文档库 最新最全的文档下载
当前位置:文档库 › 二恶英及处理

二恶英及处理

二恶英及处理
二恶英及处理

二恶英类物质(Dioxins)是指能与芳香烃受体结合的,并且导致产生各种生物化学变化的一类物质的总称。二恶英类物质最早发现于美国越战中使用的一种氯酚脱叶剂中,1962~1970年在越战时期使用,于1970年脱叶剂被禁止作为军事使用。战后发现,在喷洒过脱叶剂的地区,都发生了大量孕妇流产现象,出生的畸形儿的比率远远高于其他地区。二恶英类物质本身没有实际用途,是在生产过程中产生的副产物,如在纸张的生产漂白、氯乙烯塑料生产、含氯农药生产等过程,特别是焚烧垃圾和医疗废物时容易产生。二恶英类物质的主要来源是垃圾焚烧,特别是含氯废物如氯乙烯塑料袋的焚烧,如处理不当都可能产生大量的二恶英类物质等有害物质。1二恶英类物质的毒性机制及危害

1.1毒性机制:二恶英类物质毒性的分子机制还没有完全研究清楚,一般认为二恶英类物质产生作用不是通过直接的损伤,并不与蛋白质和核酸形成加合物,也不直接损害细胞DNA,主要是通过芳香烃受体诱导基因表达,改变激酶活性改变蛋白质功能等起作用。但是,需要注意的是低浓度的慢性毒性,经动物实验显示有致畸性,可使免疫功能下降生殖异常、致癌等,属于环境荷尔蒙。

1.2危害:在有机氯化物的合成、制造过程中伴生或在生活垃圾、医疗废物等焚烧过程中所产生并排放到环境中的二恶英类物质,在环境中化学稳定性好,很难分解,其半衰期一般长达5~l0年,因而积蓄在环境中或在环境中运动时常常对大气、土壤、河流、湖泊、海洋等造成严重污染。

二恶英类物质均是脂溶性物质,在水中的溶解度极低在环境中难以降解,易在食物中富集,特别容易富集于食物链的脂肪组织中。由于鱼类的高倍率的生物富集作用,其体内二恶英类物质的浓度可达其周围环境的100000倍以上,目前主要发现于肉品和乳品中(如牛肉、奶制品、鸡肉、猪肉鱼、鸡蛋)。二恶英类物质总的来说挥发性较低,但准挥发性的二恶英类物质较多,在大气中长距离敞开运输时对环境极易造成大规模的污染;微生物分解缓慢,极易被土壤吸附。研究表明,二恶英类物质对人体产生的主要危害有以下几个方面:①可产生氯痤疮、出现黑头粉刺、淡黄色囊肿主要分布在眶周、颞部、耳后、阴囊等,可引起软组织结缔组织、肺、肝、胃癌及非何杰氏淋巴瘤。③对生殖系统的影响。可以降低男性精子数、可致睾丸畸形、行为反应女性化等;可改变女性激素水平,降低受孕率,增加流产率等。④出生缺陷如腭裂、生殖器异常等。

1.3医疗废物处置:随着一次性使用医疗用品的普及使用医疗废物中一次性医疗用品的塑料制品占有量不断增大。目前,医疗卫生机构对这类物品使用后大多采取焚烧处理方式在医疗废物中塑料制品的比例明显高于生活垃圾,是导致焚烧时产生比较高浓度二恶英类物质的主要因素之一。有研究指出,日本医疗废物中塑料制品约占总重量的30%,美国约占总重量的20%,而一般废物中只占到5%~10%。医

疗废物的可燃性物质中废塑料的比例约占30%,比城市生活垃圾高2倍。据报道,美国约有2/3固体废物焚烧炉由于缺乏空气净化装置而污染大气,大气污染中有42%来自固体废物处理装置。在焚烧医疗废物时如处理不当极易产生二恶英类物质,特别是焚烧医疗废物所产生的二恶英类物质的产生量是一般垃圾的数倍或数十倍。美国研究者也曾指出二恶英类物质的主要生成来源是医疗废物的焚烧处理。各国目前采取不同的方式对医疗废物进行处置。丹麦学者认为感染性废物最佳处理方式是焚烧,但必须在有许可的指定设施进行焚烧,焚烧时感染性废物与其他废物应区分,不能混合。而在法国3400所医院中只有50所医院具备烧炉。一般采取焚烧或灭菌后可作为生活垃圾处理。城市垃圾焚烧中心分为混烧、感染性废物专用焚烧炉、产业废物焚烧设施等,并需要有关部门的同意后焚烧。

2二恶英类物质的物理、化学特性

二恶英类物质并非一种单一的化合物,是一类三环芳香族有机化合物。二恶英类物质的分子由1个或2个氧原子连接2个被氯取代的苯环,1个氧原子的称为多氯二苯并呋喃(PCDFs:Polycholoro dibenzo-furan),2个氧原子的称为多氯二苯并二恶英(PCDDs:Polycholoro dibenzo-dioxin)。每一个苯环上可以取代14个氯原子,因此,可以有73种多氯二苯并二恶英异构体和136种氯二苯并呋喃异构体,合计有209种异构体,总称为二恶英类物质。二恶英类物质毒性因所含氯原子数及其取代位置的不同有所差异,其中毒性最强的物质是2,3,7,8-四氯二苯并二恶英(2,3,7,8-TCDD简称TCDD,Dioxin)。

二恶英类物质是无色无味的固体,因为在水平和垂直两方均为对称结构,其化学稳定性很好。在大部分有机溶媒中溶解度很小,在强酸、强碱及氧化剂中也比较稳定,但在强氧化剂作用下易分解,自然界中的微生物降解、水解、光解作用对其结构影响很小。在高温下也很稳定,达到750℃以上才会分解。在所有的有机污染中,二恶英类物质的kow(正辛醇/水分配系数)最高,说明有很强的脂溶性,极易溶于脂肪,因此也极易蓄积在动物的脂肪、肝脏和乳汁。其半衰期一般认为在1~10年,具有很高的致死性,其毒性是氰化钾的1000倍、砒霜的900倍,是至今已知物质中毒性最强的化合物。据报道,只要28.35g二恶英类物质,就能将l00万人置于死亡。另外,二恶英类物质还具有很强的致癌性,致癌性比黄曲霉素高l0倍,是3,4-苯并芘的数倍。因此,二恶英类物质被国际癌症研究中心列为人类一级致癌物。3改善对策

医疗废物处置可经无害化处理后回收利用,或经无害化、减量化处理后进行填埋,或进行焚烧。但在采取焚烧处理时,焚烧炉的温度、焚烧方式、废物成分等都可影响二恶英类物质的产生浓度。3.1对医务人员进行宣传教育:使医务人员能够充分认识塑料类一次性用品在焚烧处置过程中会产生二恶英类物质等有害物质。减少不

必要的使用,减少医疗废物,降低医疗废物处理成本。

3.2进行无害化、减量化处理后进行填埋:目前,在欧美除了采取焚烧、高压蒸气灭菌等中间处理技术外,还在开发利用用微波、放射线、电子射线等灭活方法,一些方法已开始使用。废物经粉碎处理后可减少60%~80%的容积。粉碎及蒸气灭菌或微波处理的成本,远远低于购买焚烧炉的费用,约需要其费用的60%~80%。

3.3焚烧处理时,二恶英类物质一般产生于燃烧过程和燃烧烟气冷却过程,可采取以下措施减少有害物质的排放:①高温稳定燃烧:废物焚烧后,烟气出炉温度高于800℃,且烟气在炉内停留时间大于28时,约99.9%的二恶英类物质可被分解。②进行二次燃烧:废物焚烧后的烟气在炉内进行二次燃烧,可显著降低CO的浓度,同时降低二恶英类物质浓度。③与其他物混合焚烧:焚烧时在炉内加入纸、木等助燃物,也可明显降低二恶英类物质浓度。④急速冷却或活性喷射碳吸附:烟气飞出燃烧炉后,在0.2s内将烟气温度急速降到100℃,烟尘和二恶英类物质的驱除率达99%。也可用活性喷射碳吸附,减少二恶英类物质的排放。

4制定相关法规

日本在1999年颁布《二恶英类物质类特别处置法》,制定了二恶英类物质的环境标准,确定了国家环境保护标准值。此后,二恶英类物质排出浓度超出标准的回收焚烧企业,加强对企业的管理,对不合格企业要求改善焚烧条件,增加排气设备。我国国家及地方也相继制定了相关的管理办法和标准。在《医疗垃圾焚烧环境卫生标准》中规定,焚烧炉的火焰上方检测温度应大于800℃,炉外温度小于40℃,焚烧炉应设有除尘净化装置。焚烧炉烟筒高度不低于当地地平线20m以上。1993年吉林市人民政府颁布的《吉林市医疗生物垃圾暂行管理办法》中规定,医疗生物垃圾必须实行统一管理,集中焚烧,不得自行处理。但未提出更具体的要求,恶英类物质的排放也未提出具体标准。建议加快研究适合我国的医疗废物处置技术,制订相关的环境保护标准,开发能够遏制二恶英类物质排放的处理技术。

处理二恶英及二恶英类似物

简介:二噁英简记为PCDD/Fs,将具有二噁英活性的卤代芳烃化合物统称为二噁英类似物(Dioxin-like compounds),包括多氯联苯(PCBs)、氯代二苯醚和氯代萘、溴代(PBDD/Fs和PBBs)及其他混合卤代化合物。 人类接触二噁英类物质的途径有两条,即环境和食物。WHO认为,二噁英一旦摄入 体内很难排出并引发癌变并于1997年宣布TCDD是最毒的二噁英,是世界上头号致癌物质, 一滴即可使1000人致死。 二噁英类物质的生成应具备如下条件: ①>含苯环的化合物(苯、酚等); ②含氯元素的化合物(氯化氢、氯气等); ③反应催化剂(铁、铜等); ④反应温度在300~600℃之间。 二噁英类物质的熔、沸点高,常温下是固体,不溶于水,易溶于四氯化碳。 PCDD/Fs在环境中稳定性高,生物降解性迟缓,在低温下稳定存在,一般加热到800℃才 降解,然而要大量破坏时温度需要超过1000℃,一旦冷却又可重新合成。 ①抑制技术 二噁英不是天然产物,是含氯的碳氢化合物在燃烧过程中形成的。1900年人类发明了把盐电解为钠和氯的方法,后来游离氯被广泛用于制造杀虫剂、溶剂、塑料等,从那时起 二噁英即开始在环境中聚积。 据统计,95%以上的二噁英来源于垃圾的焚烧。城市固体垃圾焚烧产生的飞灰中含有PCDD/Fs,其中2,3,7,8-TCDD为0.1~7.5 ng/m3,而1,2,3,7,8-P5CDD的含量是其3~10倍,2,3,7,8-TCDF含量为0.1~50ng/m3。在含有聚氯乙烯的垃圾焚烧飞灰中含量可能更高。 由二噁英产生机理可知,在垃圾焚烧过程中氯元素被氧化成氯化氢或氯气,加上废气 中含有大量的粉尘,则在一定的焚烧温度范围内很容易产生二噁英类物质。 在垃圾焚烧过程中加热起燃和降温熄火以及正常运行时段二噁英类物质都可能产生。 迅速升温和降温并尽可能使正常运行温度高达800℃可大大减少这三个阶段产生的二噁英量。 此外还应保证使垃圾完全燃烧和稳定燃烧,足够的停留时间可使未燃烧的气体与空气 充分混合,要维持适宜的氧气浓度并使之缓慢流动,要便于进行自动燃烧控制。在气体冷 却过程中回收热量以使燃烧气体迅速冷却、防止粉煤灰的载体过量、防止粉煤灰积累并进 行除氯。还应通过集尘过程使排放气体低温化,添加denovo合成抑制物。有关资料显示,日本1995年以后新建的垃圾焚烧炉,无论全连续炉、准连续炉还是间歇炉,在采取了适当的控制措施后,设备、焚烧灰和飞灰中的二噁英类物质浓度都有显著降低。 ②二噁英类物质的处理 垃圾焚烧中可采取相应措施处理二噁英类物质。 集技术:包括电炉集尘器和袋式除尘器,活性炭吸附法。

二恶英检测分析方法比较

二恶英检测方法比较 二恶英化合物(简称二恶英)是剧毒有机污染物。人体长期低剂量接触,会导致癌症、雌性化、胎儿畸形、糖尿病等疾病。自比利时发生二恶英食品污染事件和《POPs公约》在瑞典斯德哥尔摩签署以来,二恶英检测与污染防治在国际上受到越来越广泛的关注[1]。二恶英检测属超痕量、多组分检测,对特异性、选择性和灵敏度要求极高,被认为是当代化学分析领域的一大难点。 美国较早开展二恶英检测研究,现已制定出一系列的检测标准。欧洲和日本也相继研究和制定了二恶英检测标准方法。我国目前正处于二恶英基础研究的起步阶段,尚未提出相关检测标准和方法,因此亟待建立符合我国国情的二恶英检测方法和体系。 2 二恶英检测方法 2.1化学仪器分析方法 在200余种异构体中分离出17种有明显毒性的二恶英,分别测定其浓度或含量。将浓度或含量乘以每种二恶英的毒性因子(TEF)就可以得到总毒性当量(TEQ)。该方法的一般程序包括采样、提取、净化、定性定量。 2.1.1 采样 样品的取样量由样品类型、污染水平和方法的检测限而定。各国对采样程序都单独编制了标准方法。 2.1.2 提取 为了测定提取净化效率和校正分析丢失,首先加入17种13C-PCDD/Fs采样内标和37Cl-2,3,7,8-TCDD净化内标。溶剂选择和提取步骤取决于样品类型和净化方法,如在处理废弃物焚烧飞灰时溶剂选取石油醚/甲苯/二氯甲苯,在处理脂肪样品时溶剂选取二氯甲烷/己烷。提取步骤一般包括溶解、振荡、混匀和萃取。索氏萃取是传统的提取方法,广泛应用于检测飞灰、鱼、牛乳和脂肪组织样品中的二恶英。目前,超临界流体萃取装置(SFE)、加压加热型的高速溶剂萃取装置(ASE)和微波萃取方法也用于提取样品中的二恶英,并有大量对比实验证明了这些方法的有效性[3,4]。 2.1.3 净化 为了除去大量干扰物质,目前大多采用色谱法进行净化。色谱法通常将分配处理柱和色谱柱串联使用,包括酸或碱处理、硅胶柱、氧化铝柱、佛罗里柱和活性炭柱的二次净化,具体操作因样品类型和基质性质而异。目前,一些实验室正在开发一次性多层柱(如微型氧化铝柱)和HPLC净化方法来简化净化过程。净化后要加入15种13C-PCDD/Fs定量内标和2个13C 标记的用于确定色谱保留时间的内标[5]。 2.1.4 定性定量 通常定性检测采用2类不同极性的色谱柱。首先用非极性或弱极性固定相将氯原子取代数相同的二恶英化合物分为1组,然后用极性固定相分离其中的异构体,最后通过对17 种标记的和未标记的标准样品实施比较,获取保留时间。定量检测主要采用选择离子监测技术(SIM),以13C稳定同位素为内标,根据测量目的用质量校正程序校正质谱模式、分辨率

恶英产生条件、控制方法以及相关设备

二恶英 二恶英(Dioxin),又称二氧杂芑(qǐ),是一种无色无味、毒性严重的脂溶性物质,二恶英实际上是二恶英类(Dioxins)一个简称,它指的并不是一种单一物质,而是结构和性质都很相似的包含众多同类物或异构体的两大类有机化合物。二恶英包括210种化合物,这类物质非常稳定,熔点较高,极难溶于水,可以溶于大部分有机溶剂,是无色无味的脂溶性物质,所以非常容易在生物体内积累,对人体危害严重。自然界的微生物和水解作用对二恶英的分子结构影响较小,因此,环境中的二恶英很难自然降解消除。它的毒性以LD50表示,专业术语叫“半数致死量”。它的毒性十分大,是氰化物的130倍、砒霜的900倍,有“世纪之毒”之称。国际癌症研究中心已将其列为人类一级致癌物。环保专家称,二恶英常以微小的颗粒存在于大气、土壤和水中,主要的污染源是化工冶金工业、垃圾焚烧、造纸以及生产杀虫剂等产业。日常生活所用的胶袋,PVC(聚氯乙烯)软胶等物都含有氯,燃烧这些物品时便会释放出二恶英,悬浮于空气中。 二恶英的产生条件 1.环保专家称,“二恶英”,常以微小的颗粒存在于大气、土壤和水中,主要的污染源是化工冶金工业、垃圾焚烧、造纸以及生产杀虫剂等产业。日常生活所用的胶袋,PVC(聚氯乙烯)软胶等物都含有氯,燃烧这些物品时便会释放出二恶英,悬浮于空气中。 大气环境中的二恶英90%来源于城市和工业垃圾焚烧。含铅汽油、煤、防腐处理过的木材以及石油产品、各种废弃物特别是医疗废弃物在燃烧温度低于300-400℃时容易产生二恶英。聚氯乙烯塑料、纸张、氯气以及某些农药的生产环节、钢铁冶炼、催化剂高温氯气活化等过程都可向环境中释放二恶英。二恶英还作为杂质存在于一些农药产品如五氯酚、2,4,5-T 等中。 城市工业垃圾焚烧过程中二恶英的形成机制仍在研究之中。目前认为主要有三种途径:1.在对氯乙烯等含氯塑料的焚烧过程中,焚烧温度低于800℃,含氯垃圾不完全燃烧,极易生成二恶英。燃烧后形成氯苯,后者成为二恶英合成的前体;2.其他含氯、含碳物质如纸张、木制品、食物残渣等经过铜、钴等金属离子的催化作用不经氯苯生成二恶英。3.在制造包括农药在内的化学物质,尤其是氯系化学物质,象杀虫剂、除草剂、木材防腐剂、落叶剂(美军用于越战)、多氯联苯等产品的过程中派生。 2.二恶英在标准状态下呈固态,熔点约为303~305℃。二恶英极难解溶于水,在常温情况下其溶解度在水中仅为×10-6mg/L。而同样在常温情况下,其在二氯苯中的溶解度高达1400 mg/L,这说明二恶英很容易溶解于脂肪,所以它容易在生物体内积累,并难以被排出。二恶英在705℃以下时是相当稳定的,高于此温度即开始分解。另外,二恶英的蒸汽压很低,在标准状态下低于×10-8Pa,这么低的蒸汽压说明二恶英在一般环境温度下不易从表面挥发。这一特性加上热稳定性和在水中的低溶解度,是决定二恶英在环境中去向的重要特性。 3. 二恶英是有机物与氯一起加热就会产生的化合物,只要使用水的场所都有可能产生二恶英,它是一种普遍的化学现象。二恶英在空气、土壤、水和食物中都能发现,火山爆发及森林火灾是自然界中二恶英的主要来源。另外,除草剂、发电厂、木材燃烧、造纸业、水泥业、金属冶炼、纸桨加氯漂白及垃圾垃圾焚烧处理均会释放出二恶英。 4. 垃圾垃圾焚烧厂中二恶英的生成途径 生活垃圾垃圾在焚烧过程中,二恶英的生成机理相当复杂,至今为止国内外的研究成果还不足以完全说明问题,已知的生成途径可能有: 生活垃圾垃圾中本身含有微量的二恶英,由于二恶英具有热稳定性,尽管大部分在高温燃烧时得以分解,但仍会有一部分在燃烧以后排放出来; 在燃烧过程中由含氯前体物生成二恶英,前体物包括聚氯乙烯、氯代苯、五氯苯酚等,在

二恶英目前最热门的测试方法

中国科学院二噁英分析中心 ---李工--136--0304-4558 二噁英类污染物检测 目前二噁英类物质的检测方法有哪些? 一、化学仪器分析方法 HRGC/HRMS GC/HRMS HRGC/LRMS 二、生物检测方法 RROD细胞培养法荧光素酶方法 EIA酶免疫方法 DELFIA荧光免疫法 HRGC/HRMS方法 1、 采用HRGC/HRMS(分辨率在1万以上的高分辨率色谱/质谱联用仪)的超痕量分析方法。优点: (1)灵敏度高; (2)能同时监测多个离子。 (3)是被多个发达国家认可的二噁英标准检测方法,如美国的EPA。缺点: (1)分析操作复杂; (2)样品前处理过程非常复杂,分析样品所需时间周期长(通常为10-20d); (3)设备投入成本和运行费用高昂;(4)购买同位素标准物质等消耗品费用高; (5)检测费用高昂。(一个样品需900-1800美元); (6)监测只能在专业实验室进行,而建造二噁英检测实验室需要几百万美元。 GC/HRMS和HRGC/LRMS 使用GC/HRMS法可保证灵敏度,简化前处理步骤,缩短检测时间,降低检测成本,但仍需在专业实验室中完成; 使用HRGC/LRMS法可极大降低在检测仪器方面的投入,但当每克样品中二恶英浓度低于pg/g水平时,却无法获得可靠的检测结果。因而HRGC/LRMS法仅适用于检测二恶英浓度较高的污染源样品和污染较重的土壤样品。例如,美国的EPA 8280方法可检测出土壤、底泥、飞灰和燃油等样品中含4~8个氯的二恶英化合物,不能用于检测如食品等二恶英含量较低的样品。 生物检测方法 目前建立的生物学检测方法均是通过对Ah受体活化程度的测定来间接表达二恶英的TEQ。EROD细胞培养法 二噁英与Ah受体结合活化后,被Ah受体核转位因子(ARNT)转移到细胞核内,活化的核内基因是特异性DNA片段即二噁英相应因子(DRE)。启动发挥毒性的基因并增加其转录,从而激活EROD酶的活性。所以通过测定EROD酶的活性,可以了解二噁英激活Ah 受体的能力,进而获得测试样品中二噁英的TEQ。 荧光素酶方法 该方法是将萤火虫荧光素酶作为报告基因结合到控制转录的DRE上,制备成质粒载体并转染H4llE大白鼠肝癌细胞系(含Ah受体转导途径的各个部件)。以此构成的CALUX荧光素酶诱导活性与二噁英的毒性系数相对应,最终测定的结果也是TEQ(毒性当量) EIA酶免疫方法 该方法是根据鼠克隆抗体DD3与二噁英结合的特点而建立的竞争仰制酶免疫方法。使用酶竞争配合物(HRP)和样品中二噁英共同竞争有限的DD3抗体的特异性结合位点,以一系

垃圾焚烧发电 炉排炉与气化燃烧技术的对比

MBRE垃圾再生燃料气化发电技术 与传统技术的对比 在垃圾处理/焚烧发电的技术发展进程中,炉排炉技术、循环流化床技术均为原生垃圾直接焚烧,属于第二代技术。 第一代是垃圾填埋处理; 第二代是原生垃圾焚烧处理: 垃圾不经分选直接焚烧导致焚烧不完全,产生严重次生污染问题,为此德国于2000年颁布了《德国生活垃圾处理技术条例》,自2005年起全面禁止直接焚烧原生垃圾。

第三代是RDF衍生燃料发电技术: 德国率先开发了第三代垃圾处理技术:将垃圾进行分选处理,剔除不可燃杂质并充分提取出可回收资源,将垃圾制成再生能源燃料RDF(绿色煤炭),实现高效、清洁能源利用。 第四代技术-MBRE气化湍流燃烧技术 技术核心是以无毒无害的微生物技术对自动分拣后的垃圾进行无害燃料化处理,制作成衍生燃料RDF,然后用先进的美国RDF气化湍流燃烧锅炉进行清洁气相燃烧发电,垃圾的减量化达到90%以上。 一、炉排炉 炉排炉的技术基础是煤燃烧领域中的链条炉,针对垃圾的特点加以改进,适应了垃圾处理的技术要求。炉排炉的优点是对垃圾质量和成分的要求较低,前处理简单,飞灰量较少,技术成熟且使用广泛。其不足之处是: 1.二恶英的产生温度在360℃~820℃之间,在炉排炉开车和停炉过程中 炉温不可避免地要经过二恶英产生的温度区间,由于炉排炉开停车时间较长,所以这一过程二恶英排放量较大;同时,因炉排炉内需要机械装置,限制了炉排炉内温度的进一步提升,导致炉排炉持续在二恶英产生的温度区间附近工作,在燃烧过程控制不完全的情况下,二恶英将会大量产生;

2.由于垃圾成份复杂,普通炉排维持在整个炉排内均匀移动,均匀完全 地燃烧是困难的,容易导致垃圾燃烧不充分; 3.炉排难以适应水份变动范围较宽的垃圾焚烧,因为水份较高的垃圾需 较宽的干燥区,这给水份高的垃圾完全燃烧带来困难; 4.难以处理垃圾渗滤液,需设置专门污水处理设施; 5.由于垃圾未经分拣,且成分复杂,燃烧不充分,因此产生大量不可资 源化利用的炉渣,需要进行二次填埋; 6.炉排炉的炉排不仅制造复杂,成本高,而且体积庞大,占地面积大, 因而不适合于中小城镇垃圾处理量不十分大的场合。 二、RDF(衍生燃料)气相燃烧炉 阿尔法环能公司的MBRE工艺是利用全自动分拣技术和微生物技术将垃圾变成高热值的衍生燃料(RDF 或称绿色煤炭),然后利用RDF气相燃烧锅炉进行气相焚烧发电。 RDF(垃圾衍生燃料)气相燃烧锅炉是我公司利用美国气化湍流燃烧技术,由中国济南锅炉集团代工制造,并提供全面质量保证。 工艺描述:RDF(垃圾衍生燃料)进入无氧料仓,输入RDF气化燃烧炉中,进入储热段,在550℃~750℃温度域和缺氧条件下气化,可燃气体上升至分级燃烧段,将燃烧温度提升至980℃,热烟气进入余热锅炉产生中温中压蒸汽,蒸汽轮机发电机组发电。炉膛温度≥980℃,烟气高温停留时间≥4S,实现充分湍流及燃烧,满足《生活垃圾焚烧焚烧污染控制标准》

二恶英目前最热门的测试方法

李工 二噁英类污染物检测 目前二噁英类物质地检测方法有哪些? 一、化学仪器分析方法 二、生物检测方法 细胞培养法荧光素酶方法酶免疫方法荧光免疫法 方法 、 采用(分辨率在万以上地高分辨率色谱质谱联用仪)地超痕量分析方法. 优点: ()灵敏度高; ()能同时监测多个离子. ()是被多个发达国家认可地二噁英标准检测方法,如美国地. 缺点: ()分析操作复杂; ()样品前处理过程非常复杂,分析样品所需时间周期长(通常为); ()设备投入成本和运行费用高昂;()购买同位素标准物质等消耗品费用高; ()检测费用高昂.(一个样品需美元); ()监测只能在专业实验室进行,而建造二噁英检测实验室需要几百万美元. 和 使用法可保证灵敏度,简化前处理步骤,缩短检测时间,降低检测成本,但仍需在专业实验室中完成;资料个人收集整理,勿做商业用途 使用法可极大降低在检测仪器方面地投入,但当每克样品中二恶英浓度低于水平时,却无法获得可靠地检测结果.因而法仅适用于检测二恶英浓度较高地污染源样品和污染较重地土壤样品.例如,美国地方法可检测出土壤、底泥、飞灰和燃油等样品中含~个氯地二恶英化合物,不能用于检测如食品等二恶英含量较低地样品. 资料个人收集整理,勿做商业用途 生物检测方法 目前建立地生物学检测方法均是通过对受体活化程度地测定来间接表达二恶英地. 细胞培养法 二噁英与受体结合活化后,被受体核转位因子()转移到细胞核内,活化地核内基因是特异性片段即二噁英相应因子().启动发挥毒性地基因并增加其转录,从而激活酶地活性.所以通过测定酶地活性,可以了解二噁英激活受体地能力,进而获得测试样品中二噁英地. 资料个人收集整理,勿做商业用途 荧光素酶方法 该方法是将萤火虫荧光素酶作为报告基因结合到控制转录地上,制备成质粒载体并转染大白鼠肝癌细胞系(含受体转导途径地各个部件).以此构成地荧光素酶诱导活性与二噁英地毒性系数相对应,最终测定地结果也是(毒性当量)资料个人收集整理,勿做商业用途 酶免疫方法 该方法是根据鼠克隆抗体与二噁英结合地特点而建立地竞争仰制酶免疫方法.使用酶竞争配合物()和样品中二噁英共同竞争有限地抗体地特异性结合位点,以一系列不同浓度地为标准物质,做出标样与对应样品地剂量—效应曲线,样品中二噁英毒性强度以计算出地毒性等价浓度间接表示.最终通过测定与螯合物地荧光强度来获取二噁英地.螯合物地荧光强度与二噁英地成反比. 资料个人收集整理,勿做商业用途 荧光免疫法 ()法属于时间分辨荧光免疫分析法.该方法利用生物基因技术选择出合适地抗原键合铕离

二恶英控制方法

摘要:本文对垃圾焚烧发电厂烟气中二恶英的形态、浓度分布及国内已投产并验收的企业的烟气排放数据进行了调查分析,并指出有效去除烟气中二恶英的措施有采用高效袋式除尘器和在袋式除尘器前喷加活性炭粉两种。 关键词:二恶英;垃圾焚烧;袋式除尘器 1前言 城市生活垃圾焚烧发电是经济发达、土地资源短缺的国家普遍采用的方法。生活垃圾焚烧发电能有效实现城市垃圾处理的无害化、减量化和资源化,符合循环经济和可持续发展的要求,现已在我国珠江三角洲及沿海经济发达城市得到认可并进入规模发展时期,将会成为这些地区城市生活垃圾处理的主要方法。 但垃圾焚烧烟气中的二恶英却制约了垃圾焚烧发电产业的发展。因此对垃圾焚烧发电厂烟气中二恶英的存在形态及去除方法进行研究,将为二恶英的有效去除提供科学依据。 2二恶英的产生及控制 垃圾焚烧发电厂烟气中产生的二恶英,是垃圾中存在的苯类物质在一定温度条件和CuO的催化作用下,苯环上的氢离子被氯离子取代形成的多氯联苯类物质。依据苯环上氢离子被氯取代的数量和位置的不同,二恶英的种类达75种之多。由于其产生量与苯类物质、氯离子和CuO及温度有关,因此从清洁生产的角度出发,应首先从源头控制或减少城市生活垃圾中的苯类物质,含氯高的物质及含铜高的物质,其次是采用热解气化焚烧或二段式燃烧、控制Cu的氧化、二燃室过氧高温完全燃烧等方法以减少二恶英的产生。这样虽可以有效控制二恶英的产生,但仍不能将其完全消除。 3二恶英的形态及去除方法 二恶英以颗粒状态或气溶胶或气态存在。日本环保专家研究报告的垃圾焚烧同一装置烟气中二恶英类的形态、浓度分布情况见表1。 表1垃圾焚烧烟气中二恶英类的形态、浓度分布 国内部分已投产并完成了环保验收监测的垃圾焚烧发电厂的烟气排放监测数据见表2。 表2国内部分垃圾焚烧发电厂烟气监测数据

广东省二恶英检测、二恶英分析、二恶英检测分析(中国科学院广州化学研究所分析测试中心)

二噁英检测、二噁英分析、二噁英检测分析 中国科学院广州化学研究所分析测试中心 事业部-----卿工---189--3394--6343 中国科学院二恶英分析测试中心由国务院吸收国外先进技术于2010年组建。下设二噁英检测分析实验室、二恶英实验室,化学与药学分析室,材料与形貌分析室,环境与能源分析室,生物与药学分析室。 二恶英分析测试 一)二恶英类的来源 二恶英类的排放源有很多,联合国环境规划署(UNEP)编制了二恶英和呋喃排放识别和量化标准工具包,共列出了9大类主要源类别,((二恶英的来源:固体废弃物的焚烧,其他燃烧或热处理过程,含氯化工产品的生产工艺的副产物,氯漂白或消毒,汽车尾气,二次释放和其他))且每一大类别中分别包括若干子类别: 1废物焚烧:如城市固体废物、危险废物、医疗废物、下水道污泥的焚烧; 2铁和有色金属生产:如铁矿石烧结、焦炭生产、钢铁铸造、铜、铝、铅、锌、镁的生产; 3供热和发电:如化石燃料电厂、生物质电厂等; 4矿物制品生产:如水泥、石灰、砖、玻璃、陶瓷的生产、沥青混合; 5交通运输:如柴油发动机、四冲程发动机、二冲程发动机、重油燃料发动机; 6露天焚烧过程:如生物质燃烧、焚烧燃烧或火灾; 7化学品和消费品生产和使用:如纸浆造纸生产、化学工业、石油工业、纺织生产、制革; 8混杂过程:生物质干燥、焚尸炉、熏蒸室、干洗、吸烟; 9处置:如填埋和倾废、污水处理、露天泼水、堆肥、废油处理(非加热型); 二)二恶英类 二恶英类(Dioxins)是由多氯代二苯并-对-二恶英(polychlorinated dibenzo-p-dioxins,简称PCDDs)和多氯代二苯并呋喃(polychlorinated dibenzofurans,简称PCDFs)两大类化合物组成。PCDDs是由2个氧原子联结2个被氯原子取代的苯环,PCDFs是由1个氧原子联结2个被氯原子取代的苯环,每个苯环上都可以取代1-4个氯原子,从而形成众多的同类物,其中PCDDs有75种同类物,PCDFs有135种同类物,所以,二恶英类包括210种同类物。目前研究最为充分的是17种2,3,7,8位被氯原子取代的二恶英类同类物,包括7种四至八氯代二苯并-对-二恶英以及10种四至八氯代二苯并呋喃。其中,2,3,7,8-四氯代二苯并-对-二恶英(2,3,7,8-TCDD)是目前所有已知的二恶英类中毒性最强的单体。((二恶英类(Dioxins)全称分别是多氯二苯并对二恶英polychlorinated dibenzo-p-dioxin(简称PCDDs)和多氯二苯并呋喃polychlorinated dibenzofuran(简称PCDFs)。由2个氧原子联结2个被氯原子取代的苯环为多氯二苯并二恶英(PCDDs),由1个氧原子联结2个被氯原子取代的苯环为多氯二苯并呋喃(PCCDs)) 国外对于二恶英类的定义更为宽泛,某些共平面结构的多氯联苯(coplanar polychlorinated biphenyles,Co-PCBs)在化学结构、生化和毒理学毒性方面与2,3,7,8-TCDD十分相似,被称为“二恶英类PCBs(dioxin-like PCBs)”。世界卫生组织(WHO)把12种共平面的多氯联苯也作为二恶英类来对待,日本、美国等发达国家的标准中二恶英类实际包含三个组成部分:多氯代二苯并-对-二恶英(PCDDs)、多氯代二苯并呋喃(PCDFs)和共平面多氯联苯(Co-PCBs)。二恶英类非常稳定,熔点较高,极难溶于水,可以溶于大部分有机溶剂,是无色无味的脂溶性物质,非常容易在生物体内积累,自然界的微生物和水解作用对其影响很小,环境中的二恶英很难自然降解消除。 三)二恶英类的危害 二恶英类污染物是一类具有强烈致癌、致畸、致突变(三致作用)的有毒物质,它的毒性是氰化物的

生活垃圾焚烧厂中二恶英的产生和控制

生活垃圾焚烧厂中二恶英的产生和控制

生活垃圾焚烧厂中二噁英的产生和控制 1.前言 生活垃圾焚烧厂烟气中的二恶英是近几年来世界各国所普遍关心的问题,自1999年比利时发生动物饲料二恶英污染事件后,二恶英更是倍受世人所关注,一时成为全球范围的热点。经过这一事件,二恶英在我国也是家喻户晓,闻毒色变。可以这样说,在今天研究生活垃圾焚烧厂烟气中二恶英的产生机理和控制措施,比以往任何时候都显得必要和重要。要建设生活垃圾焚烧厂,我们就不能也无法回避二恶英。 2.二恶英的结构和特性 2.1二恶英的分子结构 二恶英(DIOXIN,简称为DXN)即PolyChlorinatedDibenzo-P-Dioxins,略写为PCDDs。简单地说PCDDs是两个苯核由两个氧原子结合,而苯核中的一部分氢原子被氯原子取代后所产生,根据氯原子的数量和位置而异,共有75种物质,其中毒性最大的为2,3,7,8—四氯二苯并二恶英TCDDs(2,3,7,8—TCDDs),计有22种,;另外,和PCDDs一起产生的二苯呋喃PCDFs,共有135种物质。通常将上述两类物质统称为二恶英(或称戴奥辛),所以二恶英不是一种物质,而是多达210种物质(异构体)的统称。 2.2二恶英的特性 二恶英在标准状态下呈固态,熔点约为303~305℃。二恶英极难解溶于水,在常温情况下其溶解度在水中仅为7.2×10-6mg/L。而同样在常温情况下,其在二氯苯中的溶解度高达1400mg/L,这说明二恶英很容易溶解于脂肪,所以它容易在生物体内积累,并难以被排出。二恶英在705℃以下时是相当稳定的,高于此温度即开始分解。另外,二恶英的蒸汽压很低,在标准状态下低于 1.33×10-8Pa,这么低的蒸汽压说明二恶英在一般环境温度下不易从表面挥发。这一特性加上热稳定性和在水中的低溶解度,是决定二恶英在环境中去向的重要特性。 3.二恶英的毒性和评价 据报导,二恶英是目前发现的无意识合成的副产品中毒性最强的化合物,它的毒性相当于氰化钾(KCN)的1000倍以上。同时它是一种对人体非常有害的物质,即使在很微量的情况下,长期摄取时便可引起癌症等顽症,国际癌症研究

二恶英的物性、来源、机理及解决方法

二恶英的物性、来源、机理及解决方法

目录 1. 二恶英的物性、来源、机理及解决方法 (3) 1.1 二恶英物性分析 (3) 名称 (3) 结构 (3) 物性 (3) 1.2 二恶英的污染源 (4) 1.3 二恶英的生成机理及影响因素 (4) 1.3.1二恶英的“de novo”反应机理及模型 (5) 1.3.2二恶英的低温前驱物催化反应机理(200~500℃) (5) 1.3.3二恶英的高温气相反应机理(500~800℃) (7) 1.3.4影响二恶英生成的因素 (8) 1.3 PCDD /Fs控制措施 (9)

1. 二恶英的物性、来源、机理及解决方法1.1 二恶英物性分析 名称 二恶英是多氯二苯并对二恶英PCDDs及多氯二苯并呋喃PCDFs这两类化合物的统称。狭义的二恶英是指2,3,7,8-四氯二苯并对二恶英(TCDD),因其在二恶英类物质中毒性最强,所以有时国内学术界所指的二恶英特指该物质。 结构 二恶英为含有2个或1个氧键连结2个苯环的含氯有机化合物。由2个氧原子联结2个被氯原子取代的苯环为PCDDs;由1个氧原子联结2个被氯原子取代的苯环为PCDFs。每个苯环上都可以取代1~4个氯原子,形成众多的异构体,其中PCDDs有75种异构体,PCDFs有135种异构体。其分子结构如下图所示: 物性 1、分子量321.96。 2、白色结晶体。 3、熔点为302~305℃,705℃开始分解,800℃时21s完全分解。 4、极难溶于水,可溶于大部分有机溶剂,有极强脂溶性。常温下在水中的溶解度为7.2×10-6 mg/ L,在二氯苯的溶解度为1400mg/ L。

城市生活垃圾焚烧中二恶英的产生与控制方法研究

城市生活垃圾焚烧中二噁英的产生与控制方法研究 摘要:城市垃圾垃圾焚烧二噁英类排放能否得到有效控制事关环境保护与人体健康,也关系到生活垃圾处理的可持续发展和垃圾能源化利用的关键所在。通过对垃圾焚烧过程中二噁英的主要生成机理及减少其排放量的方法的探讨,得出了有效实现垃圾焚烧过程中二噁英减量化控制的措施与建议。 关键词:城市生活垃圾;二噁英;焚烧;控制方法 随着人口和经济的快速发展,全国城市生活垃圾产生量与日俱增。城市生活垃圾的处理处置问题已经成为环境卫生、环境污染和环境治理亟待解决的问题,目前城市生活垃圾处理方式主要以卫生填埋、堆肥和焚烧为主。填埋不仅占用大量土地,且生活垃圾中约50%是生物性有机物,易滋生蚊蝇和细菌造成环境二次污;堆肥只对垃圾中有机物质发酵,无法处理垃圾中占一半以上的无机物,垃圾堆肥前景有限。与现有的优势处理处置技术卫生填埋比较,焚烧占地量极小,能够实现能量回收利用,提高城市生活垃圾处理减量化、资源化和无害化水平,改善城市人居环境等起到了良好的推进作用。因此,焚烧将会进一步发展成为生活垃圾处理的主流技术。但是其产生的二次污染尤其是二噁英污染一直没有得到有效的解决,已经成为我国垃圾焚烧处理的瓶颈。为使垃圾焚烧发电真正实现无害化,研究焚烧过程中二噁英污染物的产生机理和控制技术是十分必要的。 1城市生活垃圾现状 我国城市生活垃圾产生量平均以大约9%的速度持续大幅度增长,我国1/3以上的城市均深陷垃圾围城困局,现在中国除县城之外的668个城市中,有2/3的城市处于垃圾包围之中,1/4已经无垃圾填埋堆放场地。全国城市垃圾堆存累计侵占土地超过5亿平方米,每年的经济损失高达300亿元。中国城市固体生活垃圾总量居世界前列,每年产生垃圾1.5亿吨,存量已达70亿吨。中国城市生活垃圾的产生量事实上是由城市环境卫生部门收集与清运的垃圾量。上海和四川两地城镇人口生活垃圾人均产生量的变化如图1所示。针对土地资源紧缺、人口密度高的城市应优先采用焚烧处理技术。 2 国内垃圾焚烧中二噁英的含量 焚烧处理是一种对城市垃圾进行高温热化学处理的技术,是将垃圾作为固体燃料送入炉膛内燃烧,在800℃~1000℃的高温条件下,垃圾中的可燃组分与空气中的氧进行剧烈的化学反应,释放出热量的过程。在这个过程中城市生活垃圾中的有机物快速分解,体积迅速减少,同时实现高温杀菌的目的,且有机物所含的热能可通过发电回收。目前垃圾焚烧系统主要有炉排炉和流化床炉两种工艺,前者配备了翻到型的机械炉排,后者大多为鼓泡型流化床。垃圾焚烧过程中会产生二噁英污染问题,全国部分循环流化床垃圾焚烧中二噁英污染物排放数据如图2所示,我国规定二噁英含量不准超过 1.0ng-TEQ/Nm3,而现阶段欧盟标准为0.1ng-TEQ/Nm3,二噁英的控制水平远落后于欧盟一些国家。我们应该吸收消化国外技术,根据我国垃圾自身等特点,发展自己的技术和污染控制技术,要做到无害化地处理城市生活垃圾,减少二噁英污染问题。 3 生活垃圾焚烧中二噁英的生成机理 自从1977年荷兰阿姆斯特丹垃圾焚烧厂排放的烟气以及飞灰中检测到二噁英以来,20多年来各国研究者对其在垃圾焚烧中的机理进行了深入而广泛的研究。由于垃圾焚烧过程中形成二噁英的微观机制相当复杂,迄今为止仍未能对其完全了解。二噁英的生成机理最主要有从头合成反应和前驱物合成反应两种。

二恶英类化合物的检测技术

二恶英类化合物的检测技术 1.引言 自20世纪以来,二恶英类化合物的危害和毒性一再表现出来,不论是1999年发生的比利时肉鸡污染事件,还是2004年底乌克兰总统候选人尤先科中毒毁容事件,这些一连串的恶性污染物事件已经引起了国际社会和学术研究机构对二恶英类化合物的重视。二恶英类化合物在环境中分布广泛、含量较低,因此,其分离检测十分困难。EPA推荐的同位素稀释、高分辨气相色谱/高分辨质谱联用技术是公认的标准分析方法。色谱法、免疫法、生物法、激光质谱法是目前检测二噁英类的主要手段。本文将简要介绍现今主要的二恶英类化合物的检测技术。 2.二恶英类化合物简介 二恶英一般指多氯二苯对二恶英PCDDs(Polychlorinated dibenzo dioxin)及多氯二苯并呋喃PCDFs(Polychlorinated dibenzofurans)的总称,是一类目前世界已知的有毒化合物中毒性最强的。二恶英在环境中较难分解,水中的溶解度较低,生物富集性高。根据氯的取代数目及位置的不同,这类化合物理论上共有210种同系物和异构体,其中PCDDs共有75种,PCDFs共有135种。不同的异构体毒性不同,以2,3,7,8—四氯二苯对二恶英毒性最强(2,3,7,8—TCDD)。 二恶英类是高熔点,高沸点的物质,在常温下为无色晶体状态。由于二恶英在水平和垂直两个方向均为对称结构,它的化学性质很稳定,不仅对酸碱,而且在氧化还原作用下都很稳定。在水中的溶解度非常低,虽然显示亲油性,但在有机溶剂中的溶解度仍然较低,极易溶于脂肪,容易在人体内积累。二恶英类在低温下很稳定,但是温度超过750℃时,容易分解。另外,在紫外线的照射下也容易被分解,而在生物作用下则分解得很缓慢,极易被土壤吸附,在环境中常常对大气、土壤、河流、湖泊、海洋等造成严重污染,并且它能沿着食物链达到顶层的动物体内,在人体组织中蓄积。二恶英类不是天然存在的,垃圾焚烧、冶炼、汽车尾气、造纸、农药、PCB (多氯联苯)的生产等都可产生二噁英类,其中垃圾焚烧产生的二恶英类占很大比例。 3.二恶英类化合物的检测方法 对于二恶英类化合物(DXNs)不同来源的基质样品(环境空气、环境水体、食品、废水、烟道气等)相应有不同的分析测定方法。这主要是因为来源不同的样品其二恶英类化合物浓度差别可达103~106,采样和前处理方法差异也很大,因此不可能对所有的二恶英类化合物样品适用同一种分析方法。较早的二恶英类化合物分析测定方法采用低分辨率色谱质谱联用仪(GC/LRMS)进行定性定量,在选择性和持异性等方面有很大局限性,样品需要量较大,对前处

日本处理垃圾的方法_二恶英处理_POPs污染修复

一、垃圾回收 在日本,一年的生活垃圾多达1亿吨,工业废弃物达到2亿吨。日本是个 能源匮乏的国家,为了便于这些垃圾处理,使回收的垃圾最大限度地有效利用,日本各地制定了严格的垃圾处理规则。在日常生活中,日本市民都非常重视、 大力配合,在倒垃圾时间、倒垃圾次数、倒垃圾场所、垃圾的分类等形成了固 定的方法和良好的习惯。地区不同,倒垃圾时间和次数不尽相同。生活垃圾一 般分为可燃性垃圾、不可燃性垃圾、资源性垃圾、有害性垃圾、超大型垃圾、 不能回收垃圾。 日本对垃圾的分类和回收都做得很好,每个住宅小区有几个固定的垃圾站,垃圾站是用铁丝网围成的屋子,有插销但没有锁,大家都自觉地把自家的垃圾 分类装袋后送到回收站。无论是生活垃圾还是书报等都被放到各自的屋子里, 扔大件垃圾要提前去买垃圾票,所以在日本收废品的,不但不付钱,还要收钱。家具、家电等大件垃圾放在屋子外边。回收站有专人管理,在将垃圾运走之前,他们还要进行仔细的分类,把有用的东西挑出来。垃圾站的卫生搞得很好,几 乎没有苍蝇。有些住宅小区,除了设置了固定的垃圾站外,每天早晨还派专人 在固定时间挨家挨户地清理和回收垃圾,市民去上学、上班出门时,只要将垃 圾分类包装好随手放在门口,到时候就会有人推着垃圾车来清理。 二、垃圾分类 日本的生活垃圾一般是按照可燃性垃圾、不可燃性垃圾、资源性垃圾、有 害性垃圾、超大型垃圾、不能回收垃圾来分类的。 1、可燃性垃圾 可燃性垃圾如:厨房垃圾(残羹剩饭、果皮、茶叶末、鸡蛋壳)、纸盒、烟头、一次性筷子、牙签、皮革制品、落叶、草木树枝、卫生纸、纸尿布等。 2、不可燃性垃圾 不可燃垃圾如:塑料制品(洗发香波、洗涤剂容器、食品包装盒、玩具等)、聚乙烯制品、乙烯合成树脂制品、尼龙制品、泡沫苯乙烯、橡胶类(运动鞋、雨靴、凉鞋等)、合成皮革制品、陶瓷器皿、剃须刀片、电灯泡、镜子、水晶玻璃、伞、座椅、暖水瓶、喷雾罐、涂料罐等。

生活垃圾焚烧中二恶英的产生和控制|垃圾焚烧产生的二恶英

生活垃圾焚烧中二恶英的产生和控制 班级环境08本(一)班姓名彭申勇学号80813024 摘要: 采用焚烧法处理城市生活垃圾, 在我国正得到广泛的推广应用, 但焚烧也带来二恶英污染, 它严重威胁着人类的健康, 世界各国正在采取积极措施控制。文章介绍了二恶英的结构、性质和形成机理, 从焚烧前、焚烧中、焚烧后三个方面评述了国内外近年来所发展的对二恶英污染物的控制技术。 关键词: 城市生活垃圾; 焚烧; 二恶英; 控制 1 前言 随着我国城市人口不断增加, 城市生活垃圾日益增多, 人均日产量为2kg 左右, 并且以每年7%的速度递增, 2004年我国城市垃圾清运量已达14857万t[1]。目前我国城市垃圾无害化处理不足50%, 累积堆存量60亿t, 占地2万hm2; 这些垃圾裸露堆埋, 污染水质、土壤、大气, 传播疾病、威胁人类的生命安全。因此,垃圾无害化处理已成为社会普遍关注的问题。我国城市垃圾处理逐渐淘汰堆埋法而采用具有显著减量化、无害化、稳定化和资源化的垃圾焚烧处理技术。然而, 垃圾焚烧易带来二次污染, 其中, 危害严重的是二恶英污染。二恶英是迄今为止人类无意识合成的毒性最强的副产品,它的理化性质稳定,很难自然降解,对人体健康和生态环境存在着巨大的安全隐患。固体废物焚烧,是其主要产生源之一,据统计,其贡献率可达到50%-80%。由于我国在二恶英控制技术方面的研究工作起步较晚,因此在二恶英控制方面面临着严峻的形式,从技术的层面而言,主要存在着现有焚烧设施技术水平低和缺乏成熟有效的控制技术,难以满足标准的要求两个方面的问题。针对上情况,本文结合近年来国内外的最新研究成果,通过了解和掌握二恶英的合成机制,提出了二恶英污染防治的全过程控制措施。 2 二恶英的危害 生物化学研究认为: 二恶英具有类似人体激素的作用, 称为“环境激素”。二恶英可以通过细胞膜进入细胞内,通过调控基因活性,调节机体的生长和自我调节过程。任何一个二恶英类分子能与细胞内的特殊蛋白受体结合成复合物, 这一复合物能进入细胞核,作用于DNA ,影响某些基因的表达。这一变化的结果可激发一连串的生物化学反应, 包括激素的合成和分泌,还影响激素受体、酶、生长因子和其它物质。然而,二恶英不像天然激素, 它不被代谢和降解, 对受体有高亲合力, 因此非常小剂量的“错误信号”能对激素调控产生极大的影响作用, 包括影响细胞分裂, 组织再生, 生长发育、代谢和免疫功能。因此,二恶英被称为“毒素传递素”,影响和危害正常人体系统,如内分泌、免疫、神经系统等。二恶英主要污染空气、土壤和水体, 进而污染动物、植物和水生生物。人主要是通过空气、饮水、食物而受害。据调查, 人类90% 以上的受害来自于膳食, 其中动物性食品是主要来源。二恶英的生物富集作用非常强, 由于二恶英从土壤→植物→动物的逐级富集, 愈是高级的生物体内含量愈高, 所以人类受危害程度最大, 而人体没有分解二恶英的能力, 所以人体一旦摄入, 就不易排出。最新研究表明: 人体摄入即使在很微量的情况下, 长期摄取也会引起癌症、皮肤病、肝肾疾病、生殖障碍、畸形等顽症。日本学者研究发现, 用二恶英含量较高的乳汁喂养婴儿, 往往会造成婴儿甲状腺激素含量过低, 影响婴儿智力发育。 3 二恶英的产生和排放

二恶英目前最热门的测试方法(中国科学院广州化学研究所分析测试中心)

中国科学院二噁英分析中心 李主任---189******** 二噁英类污染物检测 目前二噁英类物质的检测方法有哪些? 一、化学仪器分析方法 HRGC/HRMS GC/HRMS HRGC/LRMS 二、生物检测方法 RROD细胞培养法荧光素酶方法 EIA酶免疫方法 DELFIA荧光免疫法 HRGC/HRMS方法 1、 采用HRGC/HRMS(分辨率在1万以上的高分辨率色谱/质谱联用仪)的超痕量分析方法。优点: (1)灵敏度高; (2)能同时监测多个离子。 (3)是被多个发达国家认可的二噁英标准检测方法,如美国的EPA。缺点: (1)分析操作复杂; (2)样品前处理过程非常复杂,分析样品所需时间周期长(通常为10-20d); (3)设备投入成本和运行费用高昂;(4)购买同位素标准物质等消耗品费用高; (5)检测费用高昂。(一个样品需900-1800美元); (6)监测只能在专业实验室进行,而建造二噁英检测实验室需要几百万美元。 GC/HRMS和HRGC/LRMS 使用GC/HRMS法可保证灵敏度,简化前处理步骤,缩短检测时间,降低检测成本,但仍需在专业实验室中完成; 使用HRGC/LRMS法可极大降低在检测仪器方面的投入,但当每克样品中二恶英浓度低于pg/g水平时,却无法获得可靠的检测结果。因而HRGC/LRMS法仅适用于检测二恶英浓度较高的污染源样品和污染较重的土壤样品。例如,美国的EPA 8280方法可检测出土壤、底泥、飞灰和燃油等样品中含4~8个氯的二恶英化合物,不能用于检测如食品等二恶英含量较低的样品。 生物检测方法 目前建立的生物学检测方法均是通过对Ah受体活化程度的测定来间接表达二恶英的TEQ。EROD细胞培养法 二噁英与Ah受体结合活化后,被Ah受体核转位因子(ARNT)转移到细胞核内,活化的核内基因是特异性DNA片段即二噁英相应因子(DRE)。启动发挥毒性的基因并增加其转录,从而激活EROD酶的活性。所以通过测定EROD酶的活性,可以了解二噁英激活Ah 受体的能力,进而获得测试样品中二噁英的TEQ。 荧光素酶方法 该方法是将萤火虫荧光素酶作为报告基因结合到控制转录的DRE上,制备成质粒载体并转染H4llE大白鼠肝癌细胞系(含Ah受体转导途径的各个部件)。以此构成的CALUX荧光素酶诱导活性与二噁英的毒性系数相对应,最终测定的结果也是TEQ(毒性当量) EIA酶免疫方法 该方法是根据鼠克隆抗体DD3与二噁英结合的特点而建立的竞争仰制酶免疫方法。使用酶竞争配合物(HRP)和样品中二噁英共同竞争有限的DD3抗体的特异性结合位点,以一系

几种垃圾处理方法的比较

几种垃圾处理方法的比较 目前几种城市生活垃圾的处理方法及其实用性比较: 一. 填埋法:填埋是一种极其消极、万般无哀的垃圾处理方法。虽然该处理方法投资少、工艺简单、处理量大,并较好地实现了地表的无害化。但是,填埋的垃圾并没有进行无害化处理,残留着大量的细菌病毒;垃圾的渗漏液会污染地下水资源. 所以,该方法潜在着极大的隐患,会给子孙后代带来无穷的后患。该方法不仅没有实现垃圾的资源化,而且大量占用土地。目前一些地区引用的卫生填埋法仅是部分地解决了地下水污染防治问题和产生朝气的回收问题,对彻底解决该项目的弊端,还有相当大的距离。许多发达国家已明令禁止填埋垃圾。 二. 焚烧及焚烧发电法:其优点是处理彻底快捷,也实现了垃圾的资源化处理。但是,对有害气体“二恶英”的产生和处理,给该方法带来极大的缺憾。单纯地焚烧,会污染大气;若处理有害气体,投资和运行成本会相当昂贵。而且,我国目前城市生活垃圾成分复杂、热值低,需添加大量辅助燃料,致使许多地区建的起厂子,而运行不起。而且该方法还受处理量的限制,所以我国一般中小城市对建设该技术项目无能为力。该方法不大适应中国国情。 三. 堆肥法:该方法具有投资少,易操作的优点。但存在着致命的缺点: (1).堆腐时间长,一般需三周至一个月,堆积污染严重。 (2).有机物降解不彻底,处理不充分,残留物仍会造成垃圾污染。 (3).堆肥产品杂质多,而且对重金属等有害物质不能有效分离,长期使用堆肥产品,会造成土壤表面沉积,破坏土壤、危害农作物。 (4).堆制过程中,大多数氮营养被自然释放,磷、钾等化合物被自然降解,所以致使肥料质量低下,广大农民不愿问津,市场前景渺茫。 四.资源化综合处理法(即本项目内容) 城市垃圾中包含着不少可回收利用的资源,对其中绝大多数资源物进行回收再利用,不仅可实现变废为宝、化害为益和减容减量的目的,而且产生的经济效益可以解决或大部分解决垃圾处理的成本费用问题。这就给我国广大中小城市,特别是经济欠发达地区乡镇的生活垃圾治理,提供了一个切实可行的途径。就中国的经济发展现状来说,资源化综合处理的方法也是垃圾治理的一个主要发展方向,是一项极适合中国国情的好项目。 资源化综合处理法的先进性和技术优势是: 〈1〉实现了垃圾的减量化。可以使垃圾减量75%—85%,如果条件允许,可以将其剩余的部分残渣生产成轻体建材和建筑陶粒,进而实现了垃圾的“无剩余”处理。 〈2〉实现了垃圾的无害化。经过高温(165—185℃)高压(0.8—1.0MPa)的“热解处理”(热选),垃圾中的所有杂菌、虫卵及病毒、病害已不复存在,彻底地解决了有机垃圾对环境的污染问题。而且在生产过程中,采取了多种对烟尘、恶臭、污水、有害气体、噪音等二次污染的防治措施,从工艺手段及治理措施等方面,对防止二次污染都有成熟可靠的技术保证。 〈3〉实现了垃圾的资源化。几乎所有的废弃物都得到了科学合理的回收再利用。作为两大主要污染源的有机物和废弃塑料90%以上被再度利用,不可回收的可燃垃圾也被制成了高热值环保型燃料,达到了物尽其用。剩余的15—20%的残渣可以制成轻体建材,真正实现了垃圾的资源化无剩余处理。在产生良好的社会效益、

相关文档
相关文档 最新文档