文档库 最新最全的文档下载
当前位置:文档库 › 供电系统中谐波的产生与抑制

供电系统中谐波的产生与抑制

电力系统谐波产生原因与抑制措施(2010-11-05 15:20:20)
标签: 电力系统谐波教育
电力系统谐波危害及抑制措施分析

一、电力系统谐波产生的原因

谐波产生的根本原因是由于电力系统中某些设备和负荷的非线性特性,即所加的电压与产生的电流不成线性(正比)关系而造成的波形畸变。

当电力系统向非线性设备及负荷供电时,这些设备或负荷在传递(如变压器)、变换(如交直流换流器)、吸收(如电弧炉)系统(发电机)所供给的基波能量的同时,又把部分基波能量转换为谐波能量向系统倒送,使系统的正弦波形畸变,电能质量下降。也可以理解为当正弦波(基波)电压施加到非线性负载上时,负载吸收的电流与其上施加的电压波形不一至,其电流发生了畸变。由于负载与整个网络相连接,这样畸变电流就可以流人到电网中,这样的负载就成了电力系统中的谐波源。

电网谐波来自于3个方面:

一是发电源质量不高产生谐波:

发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。

二是输配电系统产生谐波:

铁磁饱和型谐波源:各种铁芯设备,如变压器、电抗器等,其铁芯饱和特性呈非线性。如电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。

三是用电设备产生的谐波:

电子开关型:主要为各种交直流换流装置(整流器、逆变器)以及双向晶闸管可控开关设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统

计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

变频装置:变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。

电弧型:电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。

气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。

家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。

对于电力系统三相供电来说,有三相平衡和三相不平衡的非线性特性,电气铁道是当前中压供电系统中典型的三相不平衡谐波源。(电气铁道:将高压、三相电力在变电所降压和变成单相后向接触网供电,一般为25kV)

二、电力系统谐波的危害:

1.使供电线路和用电设备的热损耗增加。

(1) 谐波对线路的影响

对供电线路来说,由于集肤效应和邻近效应,线路电阻随着频率的增加会很快增加,在线路中会有很大的电能浪费。另外,在电力系统中,由于中性线电流都很小,所以其线径一般都很细,当大量的谐波电流流过中性线时,会在其上产生大量的热量,不仅会破坏绝缘,严重时还会造成短路,甚至引起火灾。而当谐波频率与网络谐振频率相近或相同时,会在线路中产生很高的谐振电压。严重时会使电力系统或用电设备的绝缘击穿,造成恶性事故。

(2) 对旋转设备和电力变压器的影响

 引起附加损耗和发热增加,产生震动和噪声。谐波电流的存在增加了电力变压器的磁滞损耗、涡流损耗及铜损,对带有不对称负荷的变压器来说,会大大增加励磁电流的谐波分量。长时间的振动会造成金属疲劳和机械损坏。由于在定子绕组上形成的附加损耗和谐波涡流损耗大,可造成电机严重发热,甚至造成损坏

(3)对电力电容器的影响

由于电容器对谐波的阻抗很小,谐波电流叠加到基波电流上,会使电力电容器中

流过的电流有很大的增加,使电力电容器的温升增高,引起电容器过负荷甚至爆炸。同时,谐波还可能与电容器一起在电网中形成谐振,并又施加到电网中,使谐波放大。

2.对继电保护和自动装置的影响

当谐波引起系统谐振时,谐波电压升高,谐波电流增大,会引起继电保护以及自动装置误动,计量误差增大,损坏系统设备。

3.对通信线路产生干扰。

在电力线路上流过幅度较大的奇次低频谐波电流时,通过电磁耦合,会在邻近电力线路的通信线路中产生干扰电压。干扰通信线路的正常工作,使通话清晰度降低,甚至会引起通信线路的破坏。

4.对用电设备的影响

电力谐波会使电视机、计算机的显示亮度发生波动,图像或图形发生畸变,甚至会使机器内部元件损坏,导致机器无法使用或系统无法运行。

6.谐波对计量仪表的影响

谐波的存在会使计量仪表的指示产生误差,甚至会导致计量设备无法工作。

谐波可使晶闸管装置失控。

三、限制电网谐波的措施

电网在运行时不可能没有谐波,很多电气设备和用电设备在运行时都会产生谐波,只不过一般情况下对电网波形影响不大,不会危及正常的供电和用电,但某些情况则不同,如变压器铁心饱和、电弧炉炼钢,大型整流设备,都会对电网带来严重的谐波干扰,影响供电质量,因此必须加以治理。

1. 改善供电系统

对于供电系统来说,谐波的产生不可避免,但通过加大供电系统短路容量、提高供电系统的电压等级、加大供电设备的容量、尽可能保持三相负载平衡等措施都可以提高电网抗谐波的能力。

2. 降低谐波源的谐波含量

在线路中对谐波源采取措施,最大限度地避免谐波的产生,这种方法能够提高电网质量,可在很大程度上避免谐波造成的影响。

(1)采取脉宽调制(PWM)法

采用脉宽调制(PWM)技术,在所需要的频率周期内,将直流电压调制成等幅不等宽的系列交流电压脉冲,这种方法可以大大抑制谐波的产生。

(2)增加整流器线路中的脉动数,整流器件是电网中的主要谐波源,对于整流器件来说,增加整流脉动数,可以使波形平滑,谐波的产生量减少。

3. 在谐波源处吸收谐波电流

这是目前应用最广泛的谐波抑制方法。主要有以下几种:

(1)采用无源滤波器加以抑制

无源滤波器安装在电力电子设备的交流侧,由L、R、C元件构成谐振回路,当谐振回路的谐振频率与某一谐波频率相同或相近时,即可阻止该频率的谐波进入电网。

(2)采用有源滤波器加以抑制

利用可控的功率半导体器件,向电网中输入与原有的谐波电流幅度相等相

位相反的电流,使电网中的总谐波电流趋向于零,达到实时补偿谐波的目的。

(3) 通过加装静止无功补偿装置加以抑制

在谐波源处并联加装静止无功补偿装置,可以有效减少波动的谐波量,同时,也可以抑制电压波动、电压闪变,还可以补偿功率因数。

(4)防止电容器组对谐波的放大,在电网中并联电容器组起改善功率因数和调节电压的作用,当谐波存在时,在一定的参数下电容器组会对谐波起到放大作用,危及电容器本身和附近其他电气设备的安全,可以采取串联电抗器或将电容器组的某一支路改为滤波器的方法来限制对谐波的放大,也可以通过限制电容器组的投入容量来避免电容器对谐波的放大。

在电容器回路中串联一定数值的电抗器,即造成一个对n次谐波的滤波回路。在实际运行中,3次、5次、7次谐波分量往往偏高,是电容器滤波回路的主要目标。所谓3次、5次、7次……谐波,指的是谐波的频率相当于工频的3倍、5倍或7倍。当串联电抗器的n次谐波感抗与电容器的n次谐波容抗相等时,即nwL = 1/(nwC)时构成串联谐振条件,则母线的n次谐波电压将被抑制得干干净净。

对于3次谐波:3XL = (1/3) XC,则XL = (1/9) XC = 0.11XC;对于5次谐波:5XL = (1/5) XC,则XL = (1/25) XC = 0.04XC。 实际运行中,各变电站普遍采有在回路中串联12%电抗构成3次谐波滤波器,12%电抗率的含义是指串联电抗器的感抗值为该回路电容器容抗值的12%,而用串联6%电抗构成5次谐波滤波器。不正好采用11%和4%,而是稍大一点,目的是使电容器回路阻抗呈感性,避免完全谐振时电容器过电流。



供电系统中谐波的产生与抑制

收藏此信息 打印该信息 添加:不详 来源:未知

--------------------------------------------------------------------------------

摘 要:本文主要介绍了供电系统中谐波的产生原因和它的危害,及抑制谐波的一般对策。
关键词:电网 谐波 危害 抑制措施 发展 标准
引 言
近年来,产生谐波的设备类型及数量均已日剧增,并将继续增长。本文主要介绍谐波产生的原因和它的危害,以及抑制供电系统谐波的一般对策。
一、概 述
在理想情况下,优质的电力供应应该提供有正弦波的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波之一是一些谐波为基波频率(在我国取工业用电频率50HZ为基波频率)整数倍的正弦波分量,又称为高次谐波。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压,电流波形畸变,使电力变坏。谐波还会引起电气

设备附加损耗和发热,缩短使用寿命,甚至损坏。谐波注入电网后使无功加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。因此,谐波是电力质量的重要指标之一。所以谐波问题引起各界的广泛关注,为保证供电系统中所有的电气、电子设备能在电磁兼容意义的基础上进行正常谐波的工作,必须采取有力的措施,抑制并防止电网因谐波危害所造成的严重后果。
二、什么是谐波?供电系统的谐波是怎么定义的?
“谐波”一词起源于声学。有关谐波的数学分析在18世纪和19世纪奠定了良好的基础。傅利叶等提出的谐波分析方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945 J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。到了50年代和60年代,由于高压直流输电技术的发展,发表了有变流电力系统、工业、交流及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。
供电系统谐波的定义是对周期性非正弦电量进行傅利叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。电工技术领域主要研究谐波的发生、传输、测量、危害及抑制。
三、谐波的产生
在理想的干净供电系统中,电流和电压都是正弦波的。再致函线性元件(电阻、电感及电容)的简单电路里,流过的电流与施加的电压成正比,流过的电流是正弦波。
在实际的供电系统中,由于有线性非负荷的存在,当电流流过与所加电压不成线性关系的负荷时,就形成非正弦波电流。任何周期顶波形均可分解为一个基频正弦波加上许多谐波频率的正弦波。谐波频率是基频的整数倍,例如基频为50Hz,二次谐波为100Hz,三次谐波则为150Hz。因此畸变的电流波形可能有二次谐波、三次谐波……可能直到第三十次谐波组成。
供电网谐波来自三方面:
1.发电源质量不高产生的谐波
发电机由于三相绕组在制作上很难做到绝缘对称,铁心也很难做到绝对平均抑制和其他一些原因,发

电源多少也会产生一些谐波,但一般很少。
2.输配电系统产生谐波
输配电系统中主要是电力变压器产生谐波,由于变压器铁芯的饱和,磁化曲线的非线性,加上设计变压器是考虑经济性,其工作磁密度选择在磁化曲线的近饱和段上,这样就使得磁化电力城尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁芯的饱和程度有关。铁芯的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流的0.5%。
3.用电设备产生的谐波
晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源大等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单向整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则有奇次谐波电压,其谐波含量随电容值得增大而增大。如果整流装置为三相全控桥6脉冲整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也有11次及以上奇次谐波电流。经统计表明:有整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
变频装置:变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成分很复杂,除含有整数次谐波外,还含有份数次谐波,这类装置的功率他、一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。
电弧炉、电石炉:由于加热原料时电炉的三相电极很难同时接触到高地不平的炉料,使得燃烧不稳定,引起三相负荷比平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8%、20%,最大可达45%。
气体放电光源:荧光灯、高压汞灯、高压纳灯与金属卤化物灯等属于气体放电类电光源。分与测量也累电源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,他们会给电网造成奇次谐波电流。
家用电器:电视机、录像机、计算机、调光灯具、调温炊具等,因具有跳崖整流装置,会生产较深的奇次谐波。在洗衣机、电风扇、空调等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。
随着电力电子设备使用的不断增加,同时这些设备产生的谐波又具有较大的振幅,所以目前它们

是供电系统中的主要谐波源。
四、谐波的危害
以前由于接入供电系统的非线性设备较小,绑在系统中引起的谐波电流也很小,所以对电力质量的影响不大。随着电子技术的飞速发展人们的生活水平日益提高,使用大功率半导体开关器件以及此类开关电源的产品,如电视机、空调器、节能灯、调光器、洗衣机、微波炉,信息技术设备等虽属涌入居民家庭,虽然每台设备向电网注入的谐波电流不大,但这些设备数量大、分布广。有些家用电器如电视机、空调器等在使用时具有集中的特点,在某些时段会使注入到电网的谐波电流对公用造成谐波问题特别突出,这不但使接入该电网的设备无法正常工作,甚至造成故障,而且还会使供电系统中性线承受的电流超载,影响供电系统的电力输送。因此谐波问题得到各有关方面的高度重视。
供电系统中的谐波危害主要表现在以下几个方面:
(一)增加了发、输、供和用电设备的附加损耗,使设备发热,降低设备的效率和利用率。
由于谐波电流的频率为基波频率的整数倍,高频电流流过导体时,因集肤效率的作用,使导体对谐波电流的有效电阻增加,从而增加了设备功率损耗、电能损耗、使导体的发热严重。
1.对电动机的影响
谐波对电动机的危害主要是产生附加损耗和转矩。由于集肤效应、磁滞、涡流等随着频率的增高而使在电动机的铁芯和绕组中产生的附加损耗增加.谐波电流产生的谐波转矩对电动机的平均转矩的影响不大,但谐波会产生显著的脉冲转矩,可能出现电机转轴扭曲振动的问题。这种振荡力矩是电机的转子元件发生扭振,会缩短电动机使用寿命,甚至损坏。
2.对变压器的影响
谐波电流式变压器的铜耗增加,特别是3次及其倍数次谐波对三角形连接的变压器,会在其绕组中形成环流,使绕组过热;对全星形连接的变压器。当绕组中性点接地,而该侧电网中分布电容较大或者装有中性点接地的并联电容器时。可能成3次谐波谐振,使变压器附加损耗增加。
3.对输出电线路的影响
谐波电流使输电线路的电能损耗增加。当注入电网的谐波频率位于在网络谐振点附近的谐振区内时,对输电线路和电力电缆线路会造成绝缘击穿。
4.对电力电容器的影响
含有电力谐波的电压加在电容器两端时,由于电容器对电力谐波阻抗很小,谐波电流叠加在电容器的基波上,使电容器电流变大,温度升高,寿命缩短,引起电容器过负荷甚至爆炸,同时谐波还可能与电容器一起在电网中造成电力谐波谐振,使故障加剧。
(二)影响继电保护和自动装

置的工作和可靠性
特别对于电磁式继电器来说,电力谐波常会引起继电保护及自动装置误动或拒动,使其动作失去选择性,可靠性降低,容易造成系统事故,严重威胁电力系统的安全运行。
(三)影响电力测量和计量仪器的指示和计量准确性
在有谐波源的情况下,谐波源用户处的电能表记录了该用户吸收的基波电能并扣除一小部分谐波电能,从而谐波源虽然污染了电网,却反而少交电费;而与此同时,在线性负荷用户处,电能表记录的该用户吸收的基波电能及部分的谐波电能,这部分电能不但使线性负荷性能变坏,而且还要多交电费。电子式表更不利于供电部门而有利于非线性负荷用户。
(四)干扰通讯信息通的工作
电力线路上流过的幅值较大的奇次低频谐波电流通过磁场耦合时,会在邻近电力线的通信线路中产生干扰电压,干扰通信系统的工作,影响通信线路通话的清晰度,甚至在极端的情况下,还会威胁着通信设备和人员的安全。
(五)对用电设备的危害
谐波会使电视机、计算机的图形畸变,画面亮度发生波动变化,并使机内的元件出现过热,使计算机及数据处理系统出现错误。对于带有启动镇流器和提高功率因数用电容器的荧光灯及汞灯来说,会因为在一定参数的配合下,形成某次谐波频率下的谐振,使镇流器或电容器因过热而损坏。对于采用晶闸管的变频装置,谐波可能使晶闸管误动作,或使控制回路误触发。
(六)谐波对人体的影响
从人体生理学来说,人体细胞在受刺激兴奋时,会在细胞膜静息点为基础上发生快速电波动可逆翻转,其频率如果与谐波频率相近,电网谐波的电磁辐射就会直接影响人的脑磁场与心磁场。
五、抑制供电系统谐波的一般对策
谐波问题是关系到供电系统的供电质量的一个重要问题,它不但于供电部门有关,而且还关系到广大电力用户扣电气设备制造厂的切身利益。为减少供电系统的谐波问题,一般从管理上和技术措施上采取以上几种方面的对策:
1.贯彻性有关谐波的国家标准,加强谐波管理
我国于1998年12月14日发布了国家标准GB17625.1-1998 《低压电器及电子设备发出的谐波电流限值(设备没想输入电流小于等于16A)》,等于采用IEC6100-3-2:1995,但在技术内容上与该国际标准完全一致。GB17625.1规定了标准接入公用低压配电系统中的电气、电子设备(每相输出电流小于等于16A)可能产生的谐波的限值。只有经过实验证实该电子产品注入系统的总体谐波电流水平加以限制。
该标准对一线四类设备确定谐波电流时流时发射限值:A类设备:平衡

的三项设备以及除B、C和D类设备;B类设备:便携式电动工具;C类设备;包括调光装置的照明设备:D类设备:输入电流具有标准所定义的“特殊波形”且其有功功率步大于600W的设备。
该标准还规定了实验电路和实验电源的要求、对测量设备的要求和实验条件的内容。
目前,全国电磁兼容标准委员会正在组织有关专家对GB17625。1进行修订,使该标准更加适应市场的需求和操作更容易、简便。
此外,1993年颁发的国家标准GB/T1454
9-1993《电能质量公用电网谐波》,该标准考虑了不同谐波源叠加计算的方法,规定了各级电网电压谐波总畸变率和用户诸如电网的谐波电流容许值,对限制公用电网中的谐波起到了积极的工作。
认真贯彻执行有关国家标准关于限制谐波的规定,就能从总体上控制供电系统中的谐波水平,保证供电系统供给优质的电力质量。
2.三相整流变压器采用Y/△或△/Y的接线形式,这样可以消除3的整数倍次的电力谐波,从而使注入电网的谐波电流只有5、7、11……等次谐波。
3.装设静止无功补偿装置,对大型电弧炉及晶闸管控制的轧钢机等非线性设备,由于其负荷是冲击性的,而且是随机的,因此宜装设能吸收动态谐波电流的静止无功补偿装置,提高供电系统承受谐波的能力。
4.对于大容量的电力设备,特别是大容量的电容器组,回路内增设限流装置或串联电抗器,以抑制电力谐波的产生。
5.对容量在100kVA及以上整流装置和非线性设备的用户,必须增设分流滤波装置,就近吸收电力谐波。
6.增加整流变压器二次侧的相数。
7.选择合理的供电电压,并尽可能保持三相电压平衡。
8.换流装置是供电系统的主要谐波源之一,可以采用增加换流装置的相数,有效的消除幅值较大的低频项,从而大大地降低了谐波电流的有效值。
总之,一方面要严格限制谐波的发射水平。另一方面还要设法提高设备自身的抗谐波干扰的能力,改善谐波保护性能,做到真正意义上的电磁兼容。
六、结束语
解决供电系统中的谐波问题,必须要供电部门、电力用户和设备制造商三方面都已电磁兼容的理想为基本出发点。一方面,产生谐波的部门和单位要尽量限制谐波的发射水平;另一方面,供电部门和电力用户都要想方设法提高设备抗御谐波骚扰的能力。只有这样供、用、造三方才能搞好治理谐波这项系统工程的工作。
参考文献
[1]郎维川,供电系统中谐波的产生、危害及其防护对策《高电压技术》,2006.2
[2]GB 17625.1-1998 低压电气及电子设备发出的谐波电流限值(设备每相

输入电流<=16A) (EQV61000-3-2:1995)
[3]吴竞昌,《供电系统谐波》[M],中国电力出版社,1998.5

相关文档