文档库 最新最全的文档下载
当前位置:文档库 › 接地网对变电站安全运行的影响

接地网对变电站安全运行的影响

接地网对变电站安全运行的影响
接地网对变电站安全运行的影响

接地网对变电站安全运行的影响

0引言

接地网作为变电站交直流设备接地及防雷保护接地,对系统的安全运行起着重要的作用。

变电站接地包含工作接地、保护接地、雷电保护接地。工作接地即在电力系统电气装置中,为

运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由

于绝缘损坏使其有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地则是

为雷电保护装置向大地泄放雷电流而设的接地。所以变电站接地系统的合理与否是直接关系到

人身和设备安全的重要问题。

1接地网设计

接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装

置导入大地。因此,没有合理而良好的接地装置,就不能有效地防雷。

1.1变电站的接地网上连接着全站高低压电气设备的接地、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。如果接地电阻

较大,在发生电力系统接地故障或其他大电流入地时,可能造成地电位异常升高;如果接地网

的网格设计不合理,则可能造成接地系统电位分布不均,局部电位超过规定的安全值,这会给

运行人员的安全带来威胁;同时还可能因反击对低压或二次设备以及电缆绝缘造成损坏,使高

压窜入控制保护系统、变电站监控和保护设备,从而使这些设备发生误动、拒动,酿成事故,

甚至是扩大事故,由此带来巨大的经济损失和社会影响。

1.2变电站接地设计原则:由于变电站各级电压母线接地故障电流越来越大,在接地设计中要满足R≤2000/I是非常困难的。现行标准与原接地规程有一个很明显的区别是:对接地电阻值

不再规定要达到0.5Ω,而是允许放宽到5Ω。但这不是说任何情况下,接地电阻都可以采用5Ω,接地电阻放宽是有附加条件的,即:为防止转移电位引起的危害,应采取各种隔离措施;应考

虑短路电流非周期分量的影响,当接地网电位升高时,3~10kV避雷器不应动作或动作后不应

损坏;应采取均压措施,并验算接触电位差和跨步电位差是否满足要求;施工后还应进行测量

和绘制电位分布曲线。

变电站接地网设计时应遵循以下原则:

1.3防雷接地在设计施工时的特殊要求防雷接地引下线尽量利用现有的自然导体。如建筑物本身的防火梯、金属柱子、桁架以及内筋都可以直接做引下线。

变电站接地工程全过程管理(2021年)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 变电站接地工程全过程管理 (2021年)

变电站接地工程全过程管理(2021年)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 摘要:该文结合保证工程质量和降低工程造价两个目标,从设计、施工、验收和使用四个阶段来阐述接地工程应注意的一些问题。 关键词:变电站;接地;工程造价接地网作为变电站交直流设备接地及防雷保护接地,对系统的安全运行起着重要的作用。在大接地电流系统中,接地装置直接影响继电保护动作的正确性;在小接地电流系统中,不合格的接地网将对人身安全构成严重威胁。而且接地工程作为隐性工程很容易被人忽视,随着电力系统电压等级的升高及容量的增加,接地不良引起的事故扩大问题屡有发生。因此,接地问题越来越受到重视。为了保证工程质量并降低工程造价,必须做好工程的设计、施工、验收和使用四个阶段的全过程管理。 1设计阶段 地网的关键是设计,设计是否合理直接关系着工程质量的好坏和工程造价的高低。一般说来,地网工程是一项粗糙工程,不可能达到精确,但经过不少工程技术人员的努力工作和实验,积累了不少的经

变电站接地网优化设计

编号:SM-ZD-35401 变电站接地网优化设计Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

变电站接地网优化设计 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 摘要:接地网等间距布置存在地电位分布不均匀的问题。在建220 kV 新塘变电站采用了不等间距布置,即从地网边缘到中心,均压导体间距按负指数规律增加。运用GPC 接地参数计算程序对两种方法进行分析和计算,结果表明接地网优化设计能显著地改善导体的泄漏电流密度分布,使土壤表面的电位分布均匀,提高安全水平,节省钢材和施工费用。 关键词:变电站接地网设计 随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。在以往接地设计中,接地网的均压导体都按3 m ,5 m ,7 m

,10 m 等间距布置,由于端部和邻近效应,地网的边角处泄漏电流远大于中心处,使地电位分布很不均匀,边角网孔电势大大高于中心网孔电势,而且这种差值随地网面积和网孔数的增加而加大。本文结合在建工程220 kV 新塘变电站的接地网设计,阐释了接地网不等间距布置的方法及其合理性。 1 接地网优化设计的合理性 1.1 改善导体的泄漏电流密度分布 面积为190 m ×170 m 的新塘变电站接地网,在导体根数相同的情况下,分别按10 m 等间距布置和平均10 m 不等间距布置。沿平行导体①、②、③、④、⑤的泄漏电流密度分布曲线。从此可见,不等间距布置的接地网,边上导体①的泄漏电流密度较等间距布置的接地网平均低15%左右;对于导体②的泄漏电流密度,这两种布置的接地网几乎相等(仅相差0.3%);对于中部导体③、④、⑤,不等间距

接地网对变电站安全运行的影响正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 接地网对变电站安全运行 的影响正式版

接地网对变电站安全运行的影响正式 版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 0引言 接地网作为变电站交直流设备接地及防雷保护接地,对系统的安全运行起着重要的作用。变电站接地包含工作接地、保护接地、雷电保护接地。工作接地即在电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏使其有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地则是为雷电保护装置向大地泄放雷电流而设的接地。所以变电站接地系统的合理与

否是直接关系到人身和设备安全的重要问题。 1接地网设计 接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。因此,没有合理而良好的接地装置,就不能有效地防雷。 1.1变电站的接地网上连接着全站高低压电气设备的接地、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。如果接地电阻较大,在发生电力系统接地故障或其他大电流入地时,可能造成地电位异常升高;如果接地网的网格设计不合理,则可能造成接地系统电位分

XX变电站接地网大修工程施工方案

llOkVXX变电站 接地网大修工程施工方案 批准: 审查: 编写: XXXXXX电力建设有限公司

2012年7月

一.编制依据 (2) 二工程概况 (2) 三、施工流程图 五、施工组织安排 六. 主要施工方法 1.施工准备 (8) 2?施工方法 (9) 七、 ............................................. 质量控制 10 1?质量控制目标及要求 (10) 2.质量检查 (10) 八、 ......................................... 安全文明施工 11 九、 ...................... 接地工程施工危险点分析及预控措施 12 十.施工监督验收 (13)

一、编制依据 1、《电气装置安装工程接地装置施工及验收规范》(GB50169—2006) 2、《交流电气装置接地》(DL/T621-1977) 3、H OkVXX变电站接地网大修工程《设计方案》 4、《电力建设安全工作规程》(SDJ63-2002) 二、工程概况 工程名称:llOkVXX变电站接地网大修 工程地点:llOkVXX变电站 工程内容:对110RVXX变接地网大修工程进行施工,地网阻值现为0.7欧,对地网电阻进行降阻施工,施工结束后接地电阻值应满足小于0.5欧的要求。 HOkVXX变电站位于XXX县城内,于1998年建成投运,设110kV/35kV/10kV电压等级,llOkV为户外常规布置,35kV/10kV为户内开关柜布置,主控楼与10kV配电装置楼为一栋建筑,占地而积为66mX 77m。 XX变站址土壤表层为耕作土,下层为沙土,水分含量一般,土壤 电阻率较高,全站接地变电站采用复合接地网,以水平接地体为主,以垂直接地极为辅,接地网外沿闭合,接地网内敷设水平均压带,水平接地体深埋为0. 6mo在避雷针和装有辟雷器的地方应设集中接地装置。 水平接地体采用水平接地体采用40x6〃林彳热镀锌扁钢,垂直接地

变电站接地设计及防雷技术正式样本

文件编号:TP-AR-L6587 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 变电站接地设计及防雷 技术正式样本

变电站接地设计及防雷技术正式样 本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 引言 变电站接地系统的合理与否是直接关系到人身和 设备安全的重要问题。随着电力系统规模的不断扩 大,接地系统的设计越来越复杂。变电站接地包含工 作接地、保护接地、雷电保护接地。工作接地即为电 力系统电气装置中,为运行需要所设的接地;保护接 地即为电气装置的金属外壳、配电装置的构架和线路 杆塔等,由于绝缘损坏有可能带电,为防止其危及人 身和设备的安全而设的接地;雷电保护接地即为为雷 电保护装置向大地泄放雷电流而设的接地。变电站接

地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。 1 变电站接地设计的必要性 接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。因此,没有合理而良好的接地装置,就不能有效地防雷。从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。 变电站的接地网上连接着全站的高低压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。如果接地电阻较大,在发生电力

变电站主接地网施工工艺流程及操作要点

变电站主接地网施工工艺流程及操作要点 变电站防雷接地是为防止电气设备意外带电造成电网、设备、人身事故的基本措施。本文从施工实际角度简述主接地网施工工艺流程及操作要点,力求能促进工程施工技术水平的提高,保证防雷接地工程的施工质量。从而确保接地装置安全运行,将对保障变电站运行安全有着十分重要的意义。 1、施工工艺流程

2、施工工艺流程及操作要点 2.1前期准备工作 2.1.1施工技术资料的准备 开工前首先应组织有关人员熟悉施工图及有关设计文件,了解设计意图,并按照设计要求做好接地施工方案、作业指导书编制等技术准备工作,并进行技术交底工作。其次根据经会审后的设计施工图编制材料清册,并校对材料规格和数量。 2.1.2施工材料的准备及材料质量保证措施 施工材料到达现场后,应对材料的规格、数量及外观质量进行检查。同时将材料厂家的产品合格证、质保书及厂家资质证明等相关文件报监理项目部审核,业主确认后方可进场使用。严禁不合格材料进入施工程序。 2.1.3施工前应配置最基本的施工人员和配备足够完好的施工机具 表1 主要施工机具的配置表 表2 主接地网施工施工人员配置表

2.1.4施工现场准备 根据业主指定的区域,首先设置接地材料加工棚、生活临时设施等。其次根据施工图纸和现场实际情况在预施工区域设置安全围栏,并悬挂安全标示牌等安全防护措施。 2.2接地沟开挖 2.2.1根据主接地网设计图纸要求,对对接地体(网)的敷设位置、网格大小进行放线。 2.2.2按照设计或规范要求的接地敷设深度进行接地沟开挖,深度按照设计或规范要求的最高标准为 准,超挖50-100mm左右。宽度为一般为500-1000mm,沟壁需放坡处理,底部如有石块应清除。 开挖完成的接地沟 2.2.3接地沟宜按场地或分区域进行开挖,充分利用土建开挖,减少重复工作,同时应及时恢复各类 安全防护措施,确保安全文明施工。 进行接地沟深度深测量 2.3垂直接地体安装 2.3.1按照设计或规范长度进行进行采购垂直接地体。 2.3.2垂直接地极采用人力锤击方式的安装,为避免垂直接地体施工时顶部敲击部位的损伤,在垂直 接地体顶部进行保护(如加自制钢管金属保护帽)。碰到强风化石时采用机械成孔安装。 2.3.3按设计图纸的位置安装垂直接地体。 2.3.4垂直接地体的埋入深度、间距必须满足设计要求。 2.3.5接地体安装结束后,顶部敲击部位应进行防腐处理。

变电站接地网降阻方法及应用浅析

变电站接地网降阻方法及应用浅析 摘要:变电站接地网是维护变电站运行可靠安全,保障人员和设备安全的重要 措施,随着电力系统的发展,接地短路电流越来越大,随着集约型GIS变电站的 日益普及,占地面积小了,接地网的可用面积也小了,对接地装置可靠性提出了 更高的要求。本文浅析某220千伏变电站土壤电阻率高,通过多方案论证比较, 因地制宜,采取了外引接地网+降阻剂的措施,达到降阻目的,确保该站接地电 网满足安全运行要求。 关键词:变电站;外引;接地网;效用 在电力系统中,接地网作为变电所交直流设备接地及防雷保护接地,对系统 的安全运行起着重要的作用。根据变电站防雷设计的整体性、结构性、层次性、 目的性,及整个变电站的周围环境、地理位置、土质条件以及设备性能和用途, 采取相应雷电防护措施,保证变电站设备的安全稳定运行。 1变电站接地网电阻偏高原因分析 1.1土壤电阻率偏高 干旱地区、沙石土层等相当干燥,而大地导电基本是靠离子导电,干燥的土 壤电阻率偏高,对系统接地电阻影响较大。 1.2 设计误差 有的在设计接地时,根据地质资料查找设计手册所对应的土壤电阻率,而未 通过实地测量或者测量值不准确。特别是测量值不准确,一般是由于设计人员在 现场采用四极法测量原土层的土壤电阻率而产生的。这种方法虽然符合设计规范 要求,比较科学而且准确的,但是四极法是属于在场地中抽样测量,在接地网埋 设处地质经常出现断层,地电阻率是不均匀的,例如山坡地形往往还需要在不同 的方位、不同的方向进行测量,找出沿横向、纵向和不同深层的土壤电阻率。 1.3 施工不细致 对于不同地区变电站的接地来说,不仅精心设计重要,严格施工更重要。因 为对于地形复杂,特别是位于岩石区的变电站,接地网水平接地沟槽的开挖和垂 直接地极的打入都十分困难。而接地工程又属于隐蔽工程,施工过程中出现下列 问题都会导致地网阻偏高。 (1) 没有在原土层上施工,而是回填了一部分回填土后再施工。 (2) 下层地网引出至上层地网的连接点没有全部引出,或者是引出后没有作好 标记,导致下层地网没有与上层地网有效连接,失去下层地网应有的作用。 (3) 回填使用了部分建筑垃圾、大块的沙石等材料。没有用细土回填,分层进 行夯实。 (4) 接地网在土建施工过程中遭遇比较严重的破坏,导致全站接地网各处的接 地电阻值测量值有巨大的差异。 1.4 运行过程中产生变化 有些接地装置在建成初期是合格的,但经一定的运行周期后,因下列问题, 导致接地电阻变大。 (1)由于接地体的腐蚀,使接地体与周围土壤的接触电阻变大,特别是在山区酸性土壤中,接地体的腐蚀速度相当快,会造成一部分接地体脱离接地装置。 (2)在接地引下线与接地装置的连接部分,因锈蚀而使电阻变大或形成开路。 (3)接地引下线、接地极受外力破坏而损坏等。 2降低接地网电阻的主要措施

变电站接地网优化设计

编号:AQ-JS-05799 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 变电站接地网优化设计 Optimization design of substation grounding grid

变电站接地网优化设计 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 摘要:接地网等间距布置存在地电位分布不均匀的问题。在建220kV新塘变电站采用了不等间距布置,即从地网边缘到中心,均压导体间距按负指数规律增加。运用GPC接地参数计算程序对两种方法进行分析和计算,结果表明接地网优化设计能显著地改善导体的泄漏电流密度分布,使土壤表面的电位分布均匀,提高安全水平,节省钢材和施工费用。 关键词:变电站接地网设计 随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。在以往接地设计中,接地网的均压导体都按3m ,5m ,7m

,10m 等间距布置,由于端部和邻近效应,地网的边角处泄漏电流远大于中心处,使地电位分布很不均匀,边角网孔电势大大高于中心网孔电势,而且这种差值随地网面积和网孔数的增加而加大。本文结合在建工程220kV新塘变电站的接地网设计,阐释了接地网不等间距布置的方法及其合理性。 1接地网优化设计的合理性 1.1改善导体的泄漏电流密度分布 面积为190m ×170m 的新塘变电站接地网,在导体根数相同的情况下,分别按10m 等间距布置和平均10m 不等间距布置。沿平行导体①、②、③、④、⑤的泄漏电流密度分布曲线。从此可见,不等间距布置的接地网,边上导体①的泄漏电流密度较等间距布置的接地网平均低15%左右;对于导体②的泄漏电流密度,这两种布置的接地网几乎相等(仅相差0.3%);对于

(设备管理)变电站设备接地工艺标准

变电站设备接地工艺标准 项目编号工艺名称工艺标准施工工艺要点图片示例 1 屋外接地 装置安装 1.水平接地体宜采用热镀锌扁钢,垂直 接地体宜采用热镀锌角钢。 2.接地体顶面埋深应符合设计规定,当 设计无规定时,不应小于0.6m。 3.垂直接地体间的间距不宜小于其长度 的2倍,水平接地体的间距不宜小于5m。 4.接地体的连接应采用焊接(钢材采用 电焊,铜排采用热熔焊),焊接必须牢固、 无虚焊。钢接地体的搭接应使用搭接焊, 搭接长度和焊接方式应该符合以下规 定: 1)扁钢-扁钢:搭接长度扁钢为其 宽度的2倍(且至少3个棱边焊接)。 2)圆钢-圆钢:搭接长度为圆钢直 径的6倍(接触部位两边焊接)。 3)扁钢-圆钢:搭接长度为圆钢直 径的6倍(接触部位两边焊接)。 4)在“十”字搭接处,应采取弥补搭接 面不足的措施以满足上述要求。 5.焊接结束后,首先应去处焊接部位残 留的焊药、表面除锈后作防腐处理。)镀 锌钢材在锌层破坏处也应进行防腐处 理。钢材的切断面必须进行防腐处理。 6.接地网的某一区域施工结束后,应及 时进行回填土工作。 1.根据设计图纸对主接地网敷设位置、网格大小进行放线,接地沟开挖深度以设计或规 范要求的较高标准为准,且留有一定的余度。如无特殊要求,变电站接地材料一般如下: 110kV变电站水平接地体采用-60×6镀锌扁钢,220kV变电站水平接地体采用-80×8镀锌 扁钢,垂直接地体采用2.5米长L50×50×5镀锌角钢,接地引下线采用-60×6镀锌扁钢 2.扁钢弯曲时,应采用机械冷弯,避免热弯损坏锌层。 3.焊接位置(焊缝100mm范围内)及锌层破损处应防腐。 4.在接地沟回填土前必须经过监理人员的验收,合格后方可进行回填工作。同时做记录 工作完成情况的记录和隐蔽工程的记录签证。回填土内不得夹有石块和建筑垃圾,外取的 土壤不得有较强的腐蚀性,回填土应分层夯实。 屋外水平接地装置安装 水平接地体“十”字搭接

浅析变电站接地设计因素

浅析变电站接地设计因素 发表时间:2016-10-10T15:20:54.297Z 来源:《电力设备》2016年第14期作者:刘锡华 [导读] 变电站接地系统作为变电站交、直流设备接地及防雷保护接地,对系统的安全运行起着重要作用。 惠州电力勘察设计院有限公司) 摘要:目前大多数变电站设计工程师在进行变电站接地网设计时,都会有一个误区:普遍认为110kV及以上变电站,全站接地电阻值小于0.5欧姆时即认为合格,电阻值大于0.5欧则认为不合格,就不管短路电流的大小,也不需论证跨步电压和接触电势是否满足设计要求值。接地体的选择更是根据经验选取,没有进行上导体的动、热稳定的较验。正确的设计方法是要结合实际,通过科学计算、详细分析、合理评价经济性,得出合理的设计方案。 关键词:变电站;接地网;接地电阻;入地短路电流;跨步电压;接触电势 引言:变电站接地系统作为变电站交、直流设备接地及防雷保护接地,对系统的安全运行起着重要作用;由于变电站接地网较为隐蔽性,容易被人忽视,往往只注意最后接地电阻的测量结果;接地网的敷设存在与构筑物或建筑物基础交叉情况,增加了变电站运行中对其进行改造或更换的困难性,所以变电站接地网一经敷设,将很难对其加以改造,因此在变电站接地设计中如何降低接地电阻,优化电站接地系统的设计,从而保证变电站安全稳定运行,值得深入细致分析及解决。 1、接地设计方案考虑因素 第一步:站址现状分析。 充分结合所考虑站址气象环境条件、站址条件,气象环境条件直接影响季节系数Ψ值的选取。土壤电阻率ρ是决定接地网的关键参数,选择变电所所址时,要考虑所在地的土质情况,勘测专业在进行场地勘测中应列出接地网处的土壤分层情况和每层的土壤电阻率ρ,不能仅取表层土壤的电阻率ρ。需对站址土壤电阻率进行多层分析,决定接地网的布置形式及设计方案。 第二步:入地短路电流的计算。 入地故障电流的计算是变电站接地系统设计的基础,直接与变电站安全性能有关,这是由于入地电流将产生最严重的地电位升、跨步电压和接触电势。 系统中发生接地短路分为站内接地故障和站外接地故障。故障短路电流可分为两部分:一部分是经架空线路的避雷线(地线)回流至电源;另一部分是经变电站接地网和大地回流至电源。前者为架空地线的分流电流,后者既是入地短路电流。故障时线路将对入地电流起到分流的作用,设计接地时应当考虑变电站短路电流的分流系数,即真正通过变电站接地网入地的电流与短路电流的比,变电站的短路电流分流系数与变电站的接地电阻关系很大,变电站的接地电阻越小,其短路电流分流系数却越大,即其入地电流越多。 其中入地短路电流计算公式为: Ig = (Imax - In)Sfl (1) Ig = InSf2 (2) 需补充的是:接地计算中,对接地故障电流中的对称分量电流引入校正系数,以考虑短路电流的过冲效应。衰减系数 Df 为接地故障不对称电流有效值 IF 与接地故障对称电流有效值 If 的比值。计算公式为: Ig = (Imax - In)Sfl Df (3) Ig = InSf2 Df(4) Df———衰减系数 接地短路(故障)电流的持续时间根据《交流电气装置的接地设计规范》GB50065-2011中的相关规定,发电厂和变电站的继电保护装置配置有2 套速动主保护、近接地后备保护、断路器失灵保护和自动重合闸时,te 应按下式取值: te≥tm + tf + to (5) tm———为主保护动作时间; tf———为断路器失灵保护动作时间; to———为断路器开断时间。 配有1 套速动主保护、近或远(或远近结合的)后备保护和自动重合闸,有或无断路器失灵保护时,te 应按下式取值: te≥to + tr (6) tr———为第一级后备保护的动作时间。 一般110kV变电站配置2套主保护,切除故障电流的时间te按3-6式计算。主保护为速动保护,断路器失灵保护动作时间约为 15~20ms,断路器开断时间目前110kV及以上to为0.3s,110kV以下为0.3~0.5s。 第三步:接地系统中接地电阻值的计算及要求。 不等间距布置接地网时接地电阻值按《交流电气装置的接地设计规范》GB50065-2011中的计算公式计算: (7) 110kV变电站接地电阻值满足的要求接地电阻应满足R≤2000/Ig,当不能满足时,应满足R≤0.5Ω的要求。 根据上述规范中对于大电流接地系统接地网接地电阻要求值时,应考虑降阻措施的要求。具体降阻措施有:采用低电阻的优质回填土、外延接地网、分层敷设水平网、并入垂直接地深极、或并入垂直接地深井、斜井等,本工程建议选用接地网中并入多根垂直接地深极作为降阻措施。除此之外,对土壤电阻率非常还有可选用离子极、接地模块等物理降阻剂。 第四步:接地网接地电阻的校验。 二次设备的接地要求及地电位升校验,一般的二次电缆2s 工频耐受电压较高(≥5kV),二次设备,如综合自动化设备,其工频绝缘耐受电压为2kV、1min。从安全出发,二次系统的绝缘耐受电压可取2kV。

变电站接地网材料的选择

变电站接地网材料的选择 编辑:万佳防雷-小黄 电力系统的接地是对系统和网上电气设备安全可靠运行及操作维护人员安全都起着重大的作用。研究接地体的布置、连接,接地体的材质等是保证系统安全稳定运行的必要措施之一,所以说设计、施工高标准的接地系统的变电站防雷工作的重中之重。 一、变电站接地网作用概述 接地网作为变电站交直流设备接地极防雷保护接地,对系统的安全运行起着重要的作用。由于接地网作为隐性工程容易被人忽视,往往只注意最后的接地电阻的测量结果。随着电力系统电压等级的升高及容量的增加,接地不良引起的事故扩大问题屡有发生。因此,接地问题越来越受到重视。变电站接地网因其在安全中的重要地位,一次性建设、维护苦难等特点在工程建设中受到重视。另外,在设计及施工时也不易控制,这也是工程建设中的难点之一。因此,为保证电力系统的安全运行,降低接地工程造价,应采用最经济、合理的接地网设计思路,本文拟重点就材料选用方面进行相关探讨。 二、变电站接地网常用材料比较 目前广泛使用的接地工程材料有各种金属材料、非金属接地体、降阻剂和离子接地系统等。 1、金属接地材料。金属接地材料(主要指铜材和钢材),由于其具备良好的导电性和经济性,很长时期以来一直是接地工程中最重要的材料之一。但是由于金属材料存在容易腐蚀的问题,对接地电阻的影响也比较大,是安全生产中的一个大的隐患,这个问题一直困扰着用户。同时,近年生产资料价格猛涨造成接地成本增加,使得金属接地材料的缺点逐渐突显,一些行业或地区已经在渐渐地减少金属接地材料的使用,转而使用其它新型的接地材料。 2、非金属接地体。非金属接地材料是目前行业里新生的一种金属接地体的替换产品,由于其特有的抗腐蚀性能和良好的导电性和较高的性价比被广大用户所接受。目前非金属接地产品主要是以石墨为主要材料。基本成分是导电能力优越的非金属材料材料符合加工成型的,加工方法有浇注成型和机械压模成型。一般来说浇注成型的产品结构松散、强度低、导电性能差,而且质量不稳定,一些小型厂家少量生产使用这样的办法:机械压模法,是使用设备在几到十几吨的压力下成型的,不仅尺寸精度较高、外观较好,更重要的是材料结构致密、电学性能好、抗大电流冲击能力强,质量也相当稳定,但是生产成本较高,批量生产多采用。选型时,尽量采用后者,特别是接地体有抗大电流或打冲击电流的要求(如电力工作地、防雷接地)时,不宜采用浇注成型的非金属接地体。非金属接地体的特点是稳定性优越,其气候、季节、寿命都是现有接地材料中最好的,是不受腐蚀的接地体,所以,不需要地网维护,也不需要定期改造,但是,非金属接地体施工需要的地网面积比传统接地面积小很多,但是在不同地质条件下也需要的保证足够接地面积才可以达到良好的效果。 3、降阻剂。降阻剂分为化学降阻剂和物理降阻剂,化学降阻剂自从发现有污染水源事故和腐蚀地网的缺陷以后基本上没有使用了,现在广泛接受的是物理降阻剂(也称为长效型降阻剂)。物理降阻剂是接地工程广泛接受的材料,属于材料学中的不定性复合材料,可以根据使用环境形成不同形状的包裹体,所以使用范围广,可以和接地环或接地体同时运用,包裹在接地环和接地体周围,达到降低接触电阻的作用。并且,降阻剂有可扩散成分,可以改善周边土壤的导电属性。 现在的较先进降阻剂都有一定的防腐能力,可以加长地网的使用寿命,其防腐原理一般来说有几种:牺牲阳极保护(电化学防护),致密覆盖金属隔绝空气,加入改善界面腐蚀电位的

变电站接地网接地故障原因与改造建议

变电站接地网接地故障原因与改造建议 编辑:万佳防雷 变电站的接地网是维护电力系统安全可靠运行、保障运行人员和电气设备安全的重要措施。构成接地网的均压导体常因施工时焊接不良或漏焊、埋设深度不足、土壤的腐蚀、接地短路电流的电动力作用等原因 ,使地网均压导体之间或接地引线与均压导体之间存在电气连接不良故障点。若遇电力系统发生接地短路故障 ,将造成地网本身局部电位差和地网电位异常升高 ,除给运行人员的安全带来威胁外 ,还可能因反击或电缆皮环流使得二次设备的绝缘遭到破坏 ,高压窜入控制室 ,使监测或控制设备发生误动或拒动而扩大事故 ,带来巨大的经济损失和不良的社会影响。 一、原因分析 1、根据有关的开挖资料与地质资料调查情况,接地网腐蚀原因大致有以下特点:周围土壤盐碱化严重 , 导致接地体腐蚀程度高;地下水位高、土壤潮湿和容易积水使得接地体腐蚀严重 ; 接地引下线普遍在入地处和距地表面深100~400 mm 的地段腐蚀很严重; 接地体中水平敷设的扁钢因积水 ,腐蚀速度快 ,比与地面垂直敷设的钢管腐蚀严重; 厂址临近化工厂 , 大气质量恶劣 ,加重了其地网腐蚀 程度影响接地体金属腐蚀的主要因素。 ( 1)土壤的孔隙度较大 , 有利于氧和水分的保持 , 这是腐蚀发生的促进因素。当土壤含水量大于85 %时 , 氧的扩散渗透受到了阻碍 , 腐蚀减弱; 当土壤含水量小于 10 %时 ,由于水分的缺乏 ,阳极极性和土壤电阻比加大 ,腐蚀速度又急速降低。 (2) 土壤温度昼夜温差大 ,很容易在金属上凝结水分微粒 , 且因温差电池的 形成 , 加快腐蚀, 这也是开挖地网中发现同埋一处的水平接地体比垂直方向的接地体容易腐蚀的原因。 (3) 通常土壤中含盐量约为 80~1 500 mg/ L ,地处沿海地区大部分土壤的p H 值在 8. 4~9. 5 之间 ,从而加快了土壤的腐蚀速度。 (4) 土壤中含有硫酸盐 , 在缺氧的情况下 , 硫酸盐还原细菌就会繁殖起 来 , 利用金属表面的氢把SO42 -还原 , 在铁的表面的腐蚀产物是黑色 FeS。在多数情况下土壤腐蚀性均用土壤电阻率来衡量。 而土壤电阻率直接受土壤孔隙度、湿度、温度、酸度、含盐量和有机质的影响 , 因此土壤电阻率是反映土壤理化性质的一个综合指标。一般情况对于地网土壤电阻率为 30Ω·m ,腐蚀性质是非常强的。 2、据有关资料表明,在我国由于地网发生断裂、断点而引起的电力系统的事故时有发生,每次事故都带来了巨大的经济损失。总的归结发生断裂、断点的原因有: (1)在接地网竣工之后, 没有认真执行验收手续,接地网的均压导体常因施工时焊接不良或漏焊。在投入运行后发生接地短路故障,而短路故障电流的电动力作用,使地网均压导体之间或接地引线与均压导体之间存在电气连接断裂、断点现象。 (2)焊接处防腐处理不当,加上土壤的腐蚀以及可能由于热稳定不足在部分接地网在相间短路时烧断。

220KV变电站接地网的设计

220KV 变电站接地网的设计 庞国栋 (内蒙古送变电有限责任公司,内蒙古呼和浩特 010020) 摘 要:针对目前变电站和发电厂接地网的分布不均匀,以及接地电阻存在一定问题等缺陷,本文则是结合变电站接地网的设计原则,以220KV 变电站为参考地点,对接地网进行设计和计算。其中包括对短路电流和工频电阻以及均压带的计算。 关键词:变电站;接地网;短路电流;工频接地电阻;均压带 中图分类号:T M862+.3 文献标识码:A 文章编号:1006—7981(2012)12—0095—05 电力行业在我国的现代化建设中扮演着一个重要的角色,而变电站接地网对于电力系统的可靠运行和变电站工作人员的人身安全起着重要作用。随着现代社会快速化的发展,电力系统规模不断扩大,接地系统的设计也越来越复杂。所以变电站接地技术成为电力行业研究的重点之一。 接地网作为变电站交直流设备接地对系统的安全运行起着重要的作用。由于接地网作为隐性工程容易被人忽视,往往只注意最后的接地电阻的测量结果。随着电力系统电压等级的升高及容量的增加,接地不良引起的事故时有发生,因此,接地问题越来越受到重视。 而本设计结合变电站接地网的一般设计原则,具体内容包括:计算接地网的保护接地电阻和工频接地电阻,设计接地网的形状和均压带的布置方式,设计变电站接地网图。对变电站人员以及设备安全可靠,解决了一些个弊病。1 变电站接地网的设计1.1 220KV 变电站资料 图1 变电站一次系统接线图 V 变电站占地总面积3平方米,变电站的接地网要求采用水平接地作为主边缘闭合的复合接地网,土壤电阻率为6欧米。站中有主变压 器型号--180000/220三绕组变压器两台,各绕组间短路电压标幺值:U k1-1=14%,U k2-3=9%,U k1-3=24%。远期220KV 母线最大系统阻抗X 1=0.0080X 0=0.0133,接线组别为Y N ,Y n0,d 11,电压比220+8* 1.25%/121/38.5/10.5KV 。 本设计按两台变压器运行以某一台变压器中性点接地考虑计算短路电流,变压器容量基准值取100MVA 。 1.2 最大短路电流的计算 1.2.1 变压器正序阻抗的计算 设基准功率取S B =100MVA,额定功率取S e =180MVA,U B =230KV 三绕组变压器各绕组间短路电压百分比分别为:U k1-2=14%,U k2-3=9%,U k 1-3=24%则各绕组的电抗为: X 1=12(U k1-2+U 1-3-U k2-3)=12 (0.14+0. 24-0.09)=0.145 X 2=12(U 1-3+U k2-3-U 1-3)=1 2(0.14+0.09-0.24)≈0 X 3=12(U k2-3+U 1-3-U k1-2)=1 2(0.09+0.24-0.14)=0.095 转化为标幺值为: X *1=X 1S B S e =-0.145×100 180=0.0806 X * 2=X 2S B S e 0 X *3=X 3S B S e =0。095×100 180=0.05281.2.2 流经接地装置的短路电流计算 发生短路时,变压器按一台中性点接地考虑,设正序阻抗为X 、负序阻抗为X 、零序阻抗为,且X =X 。 95  2012年第12期 内蒙古石油化工 收稿日期35 2202842180.1212:2012-0-2

XX变电站接地网大修工程施工方案

110kVXX变电站 接地网大修工程施工方案 批准: 审查: 编写: XXXXXX电力建设有限公司 2012年7月

目录 一、编制依据1 二、工程概况2 三、接地网施工流程图2 四、施工总体要求3 五、施工组织安排4 六、主要施工方法5 1.施工准备 (5) 2.施工方法 (6) 七、质量控制9 1.质量控制目标及要求 (9) 2.质量检查 (10) 八、安全文明施工10 九、接地工程施工危险点分析及预控措施11 一、编制依据 1、《电气装置安装工程接地装置施工及验收规范》(GB50169—2006) 2、《交流电气装置接地》(DL/T621-1977) 3、110kVXX变电站接地网大修工程《设计方案》 4、《电力建设安全工作规程》(SDJ63-2002)

二、工程概况 工程名称:110kVXX 变电站接地网大修 工程地点:110kVXX 变电站 工程内容:对110kVXX 变接地网大修工程进行施工,地网阻值现为0.7欧,对地网电阻进行降阻施工,施工结束后接地电阻值应满足小于0.5欧的要求。 110kVXX 变电站位于XXX 县城内,于1998年建成投运,设110kV/35kV/10kV 电压等级,110kV 为户外常规布置,35kV/10kV 为户内开关柜布置,主控楼与10kV 配电装置楼为一栋建筑,占地面积为66m ×77m 。 XX 变站址土壤表层为耕作土,下层为沙土,水分含量一般,土壤电阻率较高,全站接地变电站采用复合接地网,以水平接地体为主,以垂直接地极为辅,接地网外沿闭合,接地网内敷设水平均压带,水平接地体深埋为0.6m 。在避雷针和装有辟雷器的地方应设集中接地装 置。水平接地体采用水平接地体采用2 406mm ?热镀锌扁钢,垂直接地 体采用2 50505mm ??热镀锌角钢。 计划施工时间:计划2012年07月13日开工,于2012年08月13日竣工。

变电站接地网设计技术规范

110kV及以上变电站接地网设计技术规范(草稿) 1 范围 为实现变电站接地网的安全和经济设计,在电力系统运行和故障时能起到保证一、二次系统和人身的安全的目的,且技术经济指标合理,特制定本规范。 本技术规范适用于110kV及以上电压等级的变电站新建工程和大修技改工程的接地网设计,提出了接地网的功能和安全性指标、接地网特性参数的取值标准、接地网设计的校核步骤等相关技术要求。对如何因地制宜地选择降阻方式和措施也有所提及,对土壤情况比较复杂地区重要的变电站的接地网,宜经过比较后确定设计方案。 在技术规范中,接地网指110kV及以上电压等级、中性点有效接地、大接地短路电流系统变电站用,兼有泄流和均压作用的较大型的水平网状接地装置,通常由水平接地体和垂直接地极组成,为了降阻需要,还包括深井接地极、电解离子接地极和接地模块等。 变电站接地网的设计,应满足GT/T 50065-2011《交流电气装置的接地设计规范》等国家和电力行业现行有关强制性标准的要求,本规范作为上述规范的补充,结合深圳电网的实际运行情况进行了细化。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB50065-2011 《交流电气装置的接地设计规范》 DL/T620-1997 《交流电气装置的过电压保护和绝缘配合》 DL/T621-1997 《交流电气装置的接地》 GB 50150-2006 《电气装置安装工程电气设备交接试验标准》 GB 50169-2006 《电气装置安装工程接地装置施工及验收规范》 Q/CSG114002-2011 《电力设备预防性试验规程》 GB/T17949.1-2000 《接地系统的土壤电阻率、接地阻抗和地面电位测量导则第一部分:常规测量》 DL/T 475-2006 《接地装置特性参数测量导则》 3 接地网的安全性指标 变电站接地网是变电站设备的重要部分,首先它为变电站内各种电气设备提供公共参考地,更重要的,在系统发生接地故障时起到快速泄放故障电流,改善地网金属导体和场区地表地电位分布的作用,保障故障状态下一、二次设备和人员安全。 接地网特性参数是综合反映接地网状况的参数,尤其反映了发生接地短路故障时接地网的安全性能,包括接地阻抗、地网导体电位升高和电位差、地线分流和分流系数、场区跨步电压和接触电压、电气完整性、场区地表电位梯度和转移电位等参数和指标,它们决定了故障时变电站场区设备和人员的安全性。地网特性参数指标一方面取决于接地网泄流能力,而后者与站址土壤电阻率高低、地网接地阻抗大小和架空地线的分流贡献等因素有关;另一方面,则取决于实际入地短路电流水平高低。 (1)接地阻抗 反映接地网散流能力的宏观量化指标,是衡量接地网性能最基本的特性参数,习惯上一直沿用接地电阻的称谓,实质上,接地网的感性分量是占一定比例的,不能忽略,因此本规

变电站接地网电阻测试方法

一、概述 近些年来,国内多处变电站因雷击形成扩大事故,多数与地网接地电阻不合格有关,接地网起着工作接地和保护接地的作用,当接地电阻过大则: 发生接地故障时,使中性点电压偏移增大,可能使健全相和中性点电压过高,超过绝缘要求的水平而造成设备损坏。在雷击或雷电波袭击时,由于电流很大,会产生很高的残压,使附近的设备遭受到反击的威胁,并降低接地网本身保护设备(架空输电线路及变电站电气设备)带电导体的耐雷水平,达不到设计的要求而损坏设备。同时接地系统的接地电阻是否合格直接关系到变电站运行人员、变电检修人员人身安全;但由于土壤对接地装置具有腐蚀作用,随着运行时间的加长,接地装置已有腐蚀,影响变电站的安全运行;因此,必须大力加强对地网接地电阻的定期监测;运行中变电站地网接地电阻的测量,由于受系统流入地网电流的干扰以及试验引线线间的干扰,使测试结果产生较大的误差。特别是大型接地网接地电阻很小(一般在0.5Ω以下),即使细微的干扰也会对测试结果产生很大的影响;如果对地网接地电阻测试不准确,不仅损坏设备,而且会造成诸如地网误改造等不必要的损失,结合我对接地网接地阻抗测试方法的研究,现总结如下: 二、接地电阻测试原理及方法: 测试接地装置的接地阻抗时电流极要布置的尽量远,通常电流极与被试接地装置边缘的距离dcG应为被试接地装置最大对角线长度D的4~5倍(平行布线法),在土壤电阻率均匀的地区可取2倍及以上(三角形布线法),电压引线长度为电流引线长度0.618倍(平线布线法)或等于电流线(三角形布线法)。 1、电位降法 电位降法测试接地装置的接地阻抗是按图1布置测试回路,且符合测试回路的布置的要求。 G—被试接地装置;C—电流极;P—电位极;D—被试接地装置最大对角线长度;dCG—电流极与被试接地装置边缘的距离;x—电位极与被试接地装置边缘的距离;d—测试距离间隔;图1电位降法测试接地装置的接地阻抗

重点变电站主要施工流程注意事项

110室内变电站主要施工流程注意事项 一、三通一平 1、接桩 现场桩位移交人应为业主项目部成员,并需在桩位移交书上签字确认。 2、复测方格网 场地树木、房屋等清理后,场地平整前,一般按照5m×5m 方格网进行复测。如复测后计算出的土方量和图纸设计量有较大误差(达到200m3),需第一时间通知施工技术科和经营计划科,经过科室复核无误后,项目部应立即联系业主、监理和设计部门,要求重新核实标高和土方量。 3、地表土清理 站内参与土方平衡的淤泥、垃圾土方量较大时,在进场施工前应联系业主、设计部门,协商站外堆放地点,为站区工作面开展提供条件。 土方施工前,需清理场地表面含淤泥、耕植土、杂草、树根等地表土,并存放于场地的合适位置,避免二次倒运。站区回填土源应采取有效防雨覆盖措施。 二、基坑支护、井点降水施工 通常室内变电站选址在邻近小区或地址条件较差处,站区土方需进行换填,基础施工过程中需进行基坑支护,地下水位较高

的还需进行井点降水施工,涉及到此类施工的工程,应和业主、监理沟通,要求设计单位对此类项目专门进行设计,按要求进行施工,确保安全。 三、接地网施工:在施工建筑物基础阶段,埋设接地主网。接地材料为铜质的,需提前备料。图纸到场后,需核对接地材料用量,发现设计量不够,及时和设计部门人员联系解决。交付电气安装前,联系电气测量接地网电阻值,如达不到设计要求,及时和设计部门人员联系解决。 四、挡土墙、围墙、护坡施工 变电站尽早施工挡土墙、围墙,实行封闭管理;有护坡的围墙段,先施工护坡、后施工围墙。在施工挡土墙或围墙基础时,按图纸设计埋设主排水管、进站电缆沟、电气埋管、接地引出线等。 五、建筑物施工 1、基础及主体施工 (1)地基处理;(2)基础、防水及地下室施工;(3)室内、外脚手架搭设;(4)框架施工。一般二层至屋面涉及若干个标高,施工时应按照由低到高的顺序,依次封顶。 2、其他需要注意的事项 在建筑物施工中需注意以下环节:(1)有地下室层的工程,先施工桩基、垫层,再施工防水层,在室外土方回填前,将地下室外墙防水施工完毕;(2)基础至±0.000且室外散水坡土方回填完

相关文档
相关文档 最新文档