文档库 最新最全的文档下载
当前位置:文档库 › Multiple Target Localisation at over 100 FPS

Multiple Target Localisation at over 100 FPS

Multiple Target Localisation at over 100 FPS
Multiple Target Localisation at over 100 FPS

Multiple Target Localisation at over100FPS

Simon T aylor

https://www.wendangku.net/doc/a78513007.html,/~sjt59 T om Drummond

https://www.wendangku.net/doc/a78513007.html,/~twd20

Department of Engineering

University of Cambridge

Cambridge,UK

Abstract

This paper presents a method for fast feature-based matching which enables7in-dependent targets to be localised in a video sequence with an average total processing

time of7.46ms per frame.We extend recent work[14]on fast matching using His-

togrammed Intensity Patches(HIPs)by adding a rotation invariant framework and a tree-

based lookup https://www.wendangku.net/doc/a78513007.html,pared to state-of-the-art fast localisation schemes[15]we

achieve better matching robustness in under a quarter of the computation time and re-

quiring5-10times less memory.

1Introduction

Finding points in different views of a scene which correspond to the same real world loca-tions is a fundamental problem in computer vision,and a vital component of applications such as automated panorama stitching(e.g.[2]),image retrieval(e.g.[13])and object local-isation(e.g.[7]).

A common theme in many successful approaches to these problems is the extraction of a set of local features from images to be matched.An overall match between two images can then be established by combining information from many local feature correspondences. The use of information from many local matches adds redundancy and allows the methods to cope with partial occlusion and some incorrect correspondences.

The?rst stage of all state-of-the-art matching schemes is to apply interest region detec-tion to factor out common imaging transformations.The Harris corner detector[4]has been used frequently,but modern methods commonly use more expensive searches for scale-space interest regions such as the DoG detector[7].Finding af?ne-invariant interest regions has also been extensively studied[8,9].A canonical orientation can be assigned to an interest region,for example by considering the blurred gradient at the centre of the region[2].

The most basic representation of the interest region is obtained by extracting a pixel patch from the canonical frame that has been assigned.Simple patch-matching schemes such as Normalised Cross Correlation(NCC)or Sum-of-Squared Differences(SSD)do not perform well when subject to the small registration errors introduced by interest region detectors,and hence a more complicated matching scheme is usually employed.Two broad approaches have been studied in the literature.The?rst class of methods perform further processing on the extracted patches to compute a feature descriptor vector which is ideally equal for different views of the same feature.The second class of methods treats the matching problem c 2009.The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.

BMVC 2009 doi:10.5244/C.23.58

Figure1:Four frames from a sequence demonstrating independent multiple object localisa-tion.No frame-to-frame tracking is performed;the objects are localised in each frame.The mean total computation time per frame is7.46ms using a single core of a2.4GHz CPU.

as one of classi?cation,and can obtain matches with very little computation on the input patches after classi?ers for each database feature have been learnt in an of?ine training stage.

David Lowe’s SIFT method[7]is one of the most common descriptor-based approaches. SIFT uses blurring and soft-bin histogramming of local gradients to extract a descriptor vector which is robust to the errors introduced by interest region detection and orientation assignment.Many other approaches to transforming an image patch into a feature vector have been proposed,such as GLOH[10],MOPS[2],and CS-LBP[5].Winder and Brown applied a learning approach to?nd optimal parameters for these types of descriptor[16].

Lepetit et al.[6]demonstrated the viability of the alternative matching-by-classi?cation approach by showing that an of?ine training phase could be used to train randomised tree classi?ers for features.The Ferns method[11]uses a different classi?er with improved performance.Both of these methods only require a small number of simple pixel tests on the runtime images to classify features,and hence require very little computation.However the classi?ers represent joint distributions of the tests and so have large memory requirements.

Both the SIFT and Ferns approaches as originally presented require too much memory and computation to be suitable for real-time applications on small devices such as mobile phones.Recent work by Wagner et al.[15]adapted both approaches to make them suitable for low-powered platforms.A key change to both methods was replacing the expensive scale-space search for interest regions with the very ef?cient?xed-scale FAST-9detector[12], and instead achieving scale invariance at runtime by ensuring the database contains features from multiple scales.Their optimised methods were both able to localise a planar target in a320×240image in a total frame time of around5ms on a desktop PC.The technique we propose achieves more robust localisation on the same test sequences and reduces both the total frame time and memory requirements by a factor of more than4.

Our approach is based on simple pixel patches extracted from around interest points. Although SSD-based matching is not robust when subject to small registration errors,reg-istration errors do not affect all pixels equally;samples from the interior of large regions of solid colour in a patch are more robust to registration errors.We employ a training phase to learn a model for the range of patches expected for each feature using independent per-pixel distributions,which we refer to as a Histogrammed Intensity Patch(HIP).This model allows runtime matching to use simple pixel patches whilst providing suf?cient viewpoint invari-ance to handle registration errors from interest point detection.The histograms are quantised to give a small binary representation that can be very ef?ciently matched at runtime.

In previous work[14]we introduced the approach and used the ef?cient FAST-9detector to factor out translation changes.We trained independent sets of features from many differ-

ent viewpoint bins covering scale,rotation and af?ne variations,which resulted in large

databases of around13,000features for a single target.Despite the large database size,a simple indexing scheme combined with the binary representation’s ef?cient matching score enabled localisation of a target in a total frame time of around1.5milliseconds.

This paper presents a number of signi?cant improvements to the approach.Firstly canon-ical orientation computation is added to the interest point detection stage,allowing the num-ber of features for a target to be reduced by a factor of around15.A novel two-pass approach to training accounts for errors related to interest point detection and orientation assignment, and allows us to choose ef?cient methods for those stages without sacri?cing robustness of the overall system.A tree-based matching scheme is introduced to exploit common infor-mation in different features and prevent the need for an exhaustive comparison against all database features.Finally a framework for rapid independent multiple-target localisation using HIPs is presented.

2Training Features for a Target

As in the Ferns[11]approach we utilise a training phase to reduce the amount of computation required at runtime.We use a training set of views of the entire target covering the range of viewpoints for which localisation is desired.The set of views is arti?cially generated by warping a single reference image.

For maximum runtime performance we avoid scale or af?ne-invariant interest region detectors and instead train independent sets of features for different viewpoint“bins”,each of which cover a small range of scale and af?ne viewpoint parameters.The experiments in this paper use9scale bins in total,3per octave.In practice we only use one range of af?ne parameters representing viewpoints centred on a direct view of the target but including out-of-plane rotations of up to40degrees in all directions.This single set of af?ne parameters enables reasonable matching beyond this range,but additional extreme af?ne viewpoint bins could be added if required.

Around1000images are generated for each viewpoint bin.Each image is generated by warping the reference image with a random camera-axis rotation and randomly chosen scale and af?ne parameters from within the range of the viewpoint bin.Additionally a small ran-dom gaussian blur and pixel noise is added so the training set more accurately represents the poor quality images likely at runtime.Our current implementation takes around20min-utes to generate all the training images for a typically-sized target,and uses large kernels convolved with the reference image to avoid aliasing artifacts.

The images in the training set are similar to the frames we expect at runtime,although as they are warped views of the entire target they are often larger than standard camera resolutions.To ensure all possible camera views contain suf?cient features for localisation we split the viewpoints into200×200pixel regions de?ned in a viewpoint reference frame which is taken as an unrotated view of the target from the centre of the viewpoint bin.

A two-stage training approach is used to identify repeatable features in each region and build feature models for them.The?rst stage is to run interest point detection and orienta-tion assignment on all of the training images.The position and orientation of each detection and the appearance of the surrounding image region is stored in a structure termed a subfea-ture.The second stage then clusters subfeatures based on position and orientation to identify repeatable features,and builds a Histogrammed Intensity Patch model for each feature by combining the appearance information from the subfeatures in each cluster.

Figure2:Left:The8×8sample grid used for the HIPs and the5sample locations selected for indexing,relative to the FAST-9interest point(shown by the grey circle).Right:The orientation assignment scheme uses a sum of the gradients between opposite pixels in the 16-pixel FAST ring.

2.1Selecting Repeatable Feature Positions and Orientations

Runtime performance considerations led us to select FAST-9[12]as the interest point de-tector.Typical approaches to assigning orientation require computationally expensive blur-ring[2]or histogramming[7]and would add signi?cant computation to the runtime process-ing.Instead we simply sum gradients computed between opposite pixels in the16-pixel ring used in FAST corner detection,as shown in Figure2.The directions are?xed so the x and y components of the orientation vector can be computed very quickly from weighted sums of the8pixel differences.

We run FAST-9on each training image within a viewpoint bin and represent the35 highest-scoring corners from each200×200region with subfeatures.Proportionally fewer subfeatures are extracted from smaller regions at the edges of the viewpoint reference frame. For smaller scale viewpoint bins where the entire target is under200×200pixels a35cor-ner minimum is enforced which effectively increases the feature density for these smaller targets.The orientation measure of Figure2is also computed at each detected corner.The position(x r,y r)and orientationθr of the subfeature in the coordinate system of the view-point reference frame can be computed as the warp used to generate the training image is known.

The appearance of the subfeature is represented by a sparsely-sampled quantised patch. We use a square8×8sampling grid centred on the interest point,with a1-pixel gap between samples,as shown in Figure2.Before sampling the pixel values the sampling grid is?rst rotated so that it is aligned with the detected orientation of the subfeature.The64samples are then extracted with bilinear interpolation,normalised for mean and standard deviation to give lighting invariance,and quantised into5intensity bins.The5-bit index value explained in Section3.2is also computed and stored in the subfeature.

The most repeatable feature positions and orientations for a viewpoint bin appear as dense clusters of subfeatures in the(x r,y r,θr)space when all the training images in the bin have been processed.Every subfeature is considered as the potential centre of a HIP feature, and the set of other subfeatures(from other training images)that lie within a certain distance of the centre is found.We manually decide the allowable distance;in this paper we allow2 pixels of localisation error and10degrees of orientation error.Sets of subfeatures given these allowed distances share enough similarity in appearance to be represented by a single HIP feature in a target database.The largest set of subfeatures represents the most repeatably-detected feature,and will be the?rst feature we select to add to the database.Sets continue

to be selected in a greedy manner,disregarding any which overlap already added HIPs.We continue adding features until the average number of subfeatures per training image region which are represented in the database has reached a speci?ed fraction of the number of subfeatures detected.We set this parameter to0.5in our experiments.This criterion will naturally compensate for inaccuracies in interest point detection and orientation assignment by adding multiple database features to represent a single cluster if the errors are too large. Hence our use of an inexpensive and inaccurate orientation assignment scheme may result in more features being added to the database but should not cause a major degradation in matching robustness.The trade-off between robustness of matching and database size can be made by adjusting the parameters for desired corner density and desired fraction of corners in the database.

2.2Creating HIPs from Subfeature Sets

After a particular set of subfeatures has been selected for addition to the database,quantised patches from the subfeatures are combined to give the Histogrammed Intensity Patch repre-sentation for the feature.The HIP model contains64independent histograms of5quantised intensity levels;one histogram for each sample of the quantised patches.The histograms are empirical distributions of the quantised intensity in a particular sample across all the subfeatures in the set.Thus samples which have a consistent quantised level in all of the constituent subfeatures will have sharply peaked histograms in the HIP.To save on memory and computation required for matching we quantise the histograms to a binary representa-tion.Histogram bins with probabilities less than5%are rare bins and represented by a1, and other bins by a0.A single HIP requires5bits for each of64samples,a total of40bytes. We can refer to each bit of a database HIP D as D i,j where i∈{0,...,63}is the sample number and j∈{0,...,4}is the quantised intensity level.

The process of extracting subfeatures from training images,?nding the largest subfeature sets and building the HIP representations takes less than5minutes on a desktop machine for a typical target with around10000images in the training set.

3Runtime Matching

We use a?xed-scale detector to avoid a dense scale space search at runtime but we still?nd it useful to build a sparse image pyramid by half-sampling the input image twice to obtain half and quarter-scale images.As well as having signi?cantly reduced blur,which improves repeatability of the?xed-scale FAST detector,these sub-sampled images also enable match-ing over a wider range of scales as features can still be detected in the reduced images if the target scale in the input image is larger than the trained https://www.wendangku.net/doc/a78513007.html,ing half-sampling by aver-aging4pixels for each1of the reduced image permits a very ef?cient SIMD implementation which produces both reduced images from a640×480frame in under0.1ms.

The runtime images are treated similarly to those from the training set:FAST-9is used to extract the highest scoring corners from the images,the orientation assignment scheme of Figure2is employed and a patch is extracted from the rotated sparse sampling grid and normalised for mean and standard deviation.We use bilinear interpolation with precomputed pixel positions and weights in2degree increments so the additional cost of rotation normal-isation is minimal,and?nd around150corners from the full scale image and75from each of the reduced-scale is suf?cient for excellent matching robustness.

For ef?cient matching the normalised patch is converted to a binary representation R. This is slightly different to the database feature D as it represents just a single patch.Like D,we use a320-bit value but R has exactly one bit set for each pixel,corresponding to the intensity bin for each sample in the patch:

R i,j=

1if B j

0otherwise.

(1)

where RP(x i,y i)is the value of sample i in the normalised runtime patch,and B j is the minimum normalised intensity value of histogram bin j.

The dissimilarity score we use to rank correspondences is computed in the same way as our earlier system[14].In brief;although the binary HIP models do not allow a true likeli-hood computation as they are not correctly normalised,an approximation which is suf?cient to classify matches can be obtained from a count of the number of samples in the runtime patch which fall into the rare bins in a HIP.This can be computed with bitwise operations on the binary representations of D and R-the error count is simply the number of bits where both D i,j and R i,j are equal to1.By packing the bits corresponding to the same intensity levels into64-bit integers D j and R j and using the fact that only one of the R i,j bits will be set for each sample i,the error count can be obtained very ef?ciently by a bit-count on a 64-bit integer:

e=bitcount((D0?R0)⊕...⊕(D4?R4))(2) where?denotes bitwise AND and⊕denotes bitwise OR.Currently the parallel bit-count method from[1]is used which is slightly faster than the11-bit lookup table used in[14].

We use two thresholds for determining matches.Matches with e≤2are treated as pri-mary matches,whilst those where2

3.1Tree-based Search

We improve the scalability of our approach and avoid the need to compare every runtime match against every database feature by making use of similarities between HIPs.Two similar-looking features in the database are likely to share many rare bins(1bits)in their HIP representations.A lower bound on the number of errors between a runtime patch and the two features can be obtained by computing the error score between the patch and the ANDed binary representations of the two features.If this error score is over the threshold for matching then matches to both features can be rejected with only one test.

The use of ANDed bitmasks to reject entire sets of features can be used to build a binary tree.Initially the number of common bits between all pairs of HIPs is computed.The pair with the greatest overlap is converted into a parent feature containing the ANDed masks.The parent is added to the set of root features and the two original features become child nodes of the parent.The process of combining the root features with the most overlap is repeated until the root features which remain do not share any1bits in common.Our implementation builds a tree for a typically-sized database of700features in under a second by maintaining a sorted list of the pairs of HIPs with the greatest overlap,which only needs to be sparsely updated when a pair is combined.

The tree-based search enables all matches under the threshold to be retrieved from the entire database without requiring an exhaustive comparison.As we use a binary tree the num-ber of additional parent features is almost exactly equal to the number of original database features,so the method requires around twice the memory of a linear search.

3.2Indexing

Our previous work[14]used a13-bit index to reduce the exhaustive search.The combination of smaller rotationally-invariant databases and the novel tree-based lookup method make a full search a real possibility.However if matching speed is of key importance an index can be used to further reduce the matching time at the cost of more memory usage.We use a 5-bit index in this paper.

The5samples shown in Figure2are used to compute an index number.The samples selected for the index are quantised to a single bit,set to1if the pixel value is above the mean of the patch,and concatenated to form a5-bit integer.The value is used to index a lookup table of sets of HIPs,and the error score is only computed against the HIPs in the entry of the table with the matching index.The features in each index bin can also be grouped using the binary tree approach of section3.1to further reduce the number of comparisons required at runtime.

The training phase is used to decide the index bins that a feature should appear in.Ev-ery subfeature used to build a HIP model also contains the index value computed from the training image it appeared in.The most common indices for a particular HIP are selected until at least80%of its constituent subfeatures have their index value included in the set.As an index bin only contains a subset of the database it is possible that matches will be missed when the index scheme is employed.

3.3Robust Multiple Target Pose Estimation

For the single targets used in[14]it was suf?cient to sort all of the matches by error score and apply a standard robust estimation framework such as PROSAC[3].This approach does not scale well to multiple targets as it would require a separate set of PROSAC iterations for each target in the database.We make use of the target,scale bin,and reference orientation associated with each HIP to bin matches into coarse viewpoints which they support.The viewpoints with the most primary matches are considered?rst.We always choose the top5 viewpoints for further consideration,and additionally the top two for each target providing they have enough matches to allow a pose to be estimated.

All matches from the viewpoint being considered(and those from neighbouring scale and orientation views)are added to a set of potential matches.We then apply viewpoint consistency constraints to identify the primary match within this set with the largest number of consistent matches.The primary match is consistent with another match if the distance between the matches d m is close to the expected distance d e given the scale bin of the primary match:0.4d e

Figure4:Scalability results on the sequence of Figure1.Left:Matching and Total Frame Times.Right:Number of frames where“Ad”target is localised.

the“Ad”target in the database,and added the other targets one at a time.The total frame time and the time taken in the match lookup stage alone were recorded.Another parameter of interest was how the robustness of the matching is affected by including more targets in the database,so we also recorded the number of frames in which the“Ad”target was localised. The results were calculated both with and without indexing and are shown in Figure4.In these tests we increased the number of corners extracted at runtime to400from the full frame and200from each of the sub-sampled images,as we found the single corner threshold for the entire frame caused the lower-contrast targets to have too few features detected in some frames.Enforcing a spread of corners in the runtime frame could be a better solution and should work with fewer runtime corners,giving a corresponding reduction in matching time.

The speed results appear to show the matching time increasing almost linearly despite the tree-based lookup.It could be that even with all7targets in the database there are not enough overlapping features to fully exploit the potential for log(N)scaling of the binary tree.It would be interesting to investigate the behaviour as the database is increased to a much larger number of features.The index clearly helps to reduce the matching time,and potentially an index with more bits could be used if matching time is of utmost importance.

The right side of the?gure shows there is a slight performance penalty when the database contains multiple targets.However after a few targets have been added to the database,the addition of further ones does not make performance signi?cantly worse.As expected,the approximation introduced by the indexing scheme leads to some potential matches not being identi?ed,and results in fewer frames being successfully localised.However the penalty is minimal considering the speed increase obtained by using an index.

5Conclusions and Future Work

We have proposed some signi?cant improvements to our earlier matching scheme based on Histogrammed Intensity Patches.A simple orientation computation and a training frame-work which is able to naturally deal with inaccuracies in orientation assignment has enabled database sizes to be signi?cantly reduced.A novel binary tree lookup scheme allows an exact search for low-threshold matches without requiring exhaustive comparison.Finally viewpoint consistency constraints have been employed to implement a scalable multiple tar-get localisation https://www.wendangku.net/doc/a78513007.html,parison with state-of-the-art fast localisation schemes has demonstrated that our method offers faster performance and lower memory usage whilst also successfully localising the target in more frames of the test sequences.

Future research will investigate reducing training time,learning optimal values for var-ious parameters in the method(such as sample layout,number of samples and quantisation levels),and scalability tests with far larger image databases.We also propose investigating using image measurements other than intensity in the same binary-histogrammed frame-work;for example samples could also include a histogram of quantised gradient directions or quantised colour.The resulting matching scheme would then naturally give more weight to any of the parameters which were found to be consistent for a particular sample in a feature.

6Acknowledgements

This research is supported by the Boeing Company.

References

[1]Software optimization guide for AMD64processors.URL http://www.amd.

com/us-en/assets/content_type/white_papers_and_tech_docs/ 25112.PDF.

[2]M.Brown,R.Szeliski,and S.Winder.Multi-image matching using multi-scale ori-

ented patches.In Proc.IEEE Computer Society Conference on Computer Vision and Pattern Recognition,pages510–517,2005.

[3]Ondˇr ej Chum and JiˇríMatas.Matching with PROSAC-progressive sample consen-

sus.In Proc.IEEE Computer Society Conference on Computer Vision and Pattern Recognition,pages220–226,2005.

[4]C Harris and M Stephens.A combined corner and edge detector.In Proc.of the4th

ALVEY Vision Conference,pages147–151,1988.

[5]Marko Heikkil?,Matti Pietik?inen,and Cordelia Schmid.Description of interest re-

gions with local binary patterns.Pattern Recogn.,42(3):425–436,2009.

[6]V.Lepetit and P.Fua.Keypoint recognition using randomized trees.Pattern Analysis

and Machine Intelligence,IEEE Transactions on,28(9):1465–1479,Sept.2006. [7]David G.Lowe.Distinctive image features from scale-invariant keypoints.Interna-

tional Journal of Computer Vision,2:91–110,2004.

[8]J.Matas,O.Chum,M.Urbana,and T.Pajdlaa.Robust wide-baseline stereo from

maximally stable extremal regions.Image and Vision Computing,22(10):761–767, September2004.

[9]Krystian Mikolajczyk and Cordelia Schmid.An af?ne invariant interest point detector.

In Proc.7th European Conference on Computer Vision,Copenhagen,Denmark,pages 128–142.Springer,2002.

[10]Krystian Mikolajczyk and Cordelia Schmid.A performance evaluation of local de-

scriptors.IEEE Trans.Pattern Anal.Mach.Intell.,27(10):1615–1630,2005.

[11]M.Ozuysal,P.Fua,and V.Lepetit.Fast keypoint recognition in ten lines of code.In

Proc.IEEE Computer Society Conference on Computer Vision and Pattern Recogni-tion,June2007.

[12]Edward Rosten and Tom Drummond.Machine learning for high speed corner de-

tection.In9th Euproean Conference on Computer Vision,volume1,pages430–443.

Springer,April2006.

[13]Cordelia Schmid and Roger Mohr.Local greyvalue invariants for image retrieval.IEEE

Transactions on Pattern Analysis and Machine Intelligence,19:530–535,1997. [14]Simon Taylor,Edward Rosten,and Tom Drummond.Robust feature matching in2.3μs.

In IEEE CVPR Workshop on Feature Detectors and Descriptors:The State Of The Art and Beyond,June2009.

[15]Daniel Wagner,Gerhard Reitmayr,Alessandro Mulloni,Tom Drummond,and Dieter

Schmalstieg.Pose tracking from natural features on mobile phones.In Proc.ISMAR 2008,Cambridge,UK,Sept.15–182008.

[16]Simon A.Winder and Matthew Brown.Learning local image descriptors.In Proc.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2007.

HTML标签以及各个标签属性大全(网页制作必备).

取消换行和
相反 总类(所有HTML文件都有的) -------------------------------------------------------------------------------- 文件类型(放在档案的开头与结尾) 文件主题(必须放在「文头」区块内) 文头(描述性资料,像是「主题」) 文体(文件本体) 结构性定义(由浏览器控制的显示风格) -------------------------------------------------------------------------------- 标题(?表示从1到6,有六层选择)数值越高字越小 标题对齐左对齐、居中对齐、右对齐 区分

区分对齐
左对齐、右对齐、居中对齐、两端对齐 引文区块
(通常会内缩) 斜体 加粗 引文(通常会以斜体显示) 码(显示原始码之用)

样本 表示一段用户应该对其没有什么其他解释的文本。要从正常的上下文抽取这些字符时,通常要用到这个标签。 并不经常使用,只在要从正常上下文中将某些短字符序列提取出来,对其加以强调,才使用这个标签 键盘输入 变数 定义 (有些浏览器不提供) 地址

3.0 大字 3.0 小字 与外观相关的标签(作者自订的表现方式) -------------------------------------------------------------------------------- 加粗 斜体 3.0 底线(尚有些浏览器不提供) 3.0 删除线 (尚有些浏览器不提供) 3.0 下标 3.0 上标 打字机体(用单空格字型显示)

HTML属性详解大全

HTML属性详解 入门 HTML 标签 HTML 元素 HTML 属性 HTML 标题 HTML 段落 HTML 格式化 HTML 样式 HTML 链接 HTML 表格 HTML 列表 HTML 表单 HTML 图像 HTML 背景 HTML颜色 HTML 是用来描述网页的一种语言 HTML 不是一种编程语言,而是一种标记语言 标记语言是一套标记标签, HTML 使用标记标签来描述网页 HETML标签: HTML 标记标签通常被称为HTML 标签 HTML 标签是由尖括号包围的关键词,比如。成对出现的,比如 标题 HTML 标题(Heading)是通过

-

等标签进行定义的。

This is a heading

This is a heading

This is a heading

定义最大的标题。

定义最小的标题。 段落 段落是通过 标签进行定义的 This is a paragraph. This is another paragraph. 链接 链接是通过 标签进行定义的 SEO研究中心

图像 图像是通过 标签进行定义的。 图像标签()和源属性(Src) 在HTML 中,图像由 标签定义。 是空标签,意思是说,它只包含属性,并且没有闭合标签。 要在页面上显示图像,你需要使用源属性(src)。src 指"source"。源属性的值是图像的URL 地址。例子: URL 指存储图像的位置。如果名为"boat.gif" 的图像位于https://www.wendangku.net/doc/a78513007.html, 的images 目录中,那么其URL 为https://www.wendangku.net/doc/a78513007.html,/images/boat.gif。 浏览器将图像显示在文档中图像标签出现的地方。如果你将图像标签置于两个段落之间,那么浏览器会首先显示第一个段落,然后显示图片,最后显示第二段。 替换文本属性(Alt) Big Boat 元素 元素指的是从开始标签(start tag)到结束标签(end tag)的所有代码 HTML 元素以开始标签起始 HTML 元素以结束标签终止 元素的内容是开始标签与结束标签之间的内容 空元素 没有内容的称为空元素
标签定义换行 标签使用小写 文本格式化 文字的各种属性加粗斜体文字方向缩写首字母等 HTML 属性 HTML 标签可以拥有属性。属性提供了有关HTML 元素的更多的信息。 属性总是以名称/值对的形式出现,比如:name="value"。 属性总是在HTML 元素的开始标签中规定。 属性实例 居中排列标题 例子:

定义标题的开始。

拥有关于对齐方式的附加信息。 背景颜色 拥有两个配置背景的标签。背景可以是颜色或者图像

网页设计考试题PHP

应聘测试题 姓名:应聘职位:日期: (首先非常感谢您来我公司面试,请用120分钟做好以下题目,预祝您面试顺利!) 一、选择题 1.在基于网络的应用程序中,主要有B/S与C/S两种部署模式,一下哪项不属于对于B/S模式的正确描述() A. B/S模式的程序主要部署在客户端 B. B/S模式与C/S模式相比更容易维护 C. B/S模式只需要客户端安装web浏览器就可以访问 D. B/S模式逐渐成为网络应用程序设计的主流 2.以下关于HTML文档的说法正确的一项是( ) A.与这两个标记合起来说明在它们之间的文本表示两个HTML文本B.HTML文档是一个可执行的文档 C.HTML文档只是一种简单的ASCII码文本 D.HTML文档的结束标记可以省略不写 3.BODY元素可以支持很多属性,其中用于定义已访问过的链接的颜色属性是()。A.ALINK B.CLINK C.HLINK D.VLINK

4.在网站设计中所有的站点结构都可以归结为( ) A.两级结构 B.三级结构 C.四级结构 D.多级结构 5.Dreamweaver中,模板文件的扩展名是( ) A. .htm B. .asp C. .dwt D. .css 6.Dreamweaver中,站点文件的扩展名是( ) A. .htm B. .ste C. .dwt D. .css 7.网页中插入的flash动画文件的格式是( ) A.GIF B.PNG C. SWF D.FLA 8.设置水平线效果的HTML代码是( ) A.
B. < hr noshade> C. D. < td size=?> 9.以下表示段落标签的是( ) A. B. C.

D.
 10.以下表示预设格式标签的是( ) A.  B.  C. 

D.
 11.以下表示声明表格标签的是( ) A. 
B. C. D. ,定义表格的单元格,用在中 ,字体样式标志 属性: 属性是用来修饰标志的,属性放在开始标志内. 例:属性bgcolor="BLACK"表示背景色为黑色. 引用属性的例子: 表示页面背景色为黑色;
12.以下表示声明框架标签的是( ) A. B. C. D. ,定义表格的行,用在
13.以下标题字标签中,显示出得文字效果,字号最大的是( ) A.

B.

C.

D.

14.以下表示声明表单标签的是( ) A. B. C. D.

html所有标签及其作用说明

html所有标签及其作用 ,表示该文件为HTML文件 ,包含文件的标题,使用的脚本,样式定义等 ---,包含文件的标题,标题出现在浏览器标题栏中 ,的结束标志 ,放置浏览器中显示信息的所有标志和属性,其中内容在浏览器中显示. ,的结束标志 ,的结束标志 其它主要标签,以下所有标志用在中: ,链接标志,"…"为链接的文件地址 ,显示图片标志,"…"为图片的地址
,换行标志

,分段标志 ,采用黑体字 ,采用斜体字


,水平画线
,定义表格,HTML中重要的标志

表示表格背景色为黑色. 常用属性: 对齐属性,范围属性: ALIGN=LEFT,左对齐(缺省值),WIDTH=象素值或百分比,对象宽度. ALIGN=CENTER,居中,HEIGHT=象素值或百分比,对象高度. ALIGN=RIGHT,右对齐. 色彩属性: COLOR=#RRGGBB,前景色,参考色彩对照表. BGCOLOR=#RRGGBB,背景色.
表示绝对居中.
表格标识的开始和结束. 属性: cellpadding=数值单位是像素,定义表元内距

青春舞曲

初中音乐课《青春舞曲》教学案例分析 设计思路:在浓郁的音乐意境和音乐实践活动中感受歌曲风格,体验和表达歌曲的情感。 教学目标: 1、感受新缰歌曲的情绪及风格,能够用自然圆润的声音清晰的“文字吐字,明朗活泼的情绪演唱《青春舞曲》并北唱这首歌。 2、引导学生用打击乐器为《青春舞曲》配伴奏,激发学生对民族音乐的兴趣。 3、了解王洛宾的概况,主要作品及新疆民歌整理创编的歌曲。 教学重点与难点: 重点:在音乐实践活动中表现歌曲的音乐情绪和风格,提高表现能力。难点:用打击乐器为《青春舞曲》配伴奏。 教具准备:电子琴、手鼓、铃鼓、录音机、新缰帽。 教学过程: 一、用录音机播放新疆民族《我们新疆好地方》,感受歌词赋予的情绪的风格。 二、创设情境,导入新课。 师:“我们新疆好地方,天山南北好风光,葡萄瓜果香又甜,煤铁金银遍地葳”优美的歌声向我们传递着新疆的神奇和美丽,新疆地域辽阔,特产资源十分丰富。周恩来总理生前曾赞美新疆为祖国的“一块宝地”,你能谈一谈你所知道的新疆维吾尔自治区吗?

学生交收集到的材料(材料来源:八年级中国地理教科书)从以下几个方面加深对新疆的了解。 ①新疆的地理位置、面积。 ②新疆盛产的家作物。 ③新疆蕴含的主要资源。 ④新疆的民族风土人情及服饰特点。 (师生共同体验歌曲风格,掌握维吾尔族舞蹈的主要步伐。) (录音机播放歌曲)教师戴着新疆帽随着音乐律动。学生通过观看师的“微颤”、“绕腕”、“托帽式”、“移颈”等新疆舞的基本动作。再一次感受新疆舞别具一格的独魅力。 三、学唱歌曲 (1)师激情范唱 (师边弹边唱,学生总结:歌曲情绪欢快、跳跃、充满青春活力的风格) (2)理解歌词的内涵 播放录音机,请学生随歌曲歌词的节奏朗读,理解歌词内涵。(3)自学歌曲 ①听录音,用“啦”模唱。 听师弹歌曲旋律一小节一小节的填词 ③演唱,找出难点。(歌曲中重复成相近的旋律较多,如:第一小节的前两拍

几种视频文件的插入方法

几种视频文件的插入方法: 一、avi、asf、asx、mlv、mpg、wmv等视频文件的插入方法: 1、使用PoerPoint“插入”菜单中的“插入影片”命令法方法简单常用,在这里不再赘述; 2、使用PoerPoint“插入”菜单中的“插入对象”命令法; 3、使用插入控件法 使用这种方法必须保证系统中安装有Windows MediaPlayer或者RealPlayer播放器,首先将视频文件作为一个控件插入到幻灯片中,然后通过修改控件属性,达到播放视频的目的。 步骤如下: (1)运行PowerPoint程序,打开需要插入视频文件的幻灯片; (2)打开“视图”菜单,通过“工具栏”子项调出“控件工具箱”面板,从中选择“其他控件” 按钮单击; (3)在打开的控件选项界面中,选择“Windows Media Player”选项,再将鼠标移动到PowerPoint的幻灯片编辑区域中,画出一个合适大小的矩形区域,这个矩形区域会自动转变 为Windows Media Player播放器的界面; (4)用鼠标选中该播放界面,然后单击鼠标右键,从弹出的快捷菜单中选择“属性”命令, 打开该媒体播放界面的“属性”窗口; (5)在“属性”窗口中,在“URL”设置项处正确输入需要插入到幻灯片中视频文件的详细路径(绝对路径和相对路径都可以)和完整文件名,其他选项默认即可; (6)在幻灯片播放时,可以通过媒体播放器中的“播放”、“停止”、“暂停”和“调节音量” 以及“进度条”等按钮对视频进行自如的控制。 二、rm、ra、rmvb等视频文件的插入方法 使用Windows Media Player控件可以实现mpg、asf、avi、wmv等视频文件的播放,但它不支持RM视频文件的播放,那么如何在PowerPoint中实现RM视频文件的播放呢? 如果通过其他的视频转换软件把RM视频文件转换成A VI或MPG格式的文件再插入,速度慢且转换后的文件体积也大,我们同样可以通过利用PowerPoint中的“控件工具箱”来插 入RM格式的视频文件,方法如下: 1、打开PowerPoint幻灯片文件,打开需要插入视频文件的幻灯片;

HTML和JavaScript综合练习题2014答案

HTML和JavaScript综合练习题 一、单项选择 1.Web使用( D )在服务器和客户端之间传输数据。 A.FTP B. Telnet C. E-mail D. HTTP 2.HTTP服务默认的端口号是(D)。 A. 20 B. 21 C. 25 D. 80 3.HTML是一种标记语言,由( C )解释执行。 A.Web服务器 B.操作系统 C. Web浏览器 D.不需要解释 4.下列哪个标签是定义标题的 ( A )。 A.h1 B.hr C.hw D.p 5.html中的注释标签是( C )。 A.<-- --> B.<--! --> C. D.<-- --!> 6.标签的作用是( D )。 A.斜体B.下划线C.上划线D.加粗 7.网页中的空格在html代码里表示为( B )。 A.& B.  C." D.< 8.定义锚记主要用到标签中的( A )属性。 A.name B.target C.onclick D.onmouseover 9.要在新窗口中打开所点击的链接,实现方法是将标签的target属性设为( A )。 A._blank B._self C._parent D._top 10.下列代表无序清单的标签是( A )。 A.

B.
C.
  • D.< li >…
    … 第 1 页共11 页

    11.定义表单所用的标签是( B )。 A.table B.form C.select D.input 12.要实现表单元素中的复选框,input标签的type属性应设为( B )。 A.radio B.checkbox C.select D.text 13.要实现表单元素中的单选框,input标签的type属性应设为( A )。 A.radio B.checkbox C.select D.text 14.要使单选框或复选框默认为已选定,要在input标签中加( D )属性。 A.selected B.disabled C.type D.checked 15.要使表单元素(如文本框)在预览时处于不可编辑状态,显灰色,要在input中加( B ) 属性。 A.selected B.disabled C.type D.checked 16.如果希望能在网页上显示大于(>),可以使用( A )符号来表示。 A.> B.< C." D.& 17.alert();的作用是:( A )。 A.弹出对话框,该对话框的内容是该方法的参数内容。 B.弹出确认对话框,该对话框的要用户选择“确认”或“取消”。 C.弹出输入对话框,该对话框的可让用户输入内容。 D.弹出新窗口。 18.看以下JavaScript程序 var num; num=5+true; 问:执行以上程序后,num的值为( D )。 A.true B.false C.5 D.6 19.看以下JavaScript程序 var x=prompt(“请输入1-5的数字!”,“”); switch (x) case “1”:alert(“one”); case “2”:alert(“two”); case “3”:alert(“three”); case “4”:alert(“four”); case “5”:alert(“five”); default:alert(“none”); 运行以上程序,在提示对话框中输入“4”,依次弹出的对话框将输出: ( B )。 A.four,none 第 2 页共11 页

    a标签样式,a标签属性

    a标签样式 一组专门的预定义的类称为伪类,主要用来处理超链接的状态。超链接文字的状态可以通过伪类选择符+样式规则来控制。伪类选择符包括: 总: a 表示所有状态下的连接如 .mycls a{color:red} ①a:link:未访问链接,如.mycls a:link {color:blue} ②a:visited:已访问链接,如.mycls a:visited{color:blue} ③a:active:激活时(链接获得焦点时)链接的颜色,如.mycls a:active{color:blue} ④a:hover:鼠标移到链接上时,如.mycls a:hover {color:blue} 一般a:hover和a:visited链接的状态(颜色、下划线等)应该是相同的。 前三者分别对应body元素的link、vlink、alink这三个属性。 四个“状态”的先后过程是:a:link ->a:hover ->a:active ->a:visited。另外,a:active 不能设置有无下划线(总是有的)。 举例:伪类的常见状态值 <style type = “text/css”> <!-- a {font-size:16px} a:link {color: blue; text-decoration:none;} //未访问:蓝色、无下划线 a:active:{color: red; } //激活:红色 a:visited {color:purple;text-decoration:none;} //已访问:purple、无下划线 a:hover {color: red; text-decoration:underline;} //鼠标移近:红色、下划线 --> </style> a标签属性 a标签是成对出现的,以<a>开始, </a>结束 属性. Common -- 一般属性 accesskey -- 代表一个链接的快捷键访问方式 charset -- 指定了链接到的页面所使用的编码方式,比如UTF-8 coords -- 使用图像地图的时候可以使用此属性定义链接的区域,通常是使用x,y坐标href -- 代表一个链接源(就是链接到什么地方) hreflang -- 指出了链接到的页面所使用的语言编码 rel -- 代表文档与链接到的内容(href所指的内容)的关系 rev -- 代表文档与链接到的内容(href所指的内容)的关系 shape -- 使用图像地图的时候可以使用shape指定链接区域 tabindex -- 代表使用"tab"键,遍历链接的顺序 target -- 用来指出哪个窗口或框架应该被此链接打开 title -- 代表链接的附加提示信息 type -- 代表链接的MIME类型 更多信息请查看IT技术专栏

    初中音乐《青春舞曲》人音版新教材

    《青春舞曲》教案 教学目的: 1、学唱歌曲《青春舞曲》,体验歌曲欢快的情趣。 2、通过欣赏新疆民歌,了解新疆民歌风格特点,增强学生热爱民族音乐的感情。 3、懂得歌曲的寓意,启发学生珍惜光阴。 教学重点、难点: 重点是学唱《青春舞曲》体验歌曲欢快的情趣 难点是感受歌曲的风格特点,培养学生的节奏感和创造力用多种形式来表现歌曲教学方法:创设情境法、谈话法、讨论法、表演法等。 教学用具: 多媒体、打击乐器,钢琴 教材分析: 《青春舞曲》是人教版音乐课本中的一首新疆民歌,是王洛宾根据维吾尔族民歌整理创编的歌曲。这首歌的歌词用富于哲理的生活现象告诉年轻人:有些事物可以去而复返,有些事物却是一去不复返。歌词没有明确的警句格言,却诚挚地告诉了我们:要珍惜大好时光。F小调,4/4拍。歌曲的旋律优美流畅,节奏鲜明生动,采用重复、变化重复演化动机的手法写成,给人亲切、活泼,充满青春活力的感觉。 教学过程: (一)导入新课;同学们好!我们的祖国幅员辽阔、历史悠久、是一个民族众多的国家,这些民族由于风土人情、风俗习惯、宗教信仰的不同,而产生了各具特色的民歌。下面老师播放一首歌曲请学生说出这是哪个民族的舞蹈。并告诉老师这个民族在哪个省份居多? 播放歌曲《大阪城的姑娘》,(生听后齐声答:新疆维吾尔族)学生简单介绍自己了解的新疆。师总结: 【设计意图:通过欣赏《大阪城的姑娘》,让学生对新疆歌曲有初步的认识和了解】 新疆是个美丽的地方,新疆的歌舞更是闻名天下,素有歌舞之乡的美称。今天,老师就带领大家一起走进歌舞之乡——新疆,感受他们的音乐魅力!首先给大家带来了一首非常动听的新疆民歌《青春舞曲》。请同学们在欣赏的同时感受一下歌曲的速度、情绪和旋律分别是怎样的。 板书课题“青春舞曲”、 (二)学唱歌曲: 1、播放录音,(青春舞曲)请同学们说出这首歌的情绪及所蕴含的深刻哲理。 2、给出选项:歌曲的速度是:A中速稍慢 B中速稍快 C进行速度 歌曲的情绪是:A欢快 B悲伤 C豪迈 歌曲的旋律是:A优美而富于动感 B抒情而细腻 C激昂而悲壮(学生讨论后作答) 3、请学生讨论歌曲的主要节奏型,并总结歌曲的节奏特点。 歌曲的节奏特点是:节奏活泼鲜明,规整对称。 4教师弹唱,学生跟唱。 (1)、随电子琴跟唱歌曲旋律。 (2)、学生跟录音学唱歌词。 (3)、教师弹旋律,学生唱词。 (4)、教师根据学生在学唱的过程中出现的问题进行讲解、分析、纠正。

    HTML复习

    HTML/XML复习题 一、判断对错(正确T 错误F) 1.HTML本身包括网页本身的文本和标记两部分,文本是网页上的内容,标记是用来定义文本显示方式 2.标记必须用<>括起来 3.<>与标记名之间不能有空格或其他字符 4.标记是成对的,有开始标记有结束标记,有些标记是单标记,只有开始标记没有结束标记。 5.标记不区分大小写 6.属性是可选的没有先后顺序 7.标记的属性带有特定的值,属性值包含在直引号中。 8.标记嵌套的规则是先开始的标记后结束,后开始的标记先结束。 9.标记定义页面标题,搜索引擎包括页面的信息,除标题以外的其他内容对访问者是不可见的。 10.网页中整体字体尺寸用basefont标记中的size属性来定义 11.定义网页中所有文字的默认颜色用body标记中的text属性来定义 12.定义颜色的属性值可以用颜色的英文如:red;也可以用RGB表示方式如:122,139,42;还可以用#******来表 示,取值从0-9,a-f 13.上标标记是 ,下标标记是 14.JPEG是最常用静态图像文件格式,是一种有损压缩格式,支持颜色信息丰富,但不能保存透明区域。 15.Swf是FLASH软件生成的动画影片格式,够用比较小的体积来表现丰富的多媒体形式。 16.标记中border属性用来定义图片的边框 17.标记中图像左右空白属性为hspace,图像上下空白属性为vspace 18.设置网页的背景图片使用标记中的background属性,背景图片使用bgcolor属性。 19.预定义格式化文本标记是

     20.body标记中Link属性定义未被访问过的链接颜色;alink属性定义链接激活状态的链接颜色;vlink属性定义 已被访问过链接的颜色 21.target属性用来定义链接打开窗口,当属性值为blank是定义链接在新窗口中打开。 22.
      定义有序列表,
        定义无序列表 23.定义列表的开始标记是
        24.定义表格的标记是标记,定义行的开始,,定义表格的行,用在
        定义行中的单元格 25.网页中设置滚动字幕的标记是标记 26.网页中版权声明符号标记是© 27.定义框架集的HTML标记是 28.框架集标记定义在标记之间。(F) 29.标记中用来定义滚动条的属性是scrolling 30.标记用来定义表单域 31.表单的提交方式有post和get 两种 32.关键字和描述信息定义在标记之间。 33. 标记定义页面标题,搜索引擎包括页面的信息,除标题以外的其他内容对访问者是不可见的。 34.标记必须用<> 括起来,标记一般成对出现。标记的属性带有特定的值,属性值包含在直引号中 35.网页文件标题标记 36.设置网页背景颜色通过在<body>标记中添加属性bgcolor实现 37.Xml语言Extensible Markup Language是指可扩展标记语言 38.XML是一种数据存储语言,XML标记用来描述文本的结构,而不是用于描述如何显示文本。 39.XML文件扩展名为”.xml” 40.XML文档主要由两部分组成:序言和文档元素,序言包括声明版本号、处理指令等。文档元素指出了文档 的逻辑结构,并且包含了文档的信息内容。一个典型的元素有起始标记、元素内容和结束标记。 41.CDATA节中的所有字符都会被当作元素中字符数据的常量部分,而不是XML标记。 42.将XML文档在浏览器中按特定的格式显示出来,需要css样式文件或者xsl样式文件告诉浏览器如何显示。 二、填空 1.body标记中Link属性定义未被访问过的链接颜色;alink属性定义链接激活状态的链接颜色;vlink属性定义 已被访问过链接的颜色 2.target属性用来定义链接打开窗口,当属性值为blank是定义链接在新窗口中打开。 3.<ol>定义有序列表,<ul>定义无序列表 4.定义表格的标记是<table>标记,<tr>定义行的开始,<td>定义行中的单元格 5.网页中设置滚动字幕的标记是<marquee>标记</p><h2>(完整版)初中音乐青春舞曲教案【三篇】</h2><p>初中音乐青春舞曲教案【三篇】 学唱歌曲《青春舞曲》,使学生能够把握歌曲的情绪、节奏,体会歌 曲的旋律特点。###小编整理了初中音乐青春舞曲教案【三篇】,希望 对你有协助! 青春舞曲教案一 一、教学理念: 根据新课程标准的指导思想,在音乐教学过程当中,把学生对音乐的 感受和参与放在重要的位置,充分利用现代化教学手段,提升课堂教 学效果,使学生在轻松愉快的学习气氛中体验美、感受美创造美,激 发学生的兴趣,提升学生的审美水平。在《青春舞曲》一课的教学中,主要是感受、体验新疆民歌的风格特点,让学生在学习过程中相互合作,充分发挥自主学习的水平、团结合作水平和创新水平。在表现歌 曲的多形式创作练习和参与音乐实践活动中,培养学生热爱民族音乐 的情感。 二、教学准备: 钢琴、CD碟片、小型打击乐器(手鼓、串铃等)、投影仪、音响设备等。 三、教学目标: 知识与技能:学会演唱歌曲,并能用活泼、有弹性的声音演唱《青春 舞曲》。准确把握歌曲的情绪,体会歌曲的旋律特点。 四、过程与方法: 1、尝试在聆听、模唱、讨论、创新中学习歌曲;通过音乐活动,调 动学生的积极参与,培养学生节奏感和创造力,训练协调性,加深对 歌曲风格的理解。</p><p>2、了解维吾尔族音乐特点,并可结合维吾尔族服装、乐器、舞蹈动作,体会音乐与舞蹈的结合。 五、情感态度与价值观: 通过学习维吾尔族歌曲《青春舞曲》及其相关知识,培养学生喜欢并 热爱我国的民族音乐,懂得青春易逝的道理,要珍惜大好时光,努力 学习。 六、教材分析: 这是一首G大调、4/4拍、单乐段的歌曲,短小精练,一气呵成,旋律活泼流畅,节奏具有鲜明的舞蹈性。感受体验维吾尔族民歌的风格特点, 七、教学重、难点: 1、重点:在听、唱、跳、等音乐活动中体验和表现歌曲的情绪。并 能用自然的声音准确地演唱《青春舞曲》。 2、难点:掌握维吾尔族民歌特点,能准确掌握歌曲节奏型,充分发 挥学生的创新水平及团结合作意识。并激发学生对“青春”的更深层 次的理解。 八、教学过程: (一)导入新课:1、以自己身上特有的民族特色来和学生实行讨论,抓住学生对少数民族的兴趣来导入新课。 (二)音画同步、提升兴趣 出示图片民族信仰,服饰,小吃,土特产,2、新疆的人们都能歌善舞,每逢喜庆、丰收时节,他们都用歌舞来表达自己的喜悦心情。另外新 疆这个民族有这独特的民族乐器(出示图片介绍新疆独特乐器)新疆 的音乐这么动听,新疆的舞蹈这么优美,让我们乘着去新疆的列车, 去学习一首新疆歌曲吧!</p><h2>监控系统安装流程(视频监控安装教程)</h2><p>监控安装指导与注意事项 A、线路安装与选材 1、电源线:要选“阻燃”电缆,皮结实,在省成本前提下,尽量用粗点的,以减少电源的衰减。 2、视频线:SYV75-3线传输在300米内,75-5线传输500米内,75-7的线可传输800米;超过500米距离,就要考虑采用“光缆”。另外,要注意“同轴电缆”的质量。 3、控制线:一般选用“带屏蔽”2*1.0的线缆,RVVP2*1.0。 4、穿线管:一般用“PVC管”即可,要“埋地、防爆”的工程,要选“镀锌”钢管。 B、控制设备安装 1、控制台与机柜:安装应平稳牢固,高度适当,便于操作维护。机柜架的背面、侧面,离墙距离,考虑到便于维修。 2、控制显示设备:安装应便于操作、牢靠,监视器应避免“外来光”直射,设备应有“通风散热”措施。 3、设置线槽线孔:机柜内所有线缆,依位置,设备电缆槽和进线孔,捆扎整齐、编号、标志。</p><p>4、设备散热通风:控制设备的工作环境,要在空调室内,并要清洁,设备间要留的空间,可加装风扇通风。 5、检测对地电压:监控室内,电源的火线、零线、地线,按照规范连接。检测量各设备“外壳”和“视频电缆”对地电压,电压越高,越易造成“摄像机”的损坏,避免“带电拔插”视频线。 C、摄像机的安装 1、监控安装高度:室内摄像机的安装高度以2.5~5米,为宜,室外以3.5~10米为宜;电梯内安装在其顶部。 2. 防雷绝缘:强电磁干扰下,摄像机安装,应与地绝缘;室外安装,要采取防雷措施。 3、选好BNC:BNC头非常关键,差的BNC头,会让你生不如死,一点都不夸张。 4、红外高度:红外线灯安装高度,不超过4米,上下俯角20度为佳,太高或太过,会使反射率低。 5、红外注意:红外灯避免直射光源、避免照射“全黑物、空旷处、水”等,容易吸收红外光,使红外效果大大减弱。 6、云台安装:要牢固,转动时无晃动,检查“云台的转动范围”,是否正常,解码器安装在云台附近。</p><h2>网页设计期末复习试题</h2><p>网页设计复习 选择题答案:ABDAC CABCB BACDC CBACA BBDAD CCBBC ACAAC BDDDA DCACB CACDB CACDB DCBAB 如果有同学发现答案有误请大家在群里指出一下 一. 单项选择题 1、HTML 指的是。 A.超文本标记语言(Hyper Text Markup Language) B.家庭工具标记语言(Home Tool Markup Language) C.超链接和文本标记语言(Hyperlinks and Text Markup Language) 2、Web 标准的制定者是万维网联盟(W3C)。 A. 微软(Microsoft) B.万维网联盟(W3C) C.网景公司(Netscape) 3、在下列的 HTML 中,哪个是最大的标题。 A. <h6> B. <head> C. <heading> D. <h1> 4、在下列的 HTML 中,哪个可以插入折行。 A.<br> B.<lb> C.<break> 5、在下列的 HTML 中,哪个可以添加背景颜色。 A.<body color="yellow"> B.<background>yellow</background> C.<body bgcolor="yellow"> 6、产生粗体字的 HTML 标签是。 A.<bold> B.<bb> C.<b> D.<bld> 7、产生斜体字的 HTML 标签是。 A.<i> B.<italics> C.<ii> 8、在下列的 HTML 中,可以产生超链接? A.<a url="https://www.wendangku.net/doc/a78513007.html,">https://www.wendangku.net/doc/a78513007.html,</a> B.<a href="https://www.wendangku.net/doc/a78513007.html,">W3School</a> C.<a>https://www.wendangku.net/doc/a78513007.html,</a> D.<a name="https://www.wendangku.net/doc/a78513007.html,">https://www.wendangku.net/doc/a78513007.html,</a> 9、能够制作电子邮件链接。 A.<a href="xxx@yyy"> B.<mail href="xxx@yyy"> C.<a href="mailto:xxx@yyy"> D.<mail>xxx@yyy</mail> 10、可以在新窗口打开链接。 A.<a href="url" new> B.<a href="url" target="_blank"> C.<a href="url" target="new"> 11、以下选项中,全部都是表格标签。 A.<table><head><tfoot> B.<table><tr><td> C.<table><tr><tt> D.<thead><body><tr> 12、可以使单元格中的内容进行左对齐的正确 HTML 标签是。 A.<td align="left"> B.<td valign="left"></p><h2>a标签target属性详解</h2><p>a标签target属性详解 HTML 标签的target 属性 HTML 标签 定义和用法 标签的target 属性规定在何处打开链接文档。 如果在一个标签内包含一个target 属性,浏览器将会载 入和显示用这个标签的href 属性命名的、名称与这个目标吻合的框架或者窗口中的文档。如果这个指定名称或id 的框架或者窗口不存在,浏览器将打开一个新的窗口,给这个窗口一个指定的标记,然后将新的文档载入那个窗口。从此以后,超链接文档就可以指向这个新的窗 口。 打开新窗口 被指向的超链接使得创建高效的浏览工具变得很容易。例如,一个简单的内容文档的列表,可以将文档重定向到一个单独的窗口: Table of Contents target="view_window">Preface</p><p>target="view_window">Chapter 1 target="view_window">Chapter 2 target="view_window">Chapter 3亲自试一试 当用户第一次选择内容列表中的某个链接时,浏览器将打开一个新的窗口,将它标记为 "view_window",然后在其中显示希望显示的文档内容。如果用户从这个内容列表中选择另一个链接,且这个 "view_window" 仍处于打开状态,浏览器就会再次将选定的文档载入那个窗口,取代刚才的那些文档。 在整个过程中,这个包含了内容列表的窗口是用户可以访问的。通过单击窗口中的一个连接,可使另一个窗口的内容发生变化。 在框架中打开窗口 不用打开一个完整的浏览器窗口,使用target 更通常的方法是在一个显示中将超链接内容定向到一个或者多个框 架中。可以将这个内容列表放入一个带有两个框架的文档的其中一个框架中,并用这个相邻的框架来显示选定的文档: name="view_frame"></p><h2>歌唱《青春舞曲》</h2><p>【课型】歌唱课型 【课题】《青春舞曲》 【教材】上海教育出版社六年级《音乐》教材第一学期第四单元“民族花苑” 【主要教学内容】 1、复习乐曲《马车夫之歌》 2、学唱歌曲《青春舞曲》 【教学任务分析】 1、教材简析 《青春舞曲》是王洛宾根据维吾尔族民歌创编的歌曲。这首歌的歌词用富于哲理的生活现实告诉年轻人:有些事物可以去而复返,有些事物却是一去不复返的。而人的青春正像那鸟儿一样,飞去后即不再回头。这首歌为4/4拍,结构为单乐段结构后缀补充段。歌曲旋律采用重复、变化重复及衍化动机的手法写成。整个歌曲给人以亲切、活泼、充满青春活力的感受。 2、学情分析 六年级的学生经过小学音乐的基础学习,已有了初步的审美能力、浅显音 乐知识与基本的技能,同时对周围事物有了一定的认识,对音乐作品也有了初步的感性认识。但重要的还是要培养他们对音乐的兴趣和热情,注重音乐课基本常规、欣赏音乐和演唱的习惯。同时,教学中应积极引领学生参加各项音乐实践活动,以提高学生的感知、表现、鉴赏、创造等审美能力。 【育人立意】 以人文为主线,以“音乐审美”为核心,以提高学生音乐实践能力为基点,以充分调动学生学习积极性为评价宗旨。中学的音乐教育是在学生已有的小学音乐学习的基础上进行的,中学则应加以巩固和提高,继续拓展学生的音乐视野,加强对生活的感受和理解能力。通过学生参与教学活动的愉悦学习,激发学生的主动探究意识,加深对音乐内涵的理解,更大地调动学生学习积极性和求知欲。 【教学目标】 1、学会用自然圆润的声音,轻松活泼的情绪演唱歌曲《青春舞曲》。正确把 握歌曲的音乐情绪和风格,体会歌曲的旋律特点。</p><p>2、尝试在聆听、模唱、律动中学习歌曲,体验歌曲的音乐情绪,加深对歌 曲 风格的理解。通过各种音乐活动,调动学生的积极参与,培养学生节奏感和创造力,训练协调性。 3、通过学习维吾尔族歌曲《青春舞曲》及其相关知识,培养学生喜欢并热 爱我国的民族音乐。懂得青春易逝的道理,启发学生珍惜光阴,努力学习。 【教学重难点】 教学重点:在听、唱、跳等音乐活动中体验和表现歌曲的情绪,并能用自然圆润的声音演唱歌曲。 教学难点:掌握维吾尔族民歌特点,能准确掌握歌曲节奏型。运用速度、力度的知识对歌曲进行处理,丰富歌曲的表现力。 【教学过程】 一、复习民歌《马车夫之歌》 1、复习民歌《马车夫之歌》。 2、复习巩固切分节奏型。 3、随着音乐节拍,用手鼓为乐曲伴奏,模唱乐曲旋律。 二、新授歌曲《青春舞曲》 (一)人文介绍,维吾尔族风情、文化艺术铺垫 1、维吾尔族简介 2、艺术文化介绍 (二)初听全曲,整体感受 1、教师设问:这首歌曲的音乐情绪是什么?节奏特点怎样? 2、教师设问:演唱形式是怎样的? 3、《青春舞曲》歌曲背景介绍。 (三)学唱歌曲,实践练习 1、学习歌曲中的节奏 1)教师讲授附点音符(十六分、八分)、后十六分音符的读法。 2)引导学生正确掌握附点十六分音符节奏型。 3)掌握全曲正确节奏型。 2、进一步熟悉旋律</p><h2>Dreamweaver里标签及属性详解</h2><p>《》 Dreamweaver里标签及属性的详细解释 Dreamweaver标签库可以帮助我们轻松的找到所需的标签,并根据列出的属性参数使用它,常用的HTML标签和属性解释, 请搜索"常用的HTML标签和属性". 基本结构标签: <HTML>,表示该文件为HTML文件 <HEAD>,包含文件的标题,使用的脚本,样式定义等 <TITLE>---,包含文件的标题,标题出现在浏览器标题栏中 ,的结束标志 ,放置浏览器中显示信息的所有标志和属性,其中内容在浏览器中显示. ,的结束标志 ,的结束标志 其它主要标签,以下所有标志用在中: ,链接标志,"…"为链接的文件地址 ,显示图片标志,"…"为图片的地址
        ,换行标志

        ,分段标志 ,采用黑体字 ,采用斜体字


        ,水平画线
        ,定义表格,HTML中重要的标志
        中 ,定义表格的单元格,用在中 ,字体样式标志 属性: 属性是用来修饰标志的,属性放在开始标志内. 例:属性bgcolor="BLACK"表示背景色为黑色. 引用属性的例子: 表示页面背景色为黑色; 表示表格背景色为黑色. 常用属性: 对齐属性,范围属性: ALIGN=LEFT,左对齐(缺省值),WIDTH=象素值或百分比,对象宽度. ALIGN=CENTER,居中,HEIGHT=象素值或百分比,对象高度. ALIGN=RIGHT,右对齐. 色彩属性:

        《青春舞曲》五年级

        《青春舞曲》杨小梅 教学目标 认知目标: 了解新疆民歌的风格特点,培养学生热爱民族音乐的感情。 能力目标: 1、学会用自然圆润的声音,欢快活泼的情绪演唱《青春舞曲》。 2、能够根据歌曲的风格,结合舞蹈来表现,加深对歌曲情绪的感受。 情感目标: 通过学习歌曲,懂得青春易逝的道理,知道珍惜光阴。 教学重难点:欢快活泼情绪的演唱歌曲,结合舞蹈来表现。 教学过程: 一、导入新课 同学们好!老师给大家带来一段舞蹈视频,欣赏完请同学们猜猜它是哪个民族的?多媒体播放《青春舞曲》 (生:《新疆,维吾尔族) 师:很好!新疆是歌舞之乡,她物产丰富,文化艺术更是历史悠久。 提问:新疆的特产、服饰、乐器、语言 老师教大家一句维吾尔语:亚克西,等会有同学表现好,我们一起用“亚克西”鼓励他! 想跟老师一起到新疆去听一听,看一看吗?让我们先来听听她的《青春舞曲》吧! 板书课题《青春舞曲》 二、新课 1、学唱 (1)听赏歌曲,感受歌曲的情绪 师:现在我们一起听赏这首歌。听完后,说说这首歌曲的旋律、节奏各有什么特点?它表现了什么样的情绪? (播放《青春舞曲》,学生听完后讨论、回答) 旋律——优美

        情绪——欢快、活泼、充满青春活力 (2)复听歌曲阅读歌词,理解歌词内涵。 我们一起有节奏的朗诵一遍歌词,看看它给了我们什么样的人生启迪呢? 老师总结学生的想法 (3)学唱歌词。 (4)学唱歌谱,对应曲谱与歌词关系。 (5)分句教唱。 (5)学生用正确的演唱情绪完整连唱,教师琴声伴奏。 师:请同学们用自然圆润的声音,把这首歌完整唱一遍好吗?能唱出欢快、活泼、充满青春活力的情绪吗?(唱完后,教师评点、点拨) (5)分组分段演唱(多媒体伴奏),唱后互评,教师总评。 2、随乐舞蹈 师:新疆素有歌舞之乡的美称。只要你踏上这辽阔的土地,就会被那悠扬的歌声和那翩翩的舞姿所陶醉。那么你们知道新疆维吾尔族舞蹈的一些基本动作吗?请跟老师一起学学。 (播放《青春舞曲》伴奏,教师示范动作) 学习简单的舞蹈动作:1)垫步推腕 2)托帽式 3)移颈、揉手移脖子 师:请男生唱女生学动作,女生唱男生学动作。(带动学生,活跃课堂气氛)师:同学们跳得棒极了,你们能把舞蹈动作带入歌曲中吗?请同学们分组表演,然后自我评价哪组表现最好。(多媒体伴奏) 师:同学们表现都很好,歌舞中充满了青春的活力。《青春舞曲》的曲调欢快、活泼,歌词也寓意深刻。 三、回味小结 师:美丽富饶的新疆令我们神往,优美、欢快的新疆歌舞令我们陶醉。歌舞让我们感受到青春的活力,也让我们感悟到:我们要把握青春,珍惜时光,刻苦学习,积极进取吧!

    相关文档
    相关文档 最新文档