文档库 最新最全的文档下载
当前位置:文档库 › LaF_3_Er_Yb纳米颗粒掺杂有机_无机杂化材料制备光波导放大器及特性研究

LaF_3_Er_Yb纳米颗粒掺杂有机_无机杂化材料制备光波导放大器及特性研究

LaF_3_Er_Yb纳米颗粒掺杂有机_无机杂化材料制备光波导放大器及特性研究
LaF_3_Er_Yb纳米颗粒掺杂有机_无机杂化材料制备光波导放大器及特性研究

LaF 3∶Er ,Yb 纳米颗粒掺杂有机Π无机杂化材料制备

光波导放大器及特性研究

3

张 丹1)

 王兆明2)

 王艳双1)

 薄淑辉3)

 甄 珍3)

 张大明

1)

1)(集成光电子学国家重点联合实验室吉林大学实验区,吉林大学电子科学与工程学院,长春 130012)

2)(吉林大学应用技术学院,长春 130012)3)(中国科学院理化技术研究所,北京 100080)(2007年7月10日收到;2007年11月21日收到修改稿)

采用LaF 3∶Er ,Y b 纳米颗粒掺杂有机Π无机杂化材料作为有源材料,制备了掩埋条形结构光波导放大器,研究了放大器在室温下的增益特性和波导中的频率上转换现象.当抽运功率60mW 时,波导中明显可见绿色上转换发光,观测到Er 3+从2H 9/2,2H 11/2,4S 3/2,4F 9/2到基态4I 15/2跃迁分别对应的4个波长分别为405nm ,520nm ,544nm 和

650nm 的发射峰,分析了其产生机理.当输入信号光016mW ,抽运功率160mW 时,在1535nm 波长处获得115dB Πcm 的相对增益.

关键词:光波导放大器,增益,上转换

PACC :4230Q ,4280S ,4270J

3国家重点基础研究发展计划(973)项目(批准号:2006C B302803),国家自然科学基金(批准号:60507004)、新世纪优秀人才支持计划(批准号:NCET 20520307)和吉林省杰出青年基金(批准号:20050110)资助的课题. 通讯联系人.E 2mail :Email :zhangdm @https://www.wendangku.net/doc/a7490572.html,

11引言

自掺铒光纤放大器(E DFA )在长距离光通信领域获得巨大成功以来,掺铒平面光波导放大器(E DW A )近年来备受关注[1].它是密集波分复用(DW DM )传输系统的重要组成部分,可以和调制器、光开关、阵列波导光栅、隔离器等任何有损耗的器件

集成在一起,补偿光传输过程中的各类损耗[2,3]

.E DW A 这一关键技术的解决将会使芯片间的光互连和光集成取得突破性进展,大大推动光通信的发展,具有里程碑的意义.目前掺铒无机基波导放大器的

研究较为成熟,增益可达7dB Πcm [4]

,无机基掺杂Er 3+

具有高发光寿命、高量子效率等优点,然而制作工艺较为复杂、可控性差,与硅基材料不是很相容,在光集成应用方面前景不是很好;掺铒聚合物基材料以其低制作成本、工艺简单成为近年来研究的热

点,然而它与Er 3+

盐类相容性较差,且基体中含有

的大量高能振动基团C 2H 和O 2H 能够降低Er 3+

在激发态的寿命;掺铒有机2无机复合基材料综合了无

机基材料和有机基材料的优点,具有良好的发展前

[5]

.目前用聚合物和有机2无机复合材料作为基

质制作E DW A 报道极少

[6,7]

,国内外的一些研究大

都处于材料制备阶段.

本文采用LaF 3∶Er ,Y b 纳米颗粒掺杂有机Π无机杂化材料作为有源材料,成功制备了掩埋条形结构的光波导放大器,并研究了在波导中观测到的上转换现象.

21实 验

将外围包覆有机价键的LaF 3∶Er ,Y b 纳米颗粒溶于一定量的甲苯溶剂中,再与有机Π无机杂化材料(主要成分:metacrylopropyltrimethoxysilane )混合,并添加光引发剂在室温下搅拌12h ,使它们充分溶解,纳米颗粒在有机Π无机杂化材料中的掺杂浓度可达到50wt %.

在经过超声清洗的抛光硅片上旋涂一层5μm 厚的聚甲基丙烯酸甲酯(PM MA )作为下包层,热固

第58卷第3期2009年3月100023290Π2009Π58(03)Π1675204

物 理 学 报

ACT A PHY SIC A SI NIC A

V ol.58,N o.3,March ,2009

ν2009Chin.Phys.S oc.

化后在超净室使用热蒸发器淀积铝掩膜30nm ,然后

用标准的微制作过程和反应离子刻蚀技术制作出条宽分别为8μm 和10μm ,深2μm 的凹槽,后将掺LaF 3∶Er ,Y b 纳米颗粒的有机Π无机杂化材料旋涂在

表面,厚度控制在3μm 左右,将槽填充形成掩埋型波导.110℃前烘5min ,紫外曝光3min ,120℃烘烤4h 去除溶剂(氮气保护),最后旋涂3μm 厚的PM MA 作为上包层,120℃固化3h ,完成掩埋型LaF 3∶Er ,Y b 共掺有机Π无机杂化材料波导的制备.制

作完成后端面解理,在微调架上与光纤端面耦合,测量器件的增益特性.图1为在PM MA 中刻蚀出的凹槽扫描电镜图片,插图为输入信号光功率016mW ,在1535nm 波长处波导的近场输出光斑,波导长度11

mm.

图1 PM M A 中刻蚀出的凹槽扫描电镜图(插图为近场输出光斑)

在增益测试过程中,信号光由可调激光器(Santec TS L 2210)获得,波长可调范围1510nm 至1590nm.抽运光由976nm 半导体激光器提供,功率可调范围3mW 至150mW.信号光通过隔离器后和抽运光经过980nm Π1550nm 耦合器耦合输入纳米颗粒掺杂有机Π无机杂化材料制作的波导,由光谱仪(ANDO AQ 26315A )监测输出信号,增益测试在室温下进行.

31结果与分析

3111波导中的频率上转换

当输入抽运光功率为60mW 时,波导中沿光传

输方向可观测到明显的绿色发光,如图2所示,这与

铒镱共掺磷酸盐玻璃波导放大器中的上转换现象

[8]

极为相似.将器件发出的绿色可见光经透镜聚焦后

进入单色仪和光电倍增管,最后由计算机输出,可得到发光强度随波长变化曲线

.

图2 波导中的上转换发光

图3为在不同功率的976nm 激光器抽运下,发

光强度随波长变化情况.在400nm 到700nm 的波长范围内共观察到4个发射峰:405nm ,520nm ,544nm 和650nm ,它们分别对应Er

3+

从2H 9/2,2

H 11/2,

4

S 3/2,4

F 9/2到基态4

I 15/2的跃迁.四个发射峰的发光

强度均随抽运功率的增加而增大,发光强度I em 与抽运强度I ex 有如下关系:I em ∝(I ex )

[9—11]

.式中n 表示

发出一个可见光光子需要吸收的红外光子数.插图

为两个较强的发射峰520nm ,544nm 处上转换发光强度随抽运功率变化的对数曲线,直线的斜率分别为1187和1179.这表明在这种材料中,Er 3+

在520nm ,544nm 的上转换发光是一个双光子吸收过程

.

图3 上转换发光强度随抽运功率变化示意图(插图为520nm ,

544nm 波长处发光强度随抽运功率变化的对数曲线)

当用976nm 激光器抽运LaF 3∶Er ,Y b 纳米颗粒掺杂有机Π无机杂化材料时,可能存在的频率上转换

6761物 理 学 报58卷

机理如图4所示,位于激发态2

F 5/2的Y b 3+

通过能量转移或者协同上转换机理[12,13]

将能量传递给邻近的

Er 3+,使其从基态4I 15/2跃迁到激发态4

I 11/2;位于激发态4

I 11/2上的Er 3+

可以再次通过这两种上转换机理吸收Y b

3+

能量,完成从4I 11/2到2

F 7/2能级的跃迁,

Y b 3+则由于将能量传递给Er

3+

,跃迁回到基态

2

F 7/2;由于4

F 7/2,2

H 11/2以及2

H 11/2,4

S 3/2能级之间较

小的能量间隔,Er

3+

迅速由4

F 7/2非辐射衰减至

2

H 11/2,4

S 3/2能级,再从2

H 11/2,4

S 3/2能级辐射跃迁至基

态能级,发出520nm 和544nm 的光,如图4(a )所示.

此外,位于激发态4I 11/2能级上的Er 3+

也可以通过激发态吸收或者协同上转换机理吸收相邻Er 3+

的能

量,完成从4I 11/2到2

F 7/2能级的跃迁,如图4(b )所示.由以上分析可知,激发态吸收过程和Er 3+

—Y b 3+之

间的能量转移是Er 3+

在这种材料中的主要上转换机理,位于520nm 和544nm 处的上转换发光是一个双光子吸收过程.频率上转换是影响放大器性能和抽运效率的主要因素,尤其是激发态吸收过程,它消耗铒的上能级离子数,与抽运光能量密度有关,限制

了E DW A 的最高抽运功率[14]

,在增益测试中可以明确地看到上转换对于放大器增益和最大抽运功率的影响

.

图4 Er 3+—Y b 3+上转换能级图

3121增 益

E DW A 的相对增益定义为G =10log (P p +s Π

P s )

[15—17]

,其中P s 和P p +s 分别为抽运光输入前后光

谱仪的输出信号(单位:mW ).实际上,由dB 和dBm 的换算关系可知,将抽运光输入前后光谱仪读数(单位:dBm )相减即为相对增益值.图5为输入信号光为016mW 时,相对增益随抽运功率变化示意图.输入信号光波长为1535nm ,对应于Er 3+

在这种材料的发射峰.从图中可以看到,当抽运功率增至160mW 时,相对增益逐渐增加到最大值1171

dB.

图5 相对增益随抽运功率变化示意图

41结 论

本文采用LaF 3∶Er ,Y b 纳米颗粒掺杂有机Π无机杂化材料作为有源材料,制备了掩埋条形光波导放大器,研究了放大器在室温下的增益特性和波导中

的频率上转换现象.当抽运功率60mW 时,波导中

明显可见绿色上转换发光,观测到Er 3+从2

H 9/2,

2

H 11/2,4S 3/2,4F 9/2到基态4

I 15/2跃迁分别对应的4个

发射峰405nm ,520nm ,544nm 和650nm ,分析了它们的产生机理.对于长度为111cm 的器件,当输入信号光016mW ,抽运功率160mW 时,在1535nm 波长处获得1171dB 的相对增益.

[1]S looff L H ,Blaaderen A V ,P olman A ,Hebbink G A ,K link S I ,VanVeggel F C J M ,Reinhoudt D N ,H ofstraat J W 2002J .Appl .

Phys .913955

[2]Y an Y C ,Faber A J ,W aal H D ,K ik P G,P olman A 1997Appl .

Phys .Lett .712922

[3]W ong W H ,Pun E YB ,Chan K S 2004Appl .Phys .Lett .84176

7

7613期张 丹等:LaF 3∶Er ,Y b 纳米颗粒掺杂有机Π无机杂化材料制备光波导放大器及特性研究

[4]Han H S,Seo S Y,Shin J H2002Appl.Phys.Lett.813720

[5]W ang H S,Qian G D,W ang M Q2002Mater.Rev.1644(in

Chinese)[王怀善、钱国栋、王民权2002材料导报1644] [6]Quang A Q L,Bess on E,Hierle R,M ehdi A,Reye C,C orriu Z yss

R J,Pietralunga S,Ledoux I2006Proc.S PIE.6123612302 [7]W ong W H,Chan K S,Pun E Y B2005Appl.Phys.Lett.87

01110

[8]Zhang D,Liu K,Zhang D M,Cheng C H,Zhang X Z,Zhang H M,

Pan Y B2006J.Semcon.271857(in Chinese)[张 丹、刘 

克、张大明、程传辉、张希珍、张海明、潘裕斌2006半导体学

报271857]

[9]Lin H,Jiang S,Wu J F,S ong F,Peyghambarian N,Pun E Y B

2003J.Phys.D:Appl.Phys.36812

[10]Qiao X S,Fan X P,W ang M Q2006Appl.Phys.Lett.89111919[11]Qiao X S,Fan X P,W ang J,W ang M Q2006J.Appl.Phys.99

074302

[12]H over G N V D,Snoeks E,P olman A,Dam C V,U ffelen J W M

V,Sm it M K1996J.Appl.Phys.791258

[13]K ik P G,P olman A2003J.Appl.Phys.7935008

[14]Hao YL,Wu Y M2003Laser.Optelec.Pro.4045(in Chinese)

[郝寅雷、吴亚明2003激光与光电子学进展4045]

[15]K arve G,Bihari B,Chen R T2000Appl.Phys.Lett.771253

[16]S ong F,Su R Y,Fu Q,T an B,T ian J G,Zhang G Y2005Acta

Phys.Sin.545228(in Chinese)[宋 峰、苏瑞渊、傅 强、覃

 斌、田建国、张光寅2005物理学报545228]

[17]S ong Q,S ong C L,Li C R,Li S F,Li J Y2005Acta Phys.Sin.

541624(in Chinese)[宋 琦、宋昌烈、李成仁、李淑凤、李建

勇2005物理学报541624]

Fabrication of La F3:Er,Y b nanoparticle doped organic2inorganic hydrid material waveguide amplifier and its propertie s3

Zhang Dan1) W ang Zhao2M ing2) W ang Y an2Shuang1) Bo Shu2Hui3) Zhen Zhen3) Zhang Da2M ing1)

1)(State K ey Laboratory on Integrated Optoelectronics,College o f Electronic Science and Engineering,Jilin Univer sity,Changchun 130012,China)

2)(Applied Technology College o f Jilin Univer sity,Changchun 130012,China)

3)(Laboratory o f Organic Optoelectronic Functional Materials and Molecular Engineering,Technical Institute o f Physics and Chemistry,

Chinese Academy o f Sciences,Beijing 100080,China)

(Received10July2007;revised manuscript received21N ovember2007)

Abstract

LaF3:Er,Y b nanoparticles doped organic2inorganic hydrid material waveguide am plifier is fabricated.The optical gain and upconversion in the waveguide are studied.The upconversion em ission bands at405,520,544and650nm are assigned to2H9/2→4I15/2,2H11/2→4I15/2,4S3/2→4I15/2and4F9/2→4I15/2transitions,respectively.The possible upconversion mechanism of Er3+in this material was analyzed.A1155dBΠcm relative gain was observed when pum ped by a976nm laser at160mW power.

K eyw ords:waveguide am plifier,optical gain,upconversion

PACC:4230Q,4280S,4270J

3Project supported by the National Basic Research Program(973Program)of China(G rant N o.2006C B302803),the National Natural Science F oundation of China(G rant N o.60507004),Program for New Century Excellent T alents in University(G rant N o.NCET20520307)and Program for Science& T echnology Development of Jilin Province(G rant N o.20050110).

C orresponding author.E2mail:zhangdm@https://www.wendangku.net/doc/a7490572.html,

8761物 理 学 报58卷

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

纳米科学与技术的发展历史

纳米科学与技术的发展历史 物三李妍 1130060110 纳米科学与技术(简称纳米科技)是80年代后期发展起来的,面向21 世纪的综合交叉性 学科领域,是在纳米尺度上新科学概念和新技术产生的基础.它把介观体系物理、量子力学、混沌物理等为代表的现代科学和以扫描探针显微技术、超微细加工、计算机等为代表的高技术相结合, 在纳米尺度上(0.1nm到10nm之间)研究物质(包括原子、分子)的特性和相互 作用,以及利用原子、分子及物质在纳米尺度上表现出来的特性制造具有特定功能的产品,实现生产方式的飞跃。 历史背景 对于纳米科技的历史, 可以追溯到30多年前着名物理学家、诺贝尔奖获得者Richard Feynman于美国物理学会年会上的一次富有远见性的报告 . 1959 年他在《低部还有很大 空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说, 人类 能够用最小的机器制造更小的机器。直至达到分子或原子状态, 最后可以直接按意愿操纵原子并制造产品。他在这篇报告中幻想了在原子和分子水平上操纵和控制物质.他的设想 包括以下几点: (1)如何将大英百科全书的内容记录到一个大头针头部那么大的地方; (2) 计算机微型化; (3)重新排列原子.他提醒到, 人类如果有朝一日能按自己的主观意愿排列原子的话, 世界将会发生什么? (4) 微观世界里的原子.在这种尺度上的原子和在体块材 料中原子的行为表现不同.在原子水平上, 会出现新的相互作用力、新颖的性质以及千奇 百怪的效应. 就物理学家来说, 一个原子一个原子地构建物质并不违背物理学规律.这正 是关于纳米技术最早的构想。20 世纪70 年代, 科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist 和Buhrman 利用气相凝集的手段制备出纳米颗粒, 提出了纳米晶体材料的概念, 成为纳米材料的创始者。之后, 麻省理工学院教授德雷克斯勒积极提倡纳米科技的研究并成立了纳米科技研究小组。纳米科技的迅速发展是在20 世纪 80 年代末、90 年代初。1981 年发明了可以直接观察和操纵微观粒子的重要仪器——— 扫描隧道显微镜(STM)、原子力显微镜(AFM), 为纳米科技的发展起到了积极的促进作用。1984 年德国学者格莱特把粒径6 nm 的金属粉末压成纳米块, 经研究其内部结构, 指出了它界面奇异结构和特异功能。1987 年, 美国实验室用同样的方法制备了纳米TiO2 多晶体。1990 年7月第一届国际纳米科学技术会议与第五届国际扫描隧道显微学会议在美国巴尔

浅谈纳米材料应用及发展前景

Jiangsu University 浅谈纳米材料应用及发展前景

摘要 纳米材料展现了异常的力学、电学、磁学、光学特性、敏感特性和催化以及光活性,为新材料的发展开辟了一个崭新的研究和应用领域。纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的应用前景使得纳米材料及其技术成为目前科学研究的热点之一,被认为是世纪的又一次产业革命。纳米材料向国民经济和高新科技等各个领域的渗透以及对人类社会的进步的影响是难以估计的。 关键词:纳米材料;纳米应用;量子尺寸效应 1.前言 纳米材料和纳米结构无论在自然界还是在工程界都不是新生事物。在自然界存在大量的天然纳米结构,只不过在透射电镜的应用以前人们没有发现而已。 在工程方面,纳米材料80年代初发展起来的,纳米材料其粒径范围在1—100nm之间,故纳米材料又称超微晶材料。它包括晶态、非晶态、准晶态的金属、陶瓷和复合材料等。由于极细的晶粒和大量处于晶界和晶粒缺陷中心的原子,纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前已受到世界各

国科学家的高度重视。美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年内将投资250亿日元发展纳米材料和纳米科学技术;英国也将发展纳米材料科学技术作为重振英国工业的突破;我国的自然科学基金“863”计划、“793”计划以及国家重点实验室都将纳米材料列为优先资助项目[1]。美国科学技术委员会把“启动纳米技术的计划看作是下一次工业革命的核心”[2]。 2.纳米材料的制备 现行的纳米材料制备方法很多。但是真正能够高效低成本制备纳米材料的方法还是现在各个国家研究的重点。目前已报的工艺方法主要有以下几种:物理气相沉积法(PVD)和化学气相沉积法(CVD)、等离子体法、激光诱导法、真空成型法、惰性气体凝聚法、机械合金融合法、共沉淀法、水热法、水解法、微孔液法、溶胶—凝胶法等等。 3.纳米材料的主要应用 3.1纳米材料在工程方面的应用 纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如SiC 等在纳米尺度下在较低的温度下即可烧结,另一方面,纳米材料作为烧结过程中的活性添加剂使用也可降低烧结温度,缩短烧结时间。纳米粉体可用于改善陶瓷的性能,其原因在于微小的纳米微粒不仅比表面积大,而且扩散速度快,因而进行烧结时致密化的速度就快,烧结

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

无机纳米材料简介

无机纳米材料简介 无机纳米材料是纳米材料从物质的类别来划分出的一种纳米材料。指其组成的主体是无机物质。 无机纳米材料主要包括:纳米氧化物、纳米复合氧化物、纳米金属及合金,以及其他无机纳米材料。 一、纳米氧化物: 纳米氧化物指的是粒径达到纳米级的氧化物,比如纳米二氧化钛 (T25),纳米二氧化硅(SP30),纳米氧化锌(JE01),纳米氧化铝(L30),纳米氧化锆,纳米氧化铈,纳米氧化铁等等。 纳米氧化物的基本技术指标包含:粒径,含量,比表面积,pH, 以及一些金属成分的含量。 纳米氧化物在催化领域的应用 纳米催化剂具有表面效应,吸附特性及表面反应等特性,因此纳米催化剂在催化领域的应用十分广泛。实际上,国际上已把纳米粒子催化剂称为第四代催化剂。我国目前在纳米材料的研究应用水平在某些方面处于世界领先地位,已实现产业化的SiO2(如VK-SP30)、CaCO3、TiO2(如VK-T25)、ZnO等少数几个品种,这些制备出来的纳米材料在催化领域中主要用于两个方面:一是直接用作主催化剂,二是作为纳米催化剂载体制成负载型催化剂使用。国际现在企业主要有杜邦,德固赛,国内的有杭州万景等企业生产纳米氧化物系列的产品。 2.1 石油化工催化领域 由于纳米材料颗粒的大小可以人工控制,又由于尺寸小,比表面积大,表面的键态和颗粒内部不同及表面原子配位不全等,从而导致表面的活性部位增加。另外,随着粒径的减小,表面光滑程度变差,形成了凹凸不平的原子台阶,这样就增加了化学反应的接触面。利用纳米微粒的高比表面积和高活性这些特性,可以显著提高催化效率。例如,纳米Ni粉可将有机化学加氢和脱氢反应速度提高15倍;超细Pt粉、碳化钨粉是高效的加氢催化剂;在甲醛氧化制甲醇反应中,使用纳米SiO2,选择性可提高5倍,利用纳米Pt催化剂,放在TiO2担体上,通过光照,使甲醇水溶液制氢产率

纳米科技的发展现状及前景

纳米技术(nanotechnology),也称毫微技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用的一种技术。 1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容 从迄今为止的研究来看,关于纳米技术分为三种概念: 第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。 第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。 第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。关键突破 1990年,IBM公司阿尔马登研究中心的科学家成功地对单个的原子进行了重排,纳米技术取得一项关键突破。他们使用一种称为扫描探针的设备慢慢地把35个原子移动到各自的位置,组成了IBM三个字母。这证明费曼是正确的,二个字母加起来还没有3个纳米长。不久,科学家不仅能够操纵单个的原子,而且还能够“喷涂原子”。使用分子束外延长生长技术,科学家们学会了制造极薄的特殊晶体薄膜的方法,每次只造出一层分子。目前,制造计算机硬盘读写头使用的就是这项技术。著名物理学家、诺贝尔奖获得者理查德· 费曼预言,人类可以用小的机器制作更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造产品,这是关于纳米技术最早的梦想。 纳米技术包含下列四个主要方面:

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

常见纳米材料的制备技术

东华大学研究生课程论文封面 教师填写: 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名: 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

常见纳米材料的制备技术 1 概述 纳米材料是指材料的任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料,广义来讲,数百纳米的尺度亦可称为纳米材料。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能,纳米材料的性能往往由量子力学决定。按照纳米材料的空间形态可以将其分为4类:三维尺寸均为纳米量级的纳米粒子或人造原子被称为零维纳米材料;纳米纤维为一维纳米材料;纳米膜(片、层)可以称为二维纳米材料;而有纳米结构的材料可以称为三维纳米材料。目前只有纳米粉末实现了工业化生产(如碳酸钙、氧化锌等),静电纺纳米纤维的产量能够满足实验的需求,其它纳米材料基本上还处于实验室研究阶段[1]。 2 常见的纳米材料 2.1 零维纳米材料 指空间中三个维度的尺寸均在纳米尺度,如纳米尺度颗粒、原子团簇等。纳米球全称“原子自组装纳米球固体润滑剂”,是具有二十面体原子团簇结构的铝基合金,是一种新型纳米/非晶合金固体抗磨自修复剂,采用急冷方法制备抗磨剂粉体,在合金从液体到固体的凝固过程中,形成纳米晶/非晶的复合结构,利用粒度控制的方法对抗磨剂粉末进行超微细化处理而成。该材料具有高硬度、高强度,并具有一定的韧性等性能,在多种减摩自修复机制的综合作用下呈现优良的减摩和抗磨性能,可以起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。 2.2 一维纳米材料 一维纳米材料指空间中有二维处于纳米尺度的材料,如纳米纤维、纳米棒、碳纳米管等。 静电纺纳米纤维是目前唯一一种能够连续制备纳米纤维的技术,它是利用高压电场力将纤维从导电溶液中抽拔出来,在抽拔过程中纤维被拉伸变细、溶剂挥

简述纳米材料的发展历程

简述纳米材料的发展历程 纳米材料问世至今已有20多年的历史,大致已经完成了材料创新、性能开发阶段,现在正步人完善工艺和全面应用阶段。 “纳米复合聚氨酯合成革材料的功能化”和“纳米材料在真空绝热板材中的应用”2项合作项目取得较大进展。具有负离子释放功能且释放量可达2000以上的聚氨酯合成革符合生态环保合成革战略升级方向,日前正待开展中试放大研究。 该产品的成功研发及进一步产业化将可辐射带动300多家同行企业的产品升级换代。联盟制备出的纳米复合绝热芯材导热系数可控制为低达4.4mW/mK。该产品已经在企业实现了中试生产,正在建设规模化生产线。 联盟将重点研究开发阻燃型高效真空绝热板及其在建筑外墙保温领域的应 用研发和产业化,该技术的开发将进一步促进我国建筑节能环保技术水平的提升,带动安徽纳米材料产业进入高速发展期。 纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。 纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。 纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 就熔点来说,纳米粉末中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量,造成超微粒子的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。 一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。

纳米材料研究现状及应用前景要点

纳米材料研究现状及应用前景 摘要:文章总结了纳米粉体材料、纳米纤维材料、纳米薄膜材料、纳米块体材料、纳米复合材料和纳米结构的制备方法,综述了纳米材料的性能和目前主要应用领域,并简单展望了纳米科技在未来的应用。 关键词:纳米材料;纳米材料制备;纳米材料性能;应用 0 引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得铁纳米微粒以来,纳米材料的制备、性能和应用等各方面的研究取得了重大进展。纳米材料的研究已从最初的单相金属发展到了合金、化合物、金属无机载体、金属有机载体和化合物无机载体、化合物有机载体等复合材料以及纳米管、纳米丝等一维材料,制备方法及应用领域日新月异。 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,包括纳米粉体( 零维纳米材料,又称纳米粉末、纳米微粒、纳米颗粒、纳米粒子等) 、纳米纤维( 一维纳米材料) 、纳米薄膜( 二维纳米材料) 、纳米块体( 三维纳米材料) 、纳米复合材料和纳米结构等。纳米粉体是一种介于原子、分子与宏观物体之间的、处于中间物态的固体颗粒,一般指粒度在100nm以下的粉末材料。纳米粉体研究开发时间最长、技术最成熟,是制备其他纳米材料的基础。纳米粉体可用于:高密度磁记录材料、吸波隐身材料、磁流体材料、防辐射材料、单晶硅和精密光学器件抛光材料、微芯片导热基片与布线材料、微电子封装材料、光电子材料、先进的电池电极材料、太阳能电池材料、高效催化剂、高效助燃剂、敏感元件、高韧性陶瓷材料、人体修复材料、抗癌制剂等。纳米纤维指直径为纳米尺度而长度较大的线状材料,如纳米碳管,可用于微导线、微光纤( 未来量子计算机与光子计算机的重要元件) 材料、新型激光或发光二极管材料等。纳米薄膜分为颗粒膜与致密膜。颗粒薄膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜;致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于气体催化材料、过滤器材料、高密度磁记录材料、光敏材料、平面显示器材料、超导材料等。纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料,主要用途为超高强度材料、智能金属材料等。纳米复合材料包括纳米微粒与纳米微粒复合( 0- 0 复合) 、纳米微粒与常规块体复合( 0- 3复

纳米材料与技术思考题2016

纳米材料导论复习题(2016) 一、填空: 1.纳米尺度是指 2.纳米科学是研究纳米尺度内原子、分子和其他类型物质的科学 3.纳米技术是在纳米尺度范围内对原子、分子等进行的技术 4.当材料的某一维、二维或三维方向上的尺度达到纳米范围尺寸时,可将此类材料称为 5.一维纳米材料中电子在个方向受到约束,仅能在个方向自由运动,即电子在 个方向的能量已量子化一维纳米材料是在纳米碳管发现后才得到广泛关注的,又称为 6.1997年以前关于Au、Cu、Pd纳米晶样品的弹性模量值明显偏低,其主要原因是 7.纳米材料热力学上的不稳定性表现在和两个方面 8.纳米材料具有高比例的内界面,包括、等 9.根据原料的不同,溶胶-凝胶法可分为: 10.隧穿过程发生的条件为. 11.磁性液体由三部分组成:、和 12.随着半导体粒子尺寸的减小,其带隙增加,相应的吸收光谱和荧光光谱将向方向移动,即 13.光致发光指在照射下被激发到高能级激发态的电子重新跃入低能级被空穴捕获而发光的微观过程仅在激发过程中发射的光为在激发停止后还继续发射一定时间的光为

14.根据碳纳米管中碳六边形沿轴向的不同取向,可将其分成三种结构:、和 15.STM成像的两种模式是和. 二、简答题:(每题5分,总共45分) 1、简述纳米材料科技的研究方法有哪些? 2、纳米材料的分类? 3、纳米颗粒与微细颗粒及原子团簇的区别? 4、简述PVD制粉原理 5、纳米材料的电导(电阻)有什么不同于粗晶材料电导的特点? 6、请分别从能带变化和晶体结构来说明蓝移现象 7、在化妆品中加入纳米微粒能起到防晒作用的基本原理是什么? 8、解释纳米材料熔点降低现象 9、AFM针尖状况对图像有何影响?画简图说明 1. 纳米科学技术 (Nano-ST):20世纪80年代末期刚刚诞生并正在崛起的新科技,是研究在千万分之一米10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范

纳米技术发展史

纳米技术发展史 【摘要】纳米技术是21世纪科技发展的制高点,是新工业革命的主导技术,它将引起一场各个领域生产方式的变革,也将改变未来人们的生活方式和工作方式,使得我们有必要认识一下纳米技术的发展史。纳米技术的发展史是一个很长的过程,同时也是一个广泛应用的过程。 【关键词】发展纳米技术纳米材料 纳米技术基本概念 纳米技术是以纳米科学为基础,研究结构尺度在0.1~100nm范围内材料的性质及其应用,制造新材料、新器件、研究新工艺的方法和手段。纳米技术以物理、化学的微观研究理论为基础,以当代精密仪器和先进的分析技术为手段,是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)相结合的产物。在纳米领域,各传统学科之间的界限变得模糊,各学科高度交叉和融合。纳米技术包含下列四个主要方面: 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。 过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 2、纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。 3、纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。纳米技术是建设者的最后疆界,它的影响将是巨大的。 纳米技术的发展史 1959年著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小 的机器制做更小的机器,最后将变成根据人类意愿,逐个地排列原 子,制造产品,这是关于纳米技术最早的梦想。 20世纪70年代科学家开始从不同角度提出有关纳米科技的构想,1974年,科学家 唐尼古奇最早使用纳米技术一词描述精密机械加工 1982年科学家发明研究纳米的重要工具——扫描隧道显微镜,揭示了一个 可见的原子、分子世界,对纳米科技发展产生了积极的促进作用。1990年7月第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科

无机纳米材料在聚合物改性中的作用

无机纳米材料在聚合物改性中的作用摘要:通过添加填料、组分对聚合物改性,能使聚合物的的刚性、耐热性、耐候行及化学特性得到一定程度的改善。随着高新技术的飞速发展,对材料的要求越来越高,特别是对聚合物材料的强度、韧性、耐热性等方面的要求更是愈来愈苛刻,愈来愈趋于综合化,但是大量研究及生产实践证实,在相同的填充条件下,超细填充体系的力学性能高于普通填料填充体系,即超细体系的填充改性效果更好,改性效率更高,因此超细填料获得了广泛的应用。纳米粒子的出现是制造技术的一大突破它的出现对高性能陶瓷、合金、塑料等复合材料的研制和开发产生了重大影响。由于纳米材料的纳米尺寸效应、大的比表面积、表面原子处于高度活化状态、与聚合物强的界面相互作用产生声、光、电、磁等性质,将其应用于聚合物的改性,开发新型的功能复合材料具有十分重要的意义。 1 纳米SiO2: 1.1 纳束SiO2/UP 玻璃钢虽具有质量轻、强度高、耐腐蚀等特点,但其耐磨性、硬度、耐热性、耐水性等性能仍需进一步改善。因此,人们开始研究利用纳米材料卓越的特殊功能来改善玻璃钢材料的性能缺陷。 未明等通过在UP中加入纳米SiO2,得到了耐磨性、硬度、强度、耐热、耐水等性能得到大幅度提高的玻璃钢。通过实验发现:当向UP中添加3~5的纳米SiO2后,其耐磨性可提高1 ~2倍;奠氏硬度从原来的2级左右提高到2.8 ~2.9级,接近天然大理石的硬度;拉伸强度从133 k g/c m 增加至277 k g/c m ,即大大增加了材料的韧性;耐水性能也明显改善。此外研究者还对纳米SiO2改性UP的改性机理进行了探讨,认为:( 1 ) 由于纳米SiO2颗粒尺寸小、比表面积大、表面原子数多、表面能高、表面严重配位不足,因此表面活性极强,易于与树脂中的氧起键合作用,提高分子在高分子键的空隙中,而其又具有较高的流动性,故使添加纳米SiO2的树脂材料强度、韧性、延展性均大大提高,即表现在拉仲强度、抗冲击性能等方面的提高。( 2 ) 由于纳米SiO2其分子状态是三维链状态的羟基,与树脂中氧键结合或镶嵌在树脂键中,可增强树脂硬度。由于纳米SiO2的小尺寸效应,使材料表面光洁度大大改善,摩擦系数减少,加入纳米颗粒的高强性,因此使材料耐磨性大大提高,且表面光洁度好。( 3 ) 由于纳米SiO2颗粒小,在高温下仍具有高强度、高韧、稳定性好等特点,可使材料的表面细洁度增加,使材料更加致密,同时也增加材料的耐水性和热稳定性。 葛曷一等通过比较不同粒径粒料对不饱和树脂改性作用的差异,得出微米级粒料对不饱和树脂无增韧作用;纳米级粒料对UP具有一定的增韧教果,粒径相同,比表面积越大的粒料对UP的增韧作用越大,作者通过研究发现,加入3%的比表面积较大的纳米SiO2可使UP的冲击韧性提高60%,由此说明,比表面积大的纳米材料表面缺陷少,非配对原子多,表面活性高,与UP发生物理或化学结合的可能性大,增强粒子与UP的界面结合.因而可承担一定的载荷,吸收大量冲击能,具有增强增韧的功效。从纳米SiO2加入量超过3%后,UP冲击韧性开始下降可以推断复合材料的韧性受超微细粉粒料的加入量影响可能与UP基体层厚度L和UP/粒料的L1有关。当2L1

相关文档
相关文档 最新文档