司激烈竞争的领域,由于现场总线技术的不断创新,过程控制系统由第四代的DCS发展至今的FCS(Fieldbus Control System)系统,已被称为第五代过程控制系统。而FCS和DCS的真正区别在于其现场总线技术。现场总线技术以数字信号取代模拟信号,在4C(Computer计算机技术、Control自动控制技术、Commcenication网络通信技术、CRT现代图形现实技术)技术的基础上,大量现场检测与控制信息就地采集、就地处理、就地使用,许多控制功能从控制室移至现场设备。 2 现场总线控制系统的特点 与传统的DCS 、PLC点对点的控制方法相比,现场总线控制系统具有无可比拟的优势。其特点包括: 2.1 具有较高的性能价格比。系统综合成本及一次性安装费用减少40%。由于导线、连接附件的大幅度的减少。使原来的几百根,甚至几千根控制电缆减少到一根总线电缆,从而也使接线端子、电缆桥架等附件大幅度的减少。所以设计、安装、调试、维护的费用大幅度地减少,维护和改造的停工时间减少60%。原来繁琐的原理图、布线图设计变得简单易行;标准接插件快速、简便的安装,使人力、物力大量的减少;强大的故障诊断能力,使系统的调试和维护工作量大幅减少。 2.2 系统性能大幅度的提高,使控制系统的档次跨越了一个台阶,可靠的数据传输,快速的数据响应,强大的抗干扰能力。许多总线在通讯介质、信息检验、信息纠错、重复地址检测等方面都有严格的规定,从而确保总线通讯快速、完全可靠的进行。 2.3 系统具有强大的自动诊断、故障显示功能。诊断包括总线节点的通讯故障、电源故障,以及现场装置和连接件的断路、短路故障,从而迅速地发现系统的各种故障位置和状态。 2.4 采用数字信号通讯,有效提高系统的测量和控制精度。各种开关量、模拟量信号就近转变为数字信号,避免了信号的衰减和变形。 2.5 总线节点具有IP67的防护等级,具有防水、防尘、抗振动的特性。可以直接安装于工业设备上,大量减少了现场接线箱,使系统可靠性提高。 2.6 本质安全型总线。更加适合直接安装于石油、化工等危险防爆场所,减少系统发生危险的可能性。 3 现场总线的种类

基于现场总线技术的优点优势及应用设计方案分析

基于现场总线技术的优点优势及应用设计方案分析 1、现场总线系统概述 随着控制技术、计算机技术和通信技术的飞速发展,数字化技术正在从工业生产过程的决策层、管理层、监控层和控制层渗透到现场设备,这样就产生了现场总线技术以及由此组成的控制系统—现场总线控制系统(FCS,FieldbusControlSystem)。自现场总线技术在90年代后期问世以来,它就已经开创了自动化控制技术的新纪元—数字时代。目前现场总线技术已经在国内化工、石化、冶金、建材、医药等工业过程中开始了成功的应用并取得了显著的效益。 在国内,现场总线在火电厂机组控制方面已有局部使用,但还没有在全厂使用现场总线控制系统的范例。签与此,我们在某电厂机组重要程度相对较低的锅炉补给水处理、工业废水处理、循环水处理系统(以下简称主厂房外水系统)采用现场总线技术进行控制,作为FCS 应用的尝试与研究。 2 、现场总线技术 根据国际电工委员会IEC61158标准的定义:安装在制造或生产过程区域的现场装置与控制自动控制装置之间的数字式、串行、双向、多点通信的数据总线称为现场总线。由现场总线与现场智能设备组成的控制系统称为现场总线控制系统FCS。 衡量一个控制系统是否为真正的现场总线控制系统FCS有三个关键要点,即:核心、基础和本质。FCS的核心是总线协议,只有遵循现

场总线协议的控制系统,才能称为现场总线控制系统;FCS的基础是数字智能现场仪表,它是FCS的硬件支撑;FCS的本质是信息处理现场化,这是FCS的系统效能体现。现场总线控制系统是一种全计算机、全数字、双向通信的新型控制系统。现场设备级的数字化、网络化是电厂信息化管理的基础。 现场总线技术开发的出发点就是要为用户提供开放的、具有可互操作性、可互换性和统一标准的测量和控制产品,以现场总线技术为基础的FCS的优越性概括起来有以下几方面:互操作性、分散性、可靠性、精确性、开放性、经济性、可维护性。 1999年底IECTC65(负责工业测量和控制的第65标准化委员会)通过了8种类型的现场总线作为IEC61158国际标准。2001年8月经过修订制定出10种类型的现场总线标准(第三版),分别为: 各种现场总线是针对不同的应用领域开发的,不可能采用同一种总线解决所有的工业控制和过程控制。 在连续生产的过程自动化领域如石化、化工、电力、冶金等

AMBAAXI总线详解要点

AXI总线协议资料整理 第一部分: 1、AXI 简介:AXI (Adva need eXte nsible In terface 是一种总线协议,该协议是 ARM 公司提出的AMBA (Advaneed Microcontroller Bus Architecture) 3.0协议中 最重要的部分,是一种面向高性能、高带宽、低延迟的片内总线。它的地址/控 制和数据相位是分离的,支持不对齐的数据传输,同时在突发传输中,只需要首地址,同时分离的读写数据通道、并支持显著传输访问和乱序访问,并更加容易就行时序收敛。AXI是AMBA 中一个新的高性能协议。AXI技术丰富了现有的AMBA标准内容,满足超高性能和复杂的片上系统(SoC)设计的需求。 2、AXI特点:单向通道体系结构。信息流只以单方向传输,简化时钟域间的桥接,减少门数量。当信号经过复杂的片上系统时,减少延时。 支持多项数据交换。通过并行执行猝发操作,极大地提高了数据吞吐能力, 可在更短的时间内完成任务,在满足高性能要求的同时,又减少了功耗。 独立的地址和数据通道。地址和数据通道分开,能对每一个通道进行单独优化,可以根据需要控制时序通道,将时钟频率提到最高,并将延时降到最低。 第二部分: 本部分对AXI1.0协议的各章进行整理。 第一章 本章主要介绍AXI协议和AXI协议定义的基础事务。 1、AXI总线共有5个通道分别是read address channel 、write address channel、read data channel、write data channe、write response channe。每一个AXI传输通道都是单方向的。 2、每一个事务都有地址和控制信息在地址通道(address channel中,用来描 述被传输数据的性质。 3、读事务的结构图如下:

相关文档