文档库 最新最全的文档下载
当前位置:文档库 › 第五章控制系统稳定性分析

第五章控制系统稳定性分析

第五章控制系统稳定性分析
第五章控制系统稳定性分析

第五章 控制系统的稳定性分析

5.1 已知开环系统的传递函数如下,试用劳斯判据判别其闭环系统的稳定性。

(1))

3)(2()

1(10)()(+++=

s s s s s H s G

特征方程为:0101652

3

=+++s s s

10

1410

5

1610

1

2

3s s s

s 第一列符号为正,故闭环系统稳定

(3) )

05600300(100

)()(2

2++=s s s s H s G 特征方程为 0100506003002

34

=+++s s s

列劳斯表 100

1200100

50

0600100503000

1

234-s

s s

s s

第一列符号为负系统不稳定,根据符号变化的次数可判断系统正根数为2 5.2 已知单位负反馈系统开环传递函数如下)

12(

)(22++

=

s w w

s s K s G n

n

ξ式中

s r a d w n /90=,2.0=ξ试确定K 取何值闭环系统稳定。

解:系统特征方程为:

0810********

3=+++K s s s K

K K

s

s s

s 36

8100810036

810010

1

23-

?

?

?

??-?>->36036036)36(81000K K K K 360<

5.3 已知系统开环传递函数为)

1()1(10)()(-+=s s s K s H s G 试确定闭环系统稳定时K

的临界值。

解:系统闭环特征方程为

010)110()()(12

=+-+=+K s K s s H s G

K

K K s

s s

100

1101010

1

2-

??

?>≥?≥-0

1.00110K K K 1.0≥?K 临界值K=0.1

5.5 设闭环反馈控制系统特征方程如下,试确定有几个根在右半[s]平面 (2)080241022

34

=++++s s s s

80

10480

2

24280

1010

1

234-s

s s

s s

第一列有负号出现系统不稳定,有2个右根 (4) 01249332

34

5

=----+s s s s

s

12

4

.812

5.71812

0012

934310

1

2

3

45-------s

s s s

s s

辅助方程为 01293)(2

4=--=s s s F

s s s F ds

d 1812)(3

-=

0)1)(4(31293)(2

2

2

4

=+-=--=s s s s s F

22,1±=s 14,3j s ±= 有1个右根

5.6 单位反馈系统开环传递函数为)

3)(2()(10)(+++=

s s s a s s G ,试确定

(1)使系统稳定的a 值

(2) 使系统特征根均落在[s]平面中Re=-1这条线左边的a 值。 解:(1)系统特征方程为:

0101652

3=+++a s s s

a

a

a

s

s s

s 10216105

1610

1

2

3-

要使系统稳定必有:?

??->?>802160

010a a a a

80<

(2)要使特征根落在-1左侧,则建立新变量 令1-=z s

代入特征方程

010)1(16)1(5)1(2

3

=+-+-+-a z z z

整理有 0410922

3

=++++a z z z

4

10574

1020

910

1

23+-+a a

a z z

z z

?

??-->?>+4.10574.00410a a a a

4

.14.0<<-a

5.7 设一单位反馈控制系统开环传递函数为 )

1()(+=Ts s K s G ,现希望系统特征方程

的所有根都在s= —a 这条线的左边区域内,试确定所需的K 值和T 值。 解:系统的特征方程为: 02

=++K s Ts

a z s -=代入上式

0)1()1(2

=+-+-K z z T

整理得: 0)21(2

2

=+-+-+K a Ta

z Ta Tz

K

a Ta Ta

K

a Ta

T z z

z +--+-2

2

1221

???

????<?>+-<->a K a Ta a K K a Ta a T a T Ta T 5.002102102102

2

5.9 设系统的开环传递函数为 )

10)(1(10)()(++=s s s s H s G ,试画出其伯德图,并

确定系统稳定否?

解:标准形式传递函数为

)

11.0)(1(1

)()(++=

s s s s H s G 环节

1

1+s 转折频率 w T1=1 环节

1

1.01+s 对应的转折频率为 w T2=1/T 2=10

W c =1,在L(w)>0内,相频特性曲线没有穿过-π线 N=0, P=0 Z=P-2N=0 闭环系统稳定

5.10设系统开环频率特性如图5-19所示,试判别其闭环系统稳定性. 解:奈氏判据应用 N P Z 2-=

a )p=1 21=N 2

P

N = 系统稳定

b) p=1 21-=N 2P

N ≠ 系统不稳定

c) p=1 21-=N 2P

N ≠ 系统不稳定

d) p=0 0=N 2P N = 系统稳定 e) p=0 0=N 2P N = 系统稳定 f) p=2 1=N 2

P N =

系统稳定

g) p=0 2

1-=N 2

P

N ≠ 系统不稳定

h) p=1 2

1=N 2

P

N = 系统稳定

i) p=2 0=N 2

P N ≠

系统不稳定

5.11 对于下列系统,试画出其伯德图,求出相位裕量γ和幅值裕量Kg (1))

1005.0)(102.0(250

)()(++=s s s s H s G

解: 环节

1

02.01+s 转折频率W T1=50 环节1

005.01+s 转折频率W T2=200 幅频特性2

2

)

005.0(1)

02.0(1250

)(w w w w A ++=

相频特性 w arctg w arctg w 005.002.090)(---=

? L(w)=20lgK=48dB

-20lg10-(-20lg50)+(-40lg50)-(-40lgWc)=28

2850

lg

4010

50lg

20=+Wc s r a d Wc /112=?

185

296690112

005.011202.090)(-=---=?-?--=arctg arctg w c ?

相角裕量

5

)(180-=+=Wc ?γ

180

005.002.090)(-=---=g g g w arctg w arctg w ?

s

rad w w w w arctg w arctg w arctg w arctg g g

g g g g g /100005.0102.0005.09002.090

005.002.0=?=

?-=?=+

幅值裕量 1)

005.0(1)

02.0(1250

)(2

2

=++=

g g g g w w w w A

0)(lg 20=-=wg A Kg

综合训练:

已知系统框图如图所示,其单位阶跃响应的超调量%3.16%=σ,峰值时间s t p 1=,试求:

(1)开环传递函数 (2)闭环传递函数 (3)K 及τ的值

(4)用劳斯判据判断闭环稳定性 (5)当r(t)=1.5t 时,稳态误差。

解:

(1)开环传递函数为:

)(1010)()(2

s G s

s s K s H s G =++=

τ

(2)闭环传递函数

K

s s K

s G s G s H s G s G s 10)101(10)

(1)()

()(1)()(2

+++=

+=

+=

τφ

(3)根据单位阶跃响应指标

典型二阶振荡系统有?

?

?+==τ

ξ1012102n n w K w

5.0%100%3.16%2

1=??==--

ξσξ

ξπ

e

63

.3112

=?-=

=n n p w w s t ξ

π

K=1.32 τ=0.26 (4)特征方程:010)101(2

=+++K s s

τ

K

K

s

s s

101011010

1

2τ+ 第一列符号全部为正,故系统稳定

(5)

开环传递函数

)101(10)(τ++=s s K s G 为Ⅰ型系统

则开环增益为

63.310110=+τ

K

稳态误差41.05.1==

v

ss K e

系统稳定性意义以及稳定性的几种定义.

系统稳定性意义以及稳定性的几种定义 一、引言: 研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。 在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。从抽象的意义来说,系统和信号都可以看作是序列。但是,系统是加工信号的机构,这点与信号是不同的。人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。描述系统的方法还有符号、单位脉冲响应、差分方程和图形。 电路系统的稳定性是电路系统的一个重要问题,稳定是控制系统提出的基本要求,也保证电路工作的基本条件;不稳定系统不具备调节能力,也不能正常工作,稳定性是系统自身性之一,系统是否稳定与激励信号的情况无关。对于线性系统来说可以用几点分布来判断,也可以用劳斯稳定性判据分析。对于非线性系统的分析则比较复杂,劳斯稳定性判据和奈奎斯特稳定性判据受到一定的局限性。 二、稳定性定义: 1、是指系统受到扰动作用偏离平衡状态后,当扰动消失,系统经过自身调节能否以一定的准确度恢复到原平衡状态的性能。若当扰动消失后,系统能逐渐恢复到原来的平衡状态,则称系统是稳定的,否则称系统为不稳定。 稳定性又分为绝对稳定性和相对稳定性。 绝对稳定性。如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量保持在某一状态上,则控制系统处于平衡状态。 (1)如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种系统是稳定的。 (2)如果线性系统的输出量呈现持续不断的等幅振荡过程,则称其为临界稳定。(临界稳定状态按李雅普洛夫的定义属于稳定的状态,但由于系统参数变化等原因,实际上等幅振荡不能维持,系统总会由于某些因素导致不稳定。因此从工程应用的角度来看,临界稳定属于不稳定系统,或称工程意义上的不稳定。) (3)如果系统在初始条件作用下,其输出量无限制地偏离其平衡状态,这称系统是不稳定的。 实际上,物理系统的输出量只能增大到一定范围,此后或者受到机械制动装置的限制,或者系统遭到破坏,也可以当输出量超过一定数值后,系统变成非线性的,从而使线性微分方程不再适用。因此,绝对稳定性是系统能够正常工作的前提。

实验一--控制系统的稳定性分析

实验一--控制系统的稳定性分析

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响;

3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递 函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++,用MATLAB编写 程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB命令窗口写入程序代码如下:z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k)

Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den)

二阶瞬态响应特性与稳定性分析资料报告

广西大学实验报告纸 组长: 组员: 指导老师: 成绩: 学院:电气工程学院 专业:自动化 班级:163 实验容:实验五 二阶瞬态响应特性与稳定性分析 2018年5月11日 【实验时间】 2018年 5月 11日 【实验地点】 综合808 【实验目的】 1、以实际对象为基础,了解和掌握典型二阶系统的传递函数和模拟电路图。 2、观察和分析典型二阶系统在欠阻尼、临界阻尼、过阻尼的响应曲线。 3、学会用MATLAB 分析系统稳定性。 【实验设备与软件】 1、Multisim 10电路设计与仿真软件 2、labACT 试验台与虚拟示波器 3、MATLAB 数值分析软件 【实验原理】 1、被模拟对象模型描述 永磁他励电枢控制式直流电机如图1(a )所示。根据Kirchhoff 定律和机电转换原理,可得如下方程 u k Ri dt di L e =++ω (1) l t T i k b dt d J -=+ωω (2) ωθ =dt d (3) 式中,各参数如图1(a )所示:L 、R 为电机和负载折合到电机轴上的转动惯量,Tl 是折合到电机轴上的总的负载转矩,b 是电机与负载折合到电机轴上的粘性摩擦系数;kt 是转矩系数(Nm/A ),k e 是反电动势 系数(Vs/rad )。令R L /e =τ(电磁时间常数),b J /m =τ(机械时间常数) ,于是可由这三个方程 画出如图1(b )的线性模型框图。 将Tl 看成对控制系统的扰动,仅考虑先行模型框图中()()s s U Θ→的传递函数为 ()()()()()s Rb k k s s Rb k s U s s G t e m e t 1 /11/?+++=Θ= ττ (4) 考虑到电枢电感L 较小,在工程应用中常忽略不计,于是上式转化为

实验四 控制系统的稳定性分析

西京学院实验教学教案实验课程:现代控制理论基础 课序: 4 教室:工程舫0B-14实验日期:2013-6-3、4、6 教师:万少松 一、实验名称:系统的稳定性及极点配置二、实验目的 1.巩固控制系统稳定性等基础知识;2.掌握利用系统特征根判断系统稳定性的方法;3.掌握利用李雅普诺夫第二法判断系统的稳定性的方法;4. 掌握利用状态反馈完成系统的极点配置;5.通过Matlab 编程,上机调试,掌握和验证所学控制系统的基本理论。三、实验所需设备及应用软件序号 型 号备 注1 计算机2Matlab 软件四、实验内容1. 利用特征根判断稳定性;2. 利用李雅普诺夫第二法判断系统的稳定性;3.状态反馈的极点配置;五、实验方法及步骤1.打开计算机,运行MATLAB 软件。2.将实验内容写入程序编辑窗口并运行。3.分析结果,写出实验报告。 语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器

一、利用特征根判断稳定性 用matlab 求取一个系统的特征根,可以有许多方法,如,,,()eig ()pzmap 2ss zp ,等。下面举例说明。 2tf zp roots 【例题1】已知一个系统传递函数为,试不同的方法分析闭环系统的稳定性。()G s 2(3)()(5)(6)(22)s G s s s s s += ++++解:num=[1,3]den=conv([1,2,2],conv([1,6],[1,5]))sys=tf(num,den)(1)() eig p=eig(sys)显示如下:p = -6.0000 -5.0000 -1.0000 + 1.0000i -1.0000 - 1.0000i 所有的根都具有负的实部,所以系统稳定。(2) ()pzmap pzmap(sys) 从绘出的零极点图可看见,系统的零极点都位于左半平面,系统稳定。(3)2()tf zp [z,p,k]=tf2zp(num,den) (4)()roots roots(den)【例题2】已知线性定常连续系统的状态方程为122122x x x x x ==- 试用特征值判据判断系统的稳定性。 解: A=[0,1;2,-1] eig(A)

实验二 控制系统的阶跃响应及稳定性分析

实验二 控制系统的阶跃响应及稳定性分析 一、实验目的及要求: 1.掌握控制系统数学模型的基本描述方法; 2.了解控制系统的稳定性分析方法; 3.掌握控制时域分析基本方法。 二、实验内容: 1.系统数学模型的几种表示方法 (1)传递函数模型 G(s)=tf() (2)零极点模型 G(s)=zpk(z,p,k) 其中,G(s)= 将零点、极点及K值输入即可建立零极点模型。 z=[-z1,-z …,-z m] p=[-p1,-p …,-p] k=k (3)多项式求根的函数:roots ( ) 调用格式: z=roots(a) 其中:z — 各个根所构成的向量 a — 多项式系数向量 (4)两种模型之间的转换函数: [z ,p ,k]=tf2zp(num , den) %传递函数模型向零极点传递函数的转换 [num , den ]=zp2tf(z ,p ,k) %零极点传递函数向传递函数模型的转换 (5)feedback()函数:系统反馈连接

调用格式:sys=feedback(s1,s2,sign) 其中,s1为前向通道传递函数,s2为反馈通道传递函数,sign=-1时,表示系统为单位负反馈;sign=1时,表示系统为单位正反馈。 2.控制系统的稳定性分析方法 (1)求闭环特征方程的根(用roots函数); 判断以为系统前向通道传递函数而构成的单位负反馈系统的稳定性,指出系统的闭环特征根的值: 可编程如下: numg=1; deng=[1 1 2 23]; numf=1; denf=1; [num,den]= feedback(numg,deng,numf,denf,-1); roots(den) (2)化为零极点模型,看极点是否在s右半平面(用pzmap); 3.控制系统根轨迹绘制 rlocus() 函数:功能为求系统根轨迹 rlocfind():计算给定根的根轨迹增益 sgrid()函数:绘制连续时间系统根轨迹和零极点图中的阻尼系数和自然频率栅格线 4.线性系统时间响应分析 step( )函数---求系统阶跃响应 impulse( )函数:求取系统的脉冲响应 lsim( )函数:求系统的任意输入下的仿真 三、实验报告要求:

原料药稳定性试验报告

L- 腈化物稳定性试验报告 一、概述 L-腈化物是L- 肉碱生产过程中的第一步中间体(第二步中间体: L-肉碱粗品;第三步中间体:L-肉碱潮品),由于L- 肉碱生产工艺为 间歇操作,即每生产一步中间体,生产完毕并出具合格检测报告后,存 入中间体仓库,以备下一步生产投料所需。根据本公司L- 肉碱产品的 整个生产周期,L- 腈化物入库后可能存放的最长时间为4 周(约28 天)。以此周期为时间依据制定了L- 腈化物稳定性试验方案,用于验 证L-腈化物在再试验期限内的各项质量指标数据的稳定性,并且能否符 合L- 腈化物的质量标准,此次稳定性试验的整个周期为28 天,具体 的稳定性试验方案以ICH 药物稳定性指导原则为基础制定,以确保L- 腈化化物稳定性试验的可操作性。 二、验证日期 2010 年1 月13 日- 2010 年2 月10 日 三、验证方案 1)样品储存和包装: 考虑到L- 腈化物今后的贮藏、使用过程,本次用于稳定性试验的样品 批次与最终规模生产所用的L- 腈化物的包装和放置条件相同。 2)样品批次选择:此次稳定性试验共抽取三批样品,且抽取样品的批次与 最终规模生产时的合成路线和生产工艺相同

3)抽样频率和日期:从2010.1.13 起,每隔7 天取样一次,共取五次,具体日期为:2010.1.13 、2010.1.20 、2010.1.27 、 2010.2.3 、2010.2.10 ,以确保试验次数足以满足L- 腈化物的稳 定性试验的需要。。 4)检测项目:根据L- 腈化物的质量标准的规定,此次稳定性试验的检测项目共五项,分别为外观、氯含量、熔点、比旋度、干燥失重。这 些指标在L- 腈化物的储存过程中可能会发生变化,且有可能影响 其质量和有效性。 5)试样来源和抽样:L- 腈化物由公司102 车间生产,经检测合格后储存于中间体仓库,本次稳定性试验的L- 腈化物均取自于该中间体仓 库,其抽样方法和抽样量均按照L- 腈化物抽样方案进行抽样。抽 样完毕后直接进行检测分析,并对检测结果进行登记,保存,作为稳 定性数据评估的依据。 四、稳定性试验数据变化趋势分析及评估 通过对三批L- 腈化物的稳定性试验,对其物理、化学方面稳定性资料进行评价,旨在建立未来相似情况下,大规模生产出的L- 腈化物是否适用 现有的再试验期(28天)。批号间的变化程度是否会影响未来生产的

控制系统的稳定性分析

精品 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10 2.绘制EWB图和Simulink仿真图。

精品 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。 系统响应曲线 实验曲线Matlab (或EWB)仿真 R3=100K = C=1UF 临界 稳定 (理论值 R3= 200K) C=1UF

精品 临界 稳定 (实测值 R3= 220K) C=1UF R3 =100K C= 0.1UF

精品 临界 稳定 (理论 值R3= 1100 K) C=0.1UF 临界稳定 (实测值 R3= 1110K ) C= 0.1UF

精品 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较(1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

性能稳定性分析

性能稳定性分析 1功角的具体含义。 电源电势的相角差,发电机q轴电势与无穷大系统电源电势之间的相角差。 电磁功率的大小与δ密切相关,故称δ为“功角”或“功率角”。电磁功率与功角的关系式被称为“功角特性”或“功率特性”。 功角δ除了表征系统的电磁关系之外,还表明了各发电机转子之间的相对空间位置。 2功角稳定及其分类。 电力系统稳态运行时,系统中所有同步发电机均同步运行,即功角δ是稳定值。系统在受到干扰后,如果发电机转子经过一段时间的运动变化后仍能恢复同步运行,即功角δ能达到一个稳定值,则系统就是功角稳定的,否则就是功角不稳定。 根据功角失稳的原因和发展过程,功角稳定可分为如下三类: 静态稳定(小干扰) 暂态稳定(大干扰) 动态稳定(长过程) 3电力系统静态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到原始运行状态的能力。如果能,则认为系统在该正常运行状态下是静态稳定的。不能,则系统是静态失稳的。 特点:静态稳定研究的是电力系统在某一运行状态下受到微小干扰时的稳定性问题。系统是否能够维持静态稳定主要与系统在扰动发生前的原始运行状态有关,而与小干扰的大小、类型和地点无关。 4电力系统暂态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到大干扰后,各同步发电机保持同步运行并过渡到新的或恢复到原来的稳态运行状态的能力。通常指第一或第二振荡周期不失步。如果能,则认为系统在该正常运行状态下该扰动下是暂态稳定的。不能,则系统是暂态失稳的。 特点:研究的是电力系统在某一运行状态下受到较大干扰时的稳定性问题。系统的暂态稳定性不仅与系统在扰动前的运行状态有关,而且与扰动的类型、地点及持续时间均有关。 作业2 5发电机组惯性时间常数的物理意义及其与系统惯性时间常数的关系。 表示在发电机组转子上加额定转矩后,转子从停顿状态转到额定转速时所经过的时间。TJ=TJG*SGN/SB 6例题6-1 (P152) (补充知识:当发电机出口断路器断开后,转子做匀加速旋转。汽轮发电机极对数p=1。额定频率为50Hz。要求列写每个公式的来源和意义。)题目:已知一汽轮发电机的惯性时间常数Tj=10S,若运行在输出额定功率状态,在t=0时其出口处突然断开。试计算(不计调速器作用) (1)经过多少时间其相对电角度(功角)δ=δ0+PAI.(δ0为断开钱的值)(2)在该时刻转子的转速。 解:(1)Tj=10S,三角M*=1,角加速度d2δ/dt2=三角M*W0/Tj=W0/10=31.4RAD/S2 δ=δ0+0.5dd2δ/dt2 所以PI=0.5*2PI*f/10t方 t=更号10/50=0.447 (2)t=0.447时,

网络控制系统的发展现状及展望教学内容

网络控制系统的发展现状及展望

有关网络控制系统的发展现状及展望的读书报告 1.概述 计算机技术和通信技术的飞速发展, 使网络应用在全球范围内日益普及, 并渗透到社会生活的各个领域。在控制领域,网络已逐渐进入人们的视野,并引领控制系统的结构发生着变化。通过公用或专用的通信网络来代替传统控制系统中的点对点结构已越来越普遍。这种通过网络形成闭环的反馈控制系统称为网络控制系统(NCSS)与传统点对点结构的控制系统相比。NCSS具有成本低、功耗小、安装与维护简便、可实现资源共享、能进行远程操作等优点。若采用无线网络,NCSS还可以实现某些特殊用途的控制系统,这是传统的点对点结构的控制系统所无法实现的。NCSS的诸多优点使其在远程医疗、智能交通、 航空航天、制造过程以及国防等领域得到了日益广泛的应用。 然而,网络并不是一种可靠的通信介质。由于网络带宽和服务能力的物理限制,数据包在网络传输中不可避免地存在时延、丢包以及时序错乱等问题。这些问题是恶化系统性能以及导致NCSS不稳定的重要原因,并且这些问题的存在使传统控制理论很难直接应用于NCSS的分析和设计。为保证NCSS稳定并具有满意的控制性能,必须深入研究NCSS并发展与其相适应的分析和设计理论。近年来,NCSS的研究得到了来自控制领域、信号处理领域、以及通讯领域研究人员的共同关注,相关文献层出不穷。本文力图回顾近年来这一领域的重要成果,总结并指出这一领域下一步的发展方向和有待解决的新课题。 2.网络控制中的基本问题 2.1 时延 由于网络带宽和服务能力的物理限制,数据包在网络传输中不可避免地存在时延。网络时延受网络协议、负载状况、网络传输速率以及数据包大小等因素的综合影响,其数值变化可呈现随机、时变等特性。在NCSS的研究中,时延的数学描述主要采用以下3类模型: 固定时延模型、具有上下界的随机时延模型以及符合某种概率分布的概率时延模型。 2.2 丢包 由于网络节点的缓冲区溢出、路由器拥塞、连接中断等原因,数据包在网络传输中会出现丢失现象;丢包受网络协议、负载状况等因素的综合影响,通常具有随机性、突发性等特点。在NCSS的研究中,丢包的数学描述主要有以下两种方法: 1)确定性方法: 该方法通常采用平均丢包率或最大连续丢包量来描述丢

控制系统的稳定性

3.8 控制系统的稳定性 3.8 控制系统的稳定性 稳定性是控制系统最重要的特性之一。它表示了控制系统承受各种扰动,保持其预定工作状态的能力。不稳定的系统是无用的系统,只有稳定的系统才有可能获得实际应用。我们前几节讨论的控制系统动态特性,稳态特性分析计算方法,都是以系统稳定为前提的。 3.8.1 稳定性的定义 图3.26(a)是一个单摆的例子。在静止状态下,小球处于A位置。若用外力使小球偏离A而到达A’,就产生了位置偏差。考察外力去除后小球的运动,我们会发现,小球从初始偏差位置A',经过若干次摆动后,最终回到A点,恢复到静止状态。图3.26(b)是处于山顶的一个足球。足球在静止状态下处于B位置。如果我们用外力使足球偏离B位置,根据常识我们都知道,足球不可能再自动回到B位置。对于单摆,我们说A位置是小球的稳定位置,而对于足球来说,B则是不稳定的位置。 图 3.26 稳定位置和不稳定位置 (a)稳定位置;(b)不稳定位置 处于某平衡工作点的控制系统在扰动作用下会偏离其平衡状态,产生初始偏差。稳定性是指扰动消失后,控制系统由初始偏差回复到原平衡状态的性能。若能恢复到原平衡状态,我们说系统是稳定的。若偏离平衡状态的偏差越来越大,系统就是不稳定的。 在控制理论中,普遍采用了李雅普诺夫(Liapunov)提出的稳定性定义,内容如下: 设描述系统的状态方程为 (3.131)

式中x(t)为n维状态向量,f(x(t),t)是n维向量,它是各状态变量和时间t的函数。如果系统的某一状态,对所有时间t,都满足 (3.132) 则称为系统的平衡状态。是n维向量。当扰动使系统的平衡状态受到破坏时,系统就会偏离平衡状态,在时,产生初始状态=x。在时,如果对于任一实数,都存在另一实数,使得下列不等式成立 (3.133) (3.134) 则称系统的平衡状态为稳定的。 式中称为欧几里德范数,定义为: (3.135) 矢量的范数是n维空间长度概念的一般表示方法。 这个定义说明,在系统状态偏离平衡状态,产生初始状态以后,即以后,系统的状态将会随时间变化。对于给定的无论多么小的的球域S(),总存在另一个的球域,只要初始状态不超出球域,则系统的状态 的运动轨迹在后始终在球域S()内,系统称为稳定系统。 当t无限增长,如果满足: (3.136) 即系统状态最终回到了原来的平衡状态,我们称这样的系统是渐近稳定的。对于任意给定的正数,如果不存在另一个正数,即在球域内的初始状态,在后,的轨迹最终超越了球域S(),我们称这种系统是不稳定的。 图3.27是二阶系统关于李雅普诺夫稳定性定义的几何说明。

网络控制系统的发展现状及展望

有关网络控制系统的发展现状及展望的读书报告 1.概述 计算机技术和通信技术的飞速发展, 使网络应用在全球范围内日益普及, 并渗透到社会生活的各个领域。在控制领域,网络已逐渐进入人们的视野,并引领控制系统的结构发生着变化。通过公用或专用的通信网络来代替传统控制系统中的点对点结构已越来越普遍。这种通过网络形成闭环的反馈控制系统称为网络控制系统(NCSS)与传统点对点结构的控制系统相比。NCSS具有成本低、功耗小、安装与维护简便、可实现资源共享、能进行远程操作等优点。若采用无线网络,NCSS还可以实现某些特殊用途的控制系统,这是传统的点对点结构的控制系统所无法实现的。NCSS的诸多优点使其在远程医疗、智能交通、航空航天、制造过程以及国防等领域得到了日益广泛的应用。 然而,网络并不是一种可靠的通信介质。由于网络带宽和服务能力的物理限制,数据包在网络传输中不可避免地存在时延、丢包以及时序错乱等问题。这些问题是恶化系统性能以及导致NCSS不稳定的重要原因,并且这些问题的存在使传统控制理论很难直接应用于NCSS的分析和设计。为保证NCSS稳定并具有满意的控制性能,必须深入研究NCSS并发展与其相适应的分析和设计理论。近年来,NCSS的研究得到了来自控制领域、信号处理领域、以及通讯领域研究人员的共同关注,相关文献层出不穷。本文力图回顾近年来这一领域的重要成果,总结并指出这一领域下一步的发展方向和有待解决的新课题。 2.网络控制中的基本问题 2.1 时延 由于网络带宽和服务能力的物理限制,数据包在网络传输中不可避免地存在时延。网络时延受网络协议、负载状况、网络传输速率以及数据包大小等因素的综合影响,其数值变化可呈现随机、时变等特性。在NCSS的研究中,时延的数学描述主要采用以下3类模型: 固定时延模型、具有上下界的随机时延模型以及符合某种概率分布的概率时延模型。 2.2 丢包 由于网络节点的缓冲区溢出、路由器拥塞、连接中断等原因,数据包在网络传输中会出现丢失现象;丢包受网络协议、负载状况等因素的综合影响,通常具有随机性、突发性等特点。在NCSS的研究中,丢包的数学描述主要有以下两种方法: 1)确定性方法: 该方法通常采用平均丢包率或最大连续丢包量来描述丢包; 2)概率方法: 该方法假设丢包满足某种概率分布,如有限状态的Markov过程、Berno分布等,并采用相应的概率模型来描述丢包。 2.3 时序错乱 由于数据包传输路径不唯一、且不同路径的传输时延亦不尽相同,数据包到达目的节点的时序可能发生错乱。数据包的时序错乱是随机性网络时延的衍生现象,因而时序错乱亦能恶化NCSS的控制性能甚至造成系统不稳定。 2.4 单包传输和多包传输 以数据包形式传输信息是NCSS有别于传统控制系统的重要特点之一。根据传输策略不同,NCSS的数据传输分为单包传输和多包传输两种情况。单包传输

自动控制实验报告一控制系统稳定性分析

实验一控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.自动控制系统实验箱一台 2.计算机一台 三、实验内容 系统模拟电路图如图 系统模拟电路图 其开环传递函数为: G(s)=10K/s(0.1s+1)(Ts+1) 式中 K1=R3/R2,R2=100KΩ,R3=0~500K;T=RC,R=100KΩ,C=1μf或C=0.1μf两种情况。 四、实验步骤 1.连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1输出,电路的 输出U2接A/D、D/A卡的AD1输入,将纯积分电容两端连在模拟开关上。检查无误后接通电源。 2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 3.在实验项目的下拉列表中选择实验三[控制系统的稳定性分析] 5.取R3的值为50KΩ,100KΩ,200KΩ,此时相应的K=10,K1=5,10,20。观察不同R3 值时显示区内的输出波形(既U2的波形),找到系统输出产生增幅振荡时相应的R3及K值。再把电阻R3由大至小变化,即R3=200kΩ,100kΩ,50kΩ,观察不同R3值

时显示区内的输出波形, 找出系统输出产生等幅振荡变化的R3及K值,并观察U2的输出波形。 五、实验数据 1模拟电路图 2.画出系统增幅或减幅振荡的波形图。 C=1uf时: R3=50K K=5:

R3=100K K=10 R3=200K K=20:

等幅振荡:R3=220k: 增幅振荡:R3=220k:

R3=260k: C=0.1uf时:

基于MATLAB的控制系统稳定性分析报告

四川师范大学本科毕业设计 基于MATLAB的控制系统稳定性分析 学生姓名宋宇 院系名称工学院 专业名称电气工程及其自动化 班级 2010 级 1 班 学号2010180147 指导教师杨楠 完成时间2014年 5月 12日

基于MATLAB的控制系统稳定性分析 电气工程及其自动化 本科生宋宇指导老师杨楠 摘要系统是指具有某些特定功能,相互联系、相互作用的元素的集合。一般来说,稳定性是系统的重要性能,也是系统能够正常运行的首要条件。如果系统是不稳定,它可以使电机不工作,汽车失去控制等等。因此,只有稳定的系统,才有价值分析与研究系统的自动控制的其它问题。为了加深对稳定性方面的研究,本设计运用了MATLAB软件采用时域、频域与根轨迹的方法对系统稳定性的判定和分析。 关键词:系统稳定性 MATLAB MATLAB稳定性分析

ABSTRACT System is to point to have certain function, connect with each other, a collection of interacting elements. Generally speaking, the stability is an important performance of system, also is the first condition of system can run normally. If the system is not stable, it could lead to motor cannot work normally, the car run out of control, and so on. Only the stability of the system, therefore, have a value analysis and the research system of the automatic control of other problems. In order to deepen the study of stability, this design USES the MATLAB software using the time domain, frequency domain and the root locus method determination and analysis of the system stability. Keywords: system stability MATLAB MATLAB stability analysis

整车操纵稳定性仿真分析报告分析解析

L11整车操纵稳定性仿真分析报告 (HB11A/HB12A) 编制(日期) 校对(日期) 审核(日期) 批准(日期) 简式国际汽车设计(北京)有限公司 L11整车操纵稳定性仿真分析报告(HB11A/HB12A) 1.定半径稳态圆周试验 试验方法 HB11A处于满载状态,沿半径为40m的定半径圆周进行回转运动,开始以最低稳定速度进入圆周,找准方向盘的位置,使汽车可以沿圆周进行回转运动,开始记录,然后缓慢连续而均匀地加速(纵向加速度不超过m/s2),加速的同时调整方向盘转角以维持定半径圆周运动,这个过程中车辆不应超出车道m,直至不能维持稳态定半径圆周运动条件时或受发动机功率限制所能达到的最大侧向加速度为止。记录整个过程,建议使用满足试验条件的最高档位。试验按向左转和向右转两个方向进行,每次试验开始时车身应处于正中位置。 数据处理 “方向盘转角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为时的曲线斜率。 图1 方向盘转角—侧向加速度(左转) 从图1 计算得到左转不足转向梯度为137o/g

图2 方向盘转角—侧向加速度(右转) 右转不足转向梯度为g,则HB11A平均不足转向梯度为g。 HB11A的角传动比约为,则不足转向梯度/转向系角传动比为g。 “质心侧偏角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为时的曲线斜率。 图3 质心侧偏角——侧向加速度(左转) 左转侧偏角梯度为g。 图4 质心侧偏角——侧向加速度(右转) 右转侧偏角梯度为g,则HB11A平均侧偏角梯度为g。 “车身侧倾角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为时的曲线斜率。 图5 车身侧倾角——侧向加速度(左转) 左转侧倾角梯度为g。 图6 车身侧倾角—侧向加速度(右转) 右转侧倾角梯度为g,则HB11A平均侧倾角梯度为g。 2.方向盘转角阶跃输入试验 试验方法 HB11A处于满载状态,以70km/h的车速稳定直线行驶,开始记录数据,以尽可能快的速度(阶跃时间为转动方向盘,达到预定的转角,保持方向盘转角不变直至汽车恢复稳定状态,试验过程中油门踏板开度应尽可能保持不变。方向盘转角初始值是10°,每次增加5°,直到车辆达到附着极限,试验分为向左、向右两个方向进行。 数据处理 —方向盘转角滞后时间 横摆角速度达到50%稳态值时相对于方向盘转角达到50%阶跃值时的滞后时间。 图7 时横摆角速度—方向盘转角滞后时间 左转时,横摆角速度——方向盘转角滞后时间为

网络控制系统的稳定性分析

网络控制系统的稳定性分析 1、引言 人类社会是不断向前发展的,促使这种发展最大的动力莫过于人类的创造力,人类利用自己这种特有的能力在改造着自然,同时也在不断改变着人类社会和人们的思维方式。正是由于人类在自身发展过程中不断的创造和探索,特别是随着科学技术的不断发展,这种变革的速度也越来越快。 现在科技的进步日新月异,各种新技术不断涌现,网络控制系统(Networked Control Systems, NCS)是最近几年随着控制技术、计算机技术、通信网络技术发展起来的,是控制系统新的发展方向,是复杂大系统控制和远程控制系统的客观需求。NCS的典型结构图如图1所示。传感器、执行机构和驱动装置等现场设备的智能化为通信网络在控制系统更深层次的应用提供了必需的物质基础,同时通信网络的管理和控制也要求更多地采用控制理论技术和策略,而高速以太网和现场总线技术的发展和成熟解决了网络控制系统自身的可靠性和开放性问题,这都使得网络控制系统发展更具有现实性。使用专用或公用计算机网络代替传统控制系统的点对点控制结构,实现传感器、控制器、执行器等系统组件之间的控制信息互相传递。在这样的控制系统中,检测、控制、协调和指令等各种信息都可通过公用数据网络进行传输,而估计、控制和诊断等功能也可以在不同的网络节点中分布执行。NCS广泛应用于汽车工业、制造业、交通管理与控制、机器人远程操作、高级的航天航空器和电气化运输工具等各种应用中。 图 1 网络控制系统典型结构图 然而,在网络控制系统中由于通信网络的介入,使得控制系统的分析和综合更为复杂。首先,由于控制系统的信息在网络中传输,网络调度是一个很重要的问题,怎么让时间同步,避免网络堵塞,减少网络中的冲突,能有效的利用网络。其次,由于网络控制系统中存在网络诱导时延,它是随机的,可能是定长的,也可能是时变的,这种时延可能会降低系统的性能,甚

原料药稳定性试验报告

L-腈化物稳定性试验报告 一、概述 L-腈化物是L-肉碱生产过程中的第一步中间体(第二步中间体:L-肉碱粗品;第三步中间体:L-肉碱潮品),由于L-肉碱生产工艺为间歇操作,即每生产一步中间体,生产完毕并出具合格检测报告后,存入中间体仓库,以备下一步生产投料所需。根据本公司L-肉碱产品的整个生产周期,L-腈化物入库后可能存放的最长时间为4周(约28天)。以此周期为时间依据制定了L-腈化物稳定性试验方案,用于验证L-腈化物在再试验期限内的各项质量指标数据的稳定性,并且能否符合L-腈化物的质量标准,此次稳定性试验的整个周期为28天,具体的稳定性试验方案以ICH药物稳定性指导原则为基础制定,以确保L-腈化化物稳定性试验的可操作性。 二、验证日期 2010年1月13日----2010年2月10日 三、验证方案 1)样品储存和包装: 考虑到L-腈化物今后的贮藏、使用过程,本次用于稳定性试验的样品批次与最终规模生产所用的L-腈化物的包装和放置条件相同。 2)样品批次选择:此次稳定性试验共抽取三批样品,且抽取样品的批次与最终规模生产时的合成路线和生产工艺相同

3)抽样频率和日期:从2010.1.13起,每隔7天取样一次,共取五次,具体日期为:2010.1.13、2010.1.20、2010.1.27、2010.2.3、2010.2.10,以确保试验次数足以满足L-腈化物的稳定性试验的需要。。 4)检测项目:根据L-腈化物的质量标准的规定,此次稳定性试验的检测项目共五项,分别为外观、氯含量、熔点、比旋度、干燥失重。这些指标 在L-腈化物的储存过程中可能会发生变化,且有可能影响其质量和有效 性。 5)试样来源和抽样:L-腈化物由公司102车间生产,经检测合格后储存于中间体仓库,本次稳定性试验的L-腈化物均取自于该中间体仓库,其抽 样方法和抽样量均按照L-腈化物抽样方案进行抽样。抽样完毕后直接进 行检测分析,并对检测结果进行登记,保存,作为稳定性数据评估的依 据。 四、稳定性试验数据变化趋势分析及评估 通过对三批L-腈化物的稳定性试验,对其物理、化学方面稳定性资料进行评价,旨在建立未来相似情况下,大规模生产出的L-腈化物是否适用现有的再试验期(28天)。批号间的变化程度是否会影响未来生产的L-腈化物在再试验期内是否仍符合其质量规范。本次试验数据以表格、图解的形式给出,从而对L-腈化物的稳定性数据进行有效的评估。

稳定性评价报告

福鼎市白琳玄武岩矿山北坡地质灾害点治理后斜坡 稳定性评价报告 1、概况 1.1矿区概况 福鼎大嶂山玄武岩矿山位于福鼎城关193°方向,平距20km 处,隶属福鼎市白琳镇山后山村管辖。地理坐标:东经120°09′48.3″--120°10′24.6″,北纬27°9′16.3″--27°9′39″。矿山到白琳镇约5公里。由白琳镇到福鼎八尺门约10公里可与国道主干线沈海高速福鼎至宁德段高速公路相连;温州至福州铁路经过白琳;交通便利(详见交通位置图1)。 福鼎市 27° 省 20km 寿宁 泰顺 柘荣 周宁 往福州 福安市 宁德市 120° 120° 霞浦江 浙 交 通 位 置 图 图1 10 溪潭 南阳 三沙 下白石赛岐 溪南 沙江 长春 下浒 27° 三都澳 福 宁 高 速 路 福安连接线 湾坞 往古田 往屏南 白琳 秦屿 沙埕 苍南 往政和 嵛山 白岩 东海 弃渣场位置 温福 铁路

1.2矿山北坡地质灾害点概况 福鼎白琳玄武岩矿山开发建设始于20世纪80年代初期,由3家公司于不同位置分别对白琳玄武岩体进行掠夺性开采。采区按地理位置分为北坡采场、东坡采场和南坡采场。1997年以前,由于无序开采和监管缺失,北坡采场剥离层剥离后形成的大量废石土就地堆弃于邻近采场的北坡冲沟内。随着时间的推移,无序开采造成白琳玄武岩矿山北坡的废石土超量排放。期间最大排放的废石土总量超过200万m3,大大超出北坡地质环境承载能力。由于北坡废石土的超量排放,致使北坡内及边缘曾多次发生小规模滑坡地质灾害。最为严重是于1998年2月18日受强降雨影响,北坡地质灾害点发生大面积的山体滑坡,滑坡规模在100万m3以上,由于大规模滑坡堵塞沟谷,影响场地内大气降水的自然排泄,并由于进一步引发大规模的泥石流地质灾害,造成18人员死亡、村落毁灭和公路毁坏交通中断的重大事故。泥石流的流通区长度达1km以上,堆积区长度达1km。此后,通过福鼎市政府干预,对矿山无序开采进行整顿,对3个采场进行整合,由福建白琳玄武石材有限公司通过组织白琳玄武岩的开采、经营,并择址建设南坡排土场,集中排放矿山建设、开采所形成的废石土。由于北坡弃碴系历史原因形成,福鼎玄武石材有限公司成立后未对北坡碴进行根本性治理。 2010年12月,受持续强降雨影响,白琳玄武岩矿山北坡临近采场的陡坡坡顶面以及矿山道路路面等出路弃碴的地段出现多道长30~50m,宽度5~15cm,深度0.3~1.5m的裂缝,局部裂缝下错约0.2~0.3m。陡坡坡底的缓坡地段也出现多道长20~30m,宽度5~10cm,深度0.3~1.5m的裂缝,局部裂缝下错约0.1~0.3m。随后裂缝灾害的空间进一步发展,于北坡西侧的冲

(整理)MATLAB实现控制系统稳定性分析.

MATLAB 实现控制系统稳定性分析 稳定是控制系统的重要性能,也是系统能够工作的首要条件,因此,如何分析系统的稳定性并找出保证系统稳定的措施,便成为自动控制理论的一个基本任务.线性系统的稳定性取决于系统本身的结构和参数,而与输入无关.线性系统稳定的条件是其特征根均具有负实部. 在实际工程系统中,为避开对特征方程的直接求解,就只好讨论特征根的分布,即看其是否全部具有负实部,并以此来判别系统的稳定性,由此形成了一系列稳定性判据,其中最重要的一个判据就是Routh 判据.Routh 判据给出线性系统稳定的充要条件是:系统特征方程式不缺项,且所有系数均为正,劳斯阵列中第一列所有元素均为正号,构造Routh 表比用求根判断稳定性的方法简单许多,而且这些方法都已经过了数学上的证明,是完全有理论根据的,是实用性非常好的方法. 但是,随着计算机功能的进一步完善和Matlab 语言的出现,一般在工程实际当中已经不再采用这些方法了.本文就采用Matlab 对控制系统进行稳定性分析作一探讨. 1 系统稳定性分析的Matlab 实现 1.1 直接判定法 根据稳定的充分必要条件判别线性系统的稳定性,最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有,系统则不稳定.然而实际的控制系统大部分都是高阶系统,这样就面临求解高次方程,求根工作量很大,但在Matlab 中只需分别调用函数roots(den)或eig(A)即可,这样就可以由得出的极点位置直接判定系统的稳定性. 已知控制系统的传递函数为 ()24 5035102424723423+++++++=s s s s s s s s G (1) 若判定该系统的稳定性,输入如下程序: G=tf([1,7,24,24],[1,10,35,50,24]); roots(G.den{1}) 运行结果: ans = -4.0000 -3.0000 -2.0000 -1.0000 由此可以判定该系统是稳定系统. 1.2 用根轨迹法判断系统的稳定性 根轨迹法是一种求解闭环特征方程根的简便图解法,它是根据系统的开环传递函数极点、零点的分布和一些简单的规则,研究开环系统某一参数从零到无穷大时闭环系统极点在s 平面的轨迹.控制工具箱中提供了rlocus 函数,来绘制系统的根轨迹,利用rlocfind 函数,在图形窗口显示十字光标,可以求得特殊点对应的K 值. 已知一控制系统,H(s)=1,其开环传递函数为: ()()() 21++=s s s K s G (2) 绘制系统的轨迹图. 程序为: G=tf(1,[1 3 2 0]);rlocus(G); [k,p]=rlocfind(G) 根轨迹图如图1所示,光标选定虚轴临界点,程序 结果为:

相关文档
相关文档 最新文档