文档库 最新最全的文档下载
当前位置:文档库 › 9.6空间向量及其运算(B)

9.6空间向量及其运算(B)

9.6空间向量及其运算(B)
9.6空间向量及其运算(B)

9.6空间向量及其运算(B )

【教学目标】

(1)了解空间向量基本概念;掌握空间向量的加、减、数乘、及数量积的运算;了解空间向量共面概念及条件;理解空间向量的基本定理。

(2)理解空间直角坐标系的概念,会用坐标来表示向量;理解空间向量的坐标运算;会用向量工具来解决一些立体几何问题。 【知识梳理】

1、共线向量定理:对空间任意两个向量,(0≠b ),a //b

的充要条件是存在实数λ

使b a λ=。显然c a c b b a //,//,//则。 2、直线的向量参数表示式:

点P 在直线L 上的充要条件是存在实数t ,使t +=(是直线L 的方向向量)

或OP =(1-t)OB t OA +。若有OP =x OB y OA +,则x+y=1。

3、共面向量定理:两个向量b a ,不共线,则向量p 与向量b a ,共面的率要条件是存在

实数对x ,y 使=y x +。

推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x ,y 使得:

y x +=,或对空间任意一点O 有:y x ++=。

4、空间向量的基本定理:如果三个向量,,不共面,那么对空间任意一向量,存

在惟一有序实数对x 、y 、z 使得=y x +z +。

推论:设O 、A 、B 、C 是不共面的四点,则对空间任意一点P ,都存在惟一的三个有

序实数x 、y 、z 使=x y ++z 。特别地,当x+y+z=1时,则必有P 、A 、B 、C 四点共面。

5

、定义:=?

,或=

,用于求两个向量的数量积或夹

角; 6、0=??⊥b a b a ,用于证明两个向量的垂直关系;

7

?=,用于求距离。

【点击双基】

1.在以下四个式子中正确的有 a+b ·c ,a ·(b ·c ),a (b ·c ),|a ·b|=|a||b| A.1个 B.2个 C.3个 D.0个

解析:根据数量积的定义,b ·c 是一个实数,a +b ·c 无意义.实数与向量无数量积,故a ·(b ·c )错,|a ·b |=|a ||b ||cos 〈a ,b 〉|,只有a (b ·c )正确.

答案:A

2.设向量a 、b 、c 不共面,则下列集合可作为空间的一个基底的是 A.{a +b ,b -a ,a } B.{a +b ,b -a ,b } C.{a +b ,b -a ,c } D.{a +b +c ,a +b ,c }

解析:由已知及向量共面定理,易得a +b ,b -a ,c 不共面,故可作为空间的一个基底,故选C.

答案:C

3.在平行六面体ABCD —A ′B ′C ′D ′中,向量B A 、D A 、BD 是 A.有相同起点的向量

B.等长的向量

C.共面向量

D.不共面向量

解析:∵D A '-B A '=D B ''=, ∴B A '、D A '、共面.

答案:C

4.已知a =(1,0),b =(m ,m )(m >0),则〈a ,b 〉=_____________. 答案:45°

5.已知四边形ABCD 中,=a -2c ,=5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则=_____________.

解析:∵EF =EA +AB +BF , 又EF =EC +CD +DF ,

两式相加,得2EF =(EA +)+(AB +)+(BF +DF ). ∵E 是AC 的中点,

故EA +EC =0.同理,BF +DF =0.

∴2EF = AB +=(a -2c )+(5a +6b -8c )=6a +6b -10c .∴EF =3a +3b -5c . 答案:3a +3b -5c

【典例剖析】

【例1书】在平行四边形ABCD 中,AB=AC=1,∠ACD=900,将它沿对角线AC 折起,使AB 与CD 成600角,求B 、D 间的距离。

【例2书】在棱长为1的正方体ABCD-A 1B 1C 1D 1

求证:(1)BD 1⊥平面ACB 1; (2)BE=1

2 ED 1

例3.在正三棱柱ABC -A 1B 1C 1中,(1)已知AB 1⊥BC 1,求证:AB 1⊥A 1C;(2)当AB =2,AA 1=4时,求异面直线BC 1与A 1C 所成角的余弦值.

解:(1)设=a ,AC =b ,1AA =c ,则1AB =a +c ,1BC =b -a +c ,C A 1=b -c . ∵1AB ⊥1BC ,∴(a +c )?(b -a +c )=0,即c 2-a 2+a ?b =0.

=x

=h ,则h 2-x 2+2

1

x 2=0,∴x 2=2h 2.

1AB ?A 1=(a +c )?(b -c )=a ?b -c 2=21x 2-h 2=h 2-h 2

=0.

=20,1BC ?C A 1=(b -a +c )?(b -c )=b 2-c 2-a ?b =-14 设异面直线BC 1与A 1C 所成的角为θ, 则cos θ=|cos<1BC , C A 1

>|=

710

. 即异面直线BC 1与A 1C 所成角的余弦值为

710

. 例 4.已知空间四边形OABC 中,,AOC BOC AOB ∠=∠=∠且,OC OB OA ==N M ,分

别是BC OA ,的中点,G 是MN 中点.求证:BC OG ⊥

分析:要证BC OG ⊥,只须证明0=?即可.而要证0=?,必须把,用一组已知的空间基向量来表示.又已知条件为,AOC BOC AOB ∠=∠=∠且

,OC OB OA ==因此可选,,为已知的基向量.

证明:连结,ON 由线段中点公式得:

)(4

1

)(212121)(21OC OB OA OC OB OA ON OM OG ++=??????++=+=

,又,OB OC BC -= )()(4

1

-?++=

?∴ )(4

1

22OB OC OB OB OA OC OC OB OC OA ?--?-+?+?= )(4

1

22-?-+?=

,cos AOC OC OA ∠?=?

,cos AOB OB OA ∠?=?

AOC AOB ∠=∠==,

BC OG ⊥∴=?∴,0

说明:①在证明两直线垂直或两异面直线所成的角时,不妨考虑用向量来解决;

②在具体的过程中,要注意向量转化时的选择,尽可能简洁.

例5.如图,在平行六面体1111D C B A ABCD -中,O 是11D B 的中点. 求证:C B 1∥面1ODC .

分析:要证明C B 1∥面1ODC ,只需证明C B 1∥面1ODC ,进一步只需证明C B 1与面1

ODC 中的一组基向量共面.

证明:设,,,11111c CC b D C a B C ===因为11BCC B 为平行四边形,

∴ B -=1,又O 是11D B 的中点,)(2

1

),(2111111C D C OD C -=-=+=

∴ D D 1 ∥1CC ,11CC D D =,,11C D =∴

,)(2

1

11D OD +-=

+=∴ 若存在实数,,y x 使),(11R y x OC y x B ∈+=成立,则

??

?

???+-+??????+-=-)(21)(21y x x y x y x +-++-=)(21)(21

因为c b a ,,不共线,????

??

???==-=+∴10)(2

1

1)(21

x y x y x ,???==∴11y x .

,011C OD C B +=∴所以11,,OC OD C B 是共面向量,

因为C B 1不在1,OC OD 所确定的平面内,

B 1∴∥面1OD

C ,又?C B 1面1ODC , C B 1∴∥面1ODC .

【知识方法总结】

在处理立体几何中的平行与垂直的问题或两异面直线所成的角时,用向量来解决思维简单,是一种行之有效的方法。

C 1

A

空间向量的坐标运算练习

空间向量的坐标运算练 习 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

空间向量的坐标运算——1 1、已知向量b ,a 分别平行于x 、y 轴,则它们的坐标各有什么特点 答:a 的__________________________; b 的________________________________ 2、如果的横坐标为0,其它坐标都不为0,则与哪个坐标平面平行答:_________ 4、点P(2,-3,4)在xoy 面上的射影坐标是___________;在xoz 面上的射影坐标是 ___________; 在yoz 面上的射影坐标是___________ 5、点Q (-3,2,5)关于原点对称的点的坐 标是___________;关于xoz 面对称的点的坐标是__________________ 6、已知A (3,4,5),B (0,2,1),若 AB 5 2OC =,则C 点的坐标是______________ 7、写出与原点距离等于3的点所满足的条件________________________________ 8、已知A(2,0,0),B(6,2,2),C(4,0, 2) A :2 D 3C 4B 6ππππ ::: 9、如图,ABC-A 1B 1C 1是正三棱柱(即底面是正三角形,沿着垂直于底面的向量平移所得到的轨迹),若AB =2,AA 1=4,R 是BB 1的中点,取AB 的中点为原点建立坐标系如图,写出下列向量的坐标: ______________= ______________=______________=A A'

《空间向量运算的坐标表示》说课稿

《空间向量运算的坐标表示》——说课稿 各位评委、老师:大家好! 今天我说课的内容是《空间向量运算的坐标表示》的第一课时,我将从教材分析、教学目标、学生情况、教法学法分析、教学过程、教学效果及反思六个方面来介绍: 一、教材分析 (一)地位和作用 本节课内容选自人教数学选修2-1第三章,这节课是在学生学习了空间向量几何形式及其运算、空间向量基本定理的基础上进一步学习的知识内容,是在学生已经学过的二维的平面直角坐标系的基础上的推广,是《空间向量运算的坐标表示》的第一课时,是以后学习“立体几何中的向量方法”等内容的基础。它将数与形紧密地结合起来。这节课学完后,如把几何体放入空间直角坐标系中来研究,几何体上的点就有了坐标表示,一些题目如两点间距离、异面直线成的角等就可借助于空间向量来解答,所以,这节课对于沟通高中各部分知识,完善学生的认知结构,起到了很重要的作用。 (二)目标的确定及分析 根据新课标和我对教材的理解,结合学生实际水平,从知识与技能;过程和方法;情感态度价值观三个层面出发,我将本课的目标定位以下三个:(1)知识与技能:通过与平面向量类比学习并掌握空间向量加法、减法、数乘、数量积运算的坐标表示以及向量的长度、夹角公式的坐标表示,并能初步应用这些知识解决简单的立体几何问题。(2)过程与方法:①通过将空间向量运算与熟悉的平面向量的运算进行类比,使学生掌握空间向量运算的坐标表示,渗透类比的数学方法;②会用空间向量运算的坐标表示解决简单的立体几何问题,体会向量方法在研究空间图形中的作用,培养学生的空间想象能力和几何直观能力。(3)情感态度价值观:通过提问、讨论、合作、探究等主动参与教学的活动,培养学生主人翁意识、集体主义精神。 (三)重难点的确定及分析 本节课的重点是:空间向量运算的坐标表示,应用向量法求两条异面直线所

空间向量的坐标运算(人教A版)(含答案)

空间向量的坐标运算(人教A版) 一、单选题(共10道,每道10分) 1.已知点的坐标分别为与,则向量的相反向量的坐标是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量运算的坐标表示 2.已知空间直角坐标系中且,则点的坐标为( ) A. B. C. D. 答案:A 解题思路:

试题难度:三颗星知识点:空间向量运算的坐标表示 3.若向量,,则向量的坐标是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:空间向量运算的坐标表示 4.已知向量,,则=( ) A. B. C. D. 答案:C

解题思路: 试题难度:三颗星知识点:空间向量运算的坐标表示 5.已知向量是空间的一组单位正交基底,若向量在基底下的坐标为,那么向量在基底下的坐标为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:空间向量的基本定理及其意义 6.已知为空间的一组单位正交基底,而是空间的另一组

基底,若向量在基底下的坐标为,则向量在基底下的坐标为( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的基本定理及其意义 7.已知三点不共线,点为平面外的一点,则下列条件中,能使得平面成立的是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:共线向量与共面向量 8.已知,,,若,,三向量共面,则实数=( ) A. B.

C. D. 答案:D 解题思路: 试题难度:三颗星知识点:共线向量与共面向量 9.已知空间三点的坐标为,,,若三点共线,则=( ) A. B. C. D. 答案:D 解题思路:

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

空间向量的基本运算

第六节 空间向量 1. 空间向量的概念:在空间,我们把具有 和 的量叫做向量。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线 或 ,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ, 使a = 。 4. 共面向量 (1)定义:一般地,能平移到同一 内的向量叫做共面向量。 说明:空间任意的两向量都是 的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y ,使 。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使 。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个 的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作

空间向量的坐标运算

空间向量的坐标运算 第一课时空间直角坐标系 教学目标: ㈠知识目标: ⒈空间直角坐标系; ⒉空间向量的坐标表示; ⒊空间向量的坐标运算; ⒋平行向量、垂直向量坐标之间的关系; 5.中点公式。 ㈡能力目标: ⒈掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标; ⒉掌握空间向量坐标运算的规律; 3.会根据向量的坐标,判断两个向量共线或垂直; 4.会用中点坐标公式解决有关问题。 教学重点:空间右手直角坐标系,向量的坐标运算 教学难点:向量坐标的确定 教学方法:讨论法. 教具准备:多媒体投影. 教学过程: 复习回顾 空间向量基本定理 探索研究 1、空间右手直角坐标系的概念 ⑴单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{i,j,k}表示。 ⑵空间直角坐标系O-xyz 在空间选定一点O和一个单位正交基底{i,j,k},以点O 为原点,分别以i、j、k的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,这时我们说建立了一个直角坐标系O-xyz,点O叫做原点,向量i,j,k叫做坐标向 量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面,yOz平面,zOx平面。 ⑶空间直角坐标系的画法作空间直角坐标系O-xyz 时,一般使∠xOy=135°(或45°),∠yOz=90°。 注:在空间直角坐标系O-xyz中,让右手拇指指向x轴 的正方向,食指指向y轴的正方向,如果中指能指向z轴的正 方向,则称这个坐标系为右手直角坐标系。 ⑷空间向量的坐标表示给定一空间直角坐标系和向

向量的直角坐标运算设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3),则a+b=(a 1+b 1,a 2+b 2,a 3+b 3) a -b=(a 1- b 1,a 2-b 2,a 3-b 3)λa=(λa 1,λa 2,λa 3) a ?b=a 1 b 1+a 2b 2+a 2b 2 a//b a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R)a ⊥b a 1b 1+a 2b 2+a 3b 3=0设A(x 1,y 1,z 1),B(x 2,y 2,z 2),则 AB =OB -OA =(x 2-x 1,y 2-y 1,z 2-z 1)  量a ,且设i,j,k 为坐标向量(如图),由空间向量基本定理,存在唯一的有序实数组(a 1,a 2,a 3)叫做向量a 在此直角坐标系中的坐标,可简记作a =(a 1,a 2,a 3)。 在空间直角坐标系O -xyz 中,对于空间任一点A ,对应一个向量OA ,若 ,k z j y i x OA ++=则有序数组(x,y,z)叫做点A 在 此空间直角坐标系中的坐标,记为A(x,y,z),其中x 叫做A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标,写点的坐标时,三个坐标间的顺序不能变。 ⑸空间任一点P 的坐标的确定 过P 分别作三个与坐标平面平行的平面(或垂面),分别交坐标轴于A 、B 、C 三点,|x|=|OA|,|y|=|OB|,|z|=|OC|,当OA 与i 方向相同时,x >0,反之x <0,同理可确定y 、z (如图) 例1已知ABCD -A 1B 1C 1D 1是棱长为2的正方体,E 、F 分别是BB 1和DC 的中点,建立如图所示的空间直角坐标系,试写出图中各点的坐标。 分析:要求点E 的坐标,过点E 与x 轴、y 轴垂直的平面已存在,只要过E 作平面垂直于z 轴交E ‘ 点,此时|x|=|,|DA |y|=|,|DC |z|=||'DE ,当DA 的方向与x 轴正向相同时,x >0,反之x <0,同理确定y 、z 的符号,这样可求得点E 的坐标。 解:D(0,0,0),A(2,0,0),B(0,2,0),C(0,0,2), A 1(2,0,2), B 1(2,2,2), C 1(0,2,2),, D 1(0,0,2),E(2,2,1),F(0,1,0) 2、向量的直角坐标运算 注:3 32 21 1i 321321b a b a b a b //a 1,2,3),0(i b ),b ,b ,(b b ),a ,a ,(a a = = ? =≠==则若

最新空间向量运算的坐标表示练习题

课时作业(十七) [学业水平层次] 一、选择题 1.已知a =(1,-2,1),a -b =(-1,2,-1),则b =( ) A .(2,-4,2) B .(-2,4,-2) C .(-2,0,-2) D .(2,1,-3) 【解析】 b =a -(-1,2,-1)=(1,-2,1)-(-1,2,-1)=(2,-4,2). 【答案】 A 2.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |的值为( ) A.534 B.532 C.532 D.132 【解析】 ∵AB 的中点M ? ? ???2,32,3,∴CM →=? ????2,12,3,故|CM | =|CM → |= 22+? ?? ??122+32=532. 【答案】 C 3.(2014·德州高二检测)已知向量a =(2,3),b =(k,1),若a +2b 与a -b 平行,则k 的值是( ) A .-6 B .-23 C.2 3 D .14 【解析】 由题意得a +2b =(2+2k,5),且a -b =(2-k,2),又因为a +2b 和a -b 平行,则2(2+2k )-5(2-k )=0,解得k =2 3.

【答案】 C 4. (2014·河南省开封高中月考)如图3-1-32,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E ,F 分别是面A 1B 1C 1D 1、面BCC 1B 1的中心,则E ,F 两点间的距离为( ) 图3-1-32 A .1 B.52 C.62 D.32 【解析】 以点A 为原点,建立如图所示的空间直角坐标系,则 E (1,1,2), F ? ???? 2,1,22,所以|EF |= (1-2)2 +(1-1)2 +? ??? ?2-222 =6 2,故选C. 【答案】 C 二、填空题 5.(2014·青岛高二检测)已知点A (1,2,3),B (2,1,2),P (1,1,2),O (0,0,0),点Q 在直线OP 上运动,当QA →·QB →取得最小值时,点Q 的坐标为________. 【解析】 设OQ →=λOP →=(λ,λ,2λ),故Q (λ,λ,2λ),故QA → =

《空间向量数量积的运算》的教学反思

《空间向量数量积的运算》教学反思 本节课我讲了选修2-1第三章《空间向量的数量积运算》这个节,这是本章第三节的内容,主要学习的是空间向量的数量积的运算及应用。根据大纲,要求学生能熟练应用空间向量的运算解决简单的立体几何问题,这也是本节课的难点。突破难点的方法是让学生会用已知向量表示相关向量,就是利用三角形法则或多边形法则把未知向量表示出来,进而再求两个向量的数量积、夹角、距离等。 三方面实行整体设计,注重与学生已有知识的联系及相关学科知识的联系(物理学:功),因为本节知识是向量由二维向三维的推广,所以预习平面向量的运算起了一定的作用,使学生体会知识的形成过程和数学中的类比学习方法。在整个教学过程中,我还是沿用知识复习、学生探究、教师例题分析、师生合作归纳小结的主线实行教学,符合学生的认知规律,也易于学生对知识的掌握,在教学方法上,我注重多媒体演示和传统板书教学有效结合,较好地辅助了教学。同时,结合新高考的要求,我注重了数学核心素养的培养,在教学中例题分析与归纳时,我注重了数学思想方法的渗透,如本节课我就渗透了数形结合思想、类比思想等,本节课的核心理念是体现学生在学习中的主体性。但我注重调动学生的主观能动性,最大限度的发挥学生的主体作用,在教学过程中,学生的思维活跃,积极讨论问题,自主解决相关例题。精彩处在于学生积极参与互动,学生评判,教师引导,学生积极归纳知识点,整个课堂热烈有序,张而有驰,整体课多次出现教学高潮,博得了学生与听课专家的热烈掌声,从课后反馈来看,本堂课普片反应学懂了,掌握了知识和解决问题的水平,正在学有所用。 不足之处:在创设情境时,我用的是知识性引课,不够引人入胜,要是能想出更好的引课方式或动画设计,在一开始就抓住学生的眼球,调动起学生学习的积极性,应该效果会更好。其次,在课堂中没有充分发挥学生的主体性,老师由引导者又逐步变成了主导者。另外,难点突破应该在两个例题上,不过前边耽误了时间,导致重点地方没有充足的时间解决,没达到最初的意图。对问题的探究需要时间,课上让学生放开去探究,减少了课堂容量,影响到了例题的分析讲解。应

3.1.3 空间向量的数量积运算

3.1.3 空间向量的数量积运算 课时目标 1.掌握空间向量夹角的概念及表示方法,掌握两个向量的数量积概念、性质和计算方法及运算规律.2.掌握两个向量的数量积的主要用途,会用它解决立体几何中的夹角及距离问题. 1.空间向量的夹角 定义 已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫 做向量a ,b 的夹角 记法 范围 ,想一想:〈a ,b 〉与〈b ,a 〉相等吗?〈a ,b 〉与〈a ,-b 〉呢? 2.空间向量的数量积 (1)定义:已知两个非零向量a ,b ,则|a||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a·b . (2)数量积的运算律 (3) 一、选择题 1.设a 、b 、c 是任意的非零向量,且它们相互不共线,下列命题: ①(a·b )·c -(c·a )·b =0; ②|a |-|b |<|a -b |; ③(b ·a )·c -(c ·a )·b 不与c 垂直; ④(3a +2b )·(3a -2b )=9|a |2-4|b |2. 其中正确的有( ) A .①② B .②③ C .③④ D .②④ 2.若a ,b 均为非零向量,则a·b =|a||b |是a 与b 共线的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |等于( )

A.7 B.10 C.13 D .4 4.在棱长为1的正四面体ABCD 中,E,F 分别是BC,AD 的中点,则AE ·CF →等于( ) A .0 B.12 C .-34 D .-12 5. 如图,已知P A ⊥平面ABC ,∠ABC =120°,P A =AB =BC =6,则PC 等于( ) A .6 2 B .6 C .12 D .144 6.若向量m 垂直于向量a 和b ,向量n =λa +μb (λ,μ∈R 且λ、μ≠0),则( ) A .m ∥n B .m ⊥n C .m 不平行于n ,m 也不垂直于n D .以上三种情况都有可能 二、填空题 7.已知a ,b 是空间两向量,若|a |=3,|b |=2,|a -b |=7,则a 与b 的夹角为________. 8.若向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为π3 ,则|a +b |=________. 9.在△ABC 中,有下列命题: ①AB →-AC →=BC →; ②AB →+BC →+CA =0; ③(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形; ④若AC →·AB →>0,则△ABC 为锐角三角形. 其中正确的是________.(填写正确的序号) 三、解答题 10. 如图,已知在空间四边形OABC 中,OB =OC ,AB =AC .求证:OA ⊥BC .

《空间向量的数量积运算》示范教案

3.1.3空间向量的数量积运算 整体设计 教材分析 本节课在平面向量的夹角和向量长度的概念的基础上,引入了空间向量的夹角和向量长度的概念和表示方法,介绍了空间两个向量数量积的概念、计算方法、性质和运算律,并举例说明利用向量的数量积解决问题的基本方法. 通常,按照传统方法解立体几何题,需要有较强的空间想象能力、逻辑推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难.用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高.课时分配 1课时 教学目标 知识与技能 1.掌握空间向量夹角的概念及表示方法; 2.掌握两个向量数量积的概念、性质和计算方法及运算律; 3.掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题. 过程与方法 1.运用类比方法,经历向量的数量积运算由平面向空间推广的过程; 2.引导学生借助空间几何体理解空间向量数量积运算的意义. 情感、态度与价值观 1.培养学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力; 2.培养学生空间向量的应用意识. 重点难点 教学重点: 1.空间向量的数量积运算及其运算律、几何意义; 2.空间向量的数量积运算及其变形在空间几何体中的应用. 教学难点: 1.空间想象能力的培养,思想方法的理解和应用; 2.空间向量的数量积运算及其几何应用和理解. 教学过程 引入新课 提出问题:已知在正方体ABCD—A′B′C′D′中,E为AA′的中点,点F在线段 D′C′上,D′F=1 2FC′,如何确定BE → ,FD → 的夹角?

空间向量运算的坐标公式

空间向量运算的坐标公式 如果三个向量不共面那么对空间任一向量存在一个唯一的 有序实数组x、y、z使得cbapczbyaxpcba叫做空间的一个 ______基底空间任意三个不共面向量都可以构成空间的一 个基底一、空间直角坐标系单位正交基底如果空间的一个基底的三个基向量互相垂直且长都为1则这个基底叫做单位正交基底常用i j k 来表示.点O叫做原点向量i、j、k都叫做坐标向量.通过每两个坐标轴的平面叫做坐标平面。分别称为xOy平面yOz平面xOz平面.空间直角坐标系在空间选定一 点O和一个单位正交基底i、j、k 。以点O为原点分别以i、j、k的正方向建立三条数轴x轴、y轴、z轴它们都叫做坐 标轴.这样就建立了一个空间直角坐标系O--xyzOxyzijk二、 向量的直角坐标aaaa 1 2 3给定一个空间坐标系和向量且设i、j、k为坐标向量由空间向量基本定理存在唯一的有序实数组1 2 3使1i 2j 3k 有序数组1 2 3叫做在空间直角坐标系 O--xyz中的坐标记作.aaaaaaaaaaaaxyzOAa1a2a3ijka在空间直角坐标系O--xyz中对空间任一点A对应一个向量OA于是 存在唯一的有序实数组xyz使OAxiyjzk在单位正交基底i j k 中与向量OA对应的有序实数组xyz叫做点A在此空间直角坐标系中的坐标记作Axyz其中x叫做点A的横坐标y叫做点A的纵坐标z叫做点A的竖坐标.xyzOAxyzijka三、向量 的直角坐标运算.111222axyzbxyz设则 121212abxxyyzz111axyzR121212abxxyyzz121212abxxyyzz例

空间向量及其运算的坐标表示

1.3 空间向量及其运算的坐标表示 【学习目标】 1.空间直角坐标系 在空间选定一点O和一个单位正交基底{i,j,k},以O为原点,分别以i,j,k方向为正方向,以它们的长为单位长度建立三条数轴:x轴,y轴,z轴,它们都叫做坐标轴,这时我们就建立,O叫做,i,j,k都叫做。 对于空间任意一个向量p,存在有序实数组{x,y,z},使得p=x e1+y e2+z e3,则把x,y,z称作向量p在单位正交基底e1,e2,e3下的坐标,记作。 2.空间向量的坐标运算 空间向量a,b,其坐标形式为a=(a1,a2,a3),b=(b1,b2,b3). 3. 设a=(a1,a2,a3),b=(b1,b2,b3),则

夹角 cos 〈a ,b 〉=a ·b |a ||b | cos 〈a ,b 〉= a 1 b 1+a 2b 2+a 3b 3 a 21+a 22+a 2 3 b 21+b 22+b 2 3 1.已知i ,j ,k 分别是空间直角坐标系Oxyz 中x 轴,y 轴,z 轴的正方向上的单位向量,且AB → =-i +j -k ,则点B 的坐标是( ) A .(-1,1,-1) B .(-i ,j ,-k ) C .(1,-1,-1) D .不确定 2、判断对错。 (1)空间直角坐标系中,向量AB → 的坐标与终点B 的坐标相同.( ) (2)设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2)且b ≠0,则a ∥b ∥x 1x 2 =y 1y 2 =z 1 z 2 .( ) (3)四边形ABCD 是平行四边形,则向量AB →与DC → 的坐标相同.( ) (4)设A (0,1,-1),O 为坐标原点,则OA → =(0,1,-1).( ) 【经典例题】 题型一 空间直角坐标系 注意:建系时要充分利用图形的线面垂直关系,选择合适的基底,在写向量的坐标时,考虑图形的性质,充分利用向量的线性运算,将向量用基底表示. 例1已知P A 垂直于正方形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点,并且P A =AD =1,建立适当坐标系,求向量MN → 的坐标.

空间向量及其坐标运算练习题

空间向量及其坐标运算 一.选择题 1.若a =(2x ,1,3),b =(1,-2y ,9),如果a 与b 为共线向量,则 A.x =1,y =1 B.x = 21,y =-21 C.x =61,y =-23 D.x =-61,y =2 3 2.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 3.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 值是 A.1 B.51 C.53 D.5 7 4.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG = x OA +y OB +z OC ,则(x ,y ,z )为 A.( 41,41,41) B.(43,43,43) C.(31,31,31) D.(32,32,32 ) 5.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成的角为的余弦值 A D B C B C D 1 1 1 1 M N A. 2 3 B. 10 10 C. 5 3 D. 5 2 二.填空题 6.已知空间三点A (1,1,1)、B (-1,0,4)、C (2,-2,3),则AB 与CA 的夹角 θ的大小是_________. 7.已知点A (1,2,1)、B (-1,3,4)、D (1,1,1),若AP =2PB ,则|PD |的值是__________. 8.命题:①若a 与b 共线,b 与c 共线,则a 与c 共线;②向量a 、b 、c 共面,则它们所在的直线也共面;③若a 与b 共线,则存在唯一的实数λ,使b =λa ;④若A 、B 、C 三点不共线,O 是平面ABC 外一点,OM = 31OA + 31OB + 3 1 OC ,则点M 一定在平面ABC 上,且在△ABC 内部. 上述命题中的真命题是_____________.

空间向量的坐标表示及其运算

空间向量的坐标表示及其运算 1. 已知()2,1,3=,()3,2,1-B ,则A 的坐标是 . 2. 已知()()m b a ,4,2,2,2,1-=-= ,若b a //,则实数=m . 3. 在空间直角坐标系中,已知点A (1,0,2),B(1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M 的坐标是______ . 4. 若()1,1,1A ,()4,0,1-B ,()3,2,2-C ,则以AC AB ,为邻边的平行四边形的面积为 . 5. 若A(3cos α,3sin α,1),B(2cos α,2sin α,1),则|AB → |的取值范围是 . 6. 若()()222111,,,,,z y x A z y x A ,且P 为AB 中点,则P 的坐标为 . 7. 在长方体1111D C B A ABCD -中,3,4,51===AA BC AB ,如图,建立空间直角坐标系,写 出11,,CB B A AC 及D B 1. 8. 已知()()1,2,3,3,6,4--B A ,且3 2 -=,求点P 的坐标。 9. 已知()()5,3,2,1,5,1-==b a , (1)当()() b a b a 3//-+λ,求实数λ的值; (2)当()() b a b a 3/-⊥+λ,求实数λ的值 y

10. 已知空间三点()2,0,2-A ,()()4,0,3,2,1,1--C B ,求: (1)BAC ∠; (2)若向量k k +与向量k 2-垂直,求实数k 值。 11. 已知()3,2,1=,()2,1,2=,()2,1,1=,点S 在直线OP 上,求?的最小值,并指出此时S 的坐标。 12. 在棱长为a 的正四面体ABCD 中,建立恰当的坐标系, (1)求D C B A ,,,的坐标; (2)求AB BC ? +AC BD ? 的值。 C P A

空间向量的数量积运算练习题

课时作业(十五) [学业水平层次] 一、选择题 1.设a 、b 、c 是任意的非零平面向量,且它们相互不共线,下列命题:①(a ·b )c -(c ·a )b =0;②|a |=a ·a ;③a 2b =b 2a ;④(3a +2b )·(3a -2b )=9|a |2-4|b |2.其中正确的有( ) A .①② B .②③ C .③④ D .②④ 【解析】 由于数量积不满足结合律,故①不正确,由数量积的性质知②正确,③中|a |2·b =|b |2·a 不一定成立,④运算正确. 【答案】 D 2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则a 与b 的夹角〈a ,b 〉=( ) A .30° B .45° C .60° D .以上都不对 【解析】 ∵a +b +c =0,∴a +b =-c ,∴(a +b )2=|a |2+|b |2+2a ·b =|c |2,∴a ·b =32,∴cos 〈a ,b 〉=a ·b |a ||b |=14. 【答案】 D 3.已知四边形ABCD 为矩形,P A ⊥平面ABCD ,连结AC ,BD ,PB ,PC ,PD ,则下列各组向量中,数量积不为零的是( ) A.PC →与BD → B.DA →与PB → C.PD →与AB → D.P A →与CD →

【解析】 用排除法,因为P A ⊥平面ABCD ,所以P A ⊥CD ,故P A →·CD → =0,排除D ;因为AD ⊥AB ,P A ⊥AD ,又P A ∩AB =A ,所以AD ⊥平面P AB ,所以AD ⊥PB ,故DA →·PB →=0,排除B ,同理PD →·AB →=0,排除C. 【答案】 A 4. 如图3-1-21,已知空间四边形每条边和对角线都等于a ,点E ,F ,G 分别是AB ,AD ,DC 的中点,则下列向量的数量积等于a 2的是( ) 图3-1-21 A .2BA →·AC → B .2AD →·DB → C .2FG →·AC → D .2EF →·CB → 【解析】 2BA →·AC →=-a 2,故A 错;2AD →·DB →=-a 2,故B 错;2EF →·CB →=-12a 2 ,故D 错;2FG →·AC →=AC →2=a 2,故只有C 正确.

空间向量数量积算

《空间向量的数量积运算》说课案 今天我说课的课题《两个向量的数量积》,本节课是数学选修2-1第三章第三节的第一课时的内容,现我就教材分析、教学目标分析、教学重难点、教法与学法设计、教学过程、五个方面进行说明。恳请在座的各位评委批评指正。一、教材分析 本节课是人教A版选修2-1第三章第1.3节的内容,是在学生学习了空间向量的线性运算和空间向量基本定理的基础上进一步学习的内容,是平面向量数量积及其研究方法的推广和拓展。它丰富了学生的认知结构,为学生学习立体几何提供了新的视角、新的观点、新的方法,并且是本章和今后学习的重要基础1教材的地位与作用: 空间两个向量的夹角、数量积是高中数学向量的重要内容,也是高考的重要考查内容。从知识的网络结构上看,空间向量夹角、数量积既是平面向量夹角、数量积概念的延续和拓展,又是后续空间向量数量积的计算坐标化和空间向量在立体几何中应用的教学基础。 学生已经学习了立体几何,通常都按照传统方法解立体几何题,这就要求我们的学生需要有较强的空间想象能力、逻辑推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难。用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高。 整体来看,本节课在整个高中数学中占有重要的地位。 2、学情分析 本节课授课对象是高二年级的学生,他们已熟知了实数的运算体系,学习了平面向量的一些内容,理解了向量的概念,对向量的加法、减法及数乘运算都应该较熟练,具备了功等物理知识,并且通过前面的学习初步体会了研究向量运算的一般方法。 (二)根据上述教材分析,考虑到学生已有的认知心理特征、及本节课在整个高中数学中的地位,对本节课我设置了如下的三维目标: 知识与技能:(1)掌握空间向量夹角和模的概念及表示方法; (2)掌握两个向量数量积的概念、性质和计算方法及运算律; (3)掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题。

《空间向量数量积的运算》的教学设计

a , b 均为非零向量,则a ·b =|a ||b |是a 2 22,,22a b a b == ?=-,则

水平提升20分钟思考: 典例分析 例1 如图3-1-10所示,在长方体ABCD -A1B1C1D1中, AB=AA1=2,AD=4,E为A1B的中点,F为A1D1的 中点.计算: (1)BC → ·ED1 → ;(2)BF → ·AB1 → . 小结1、 应用数量积公式求空间向量数量积的两个关键点 例2 (1)已知空间四边ABCD中, AB⊥CD,AC⊥BD,那么AD与BC的位置关系为 ________.(填“平行”或“垂直”) (2)如图3-1-11所示,在四棱锥P -ABCD中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD, 求证:PA⊥BD. 交流问 题,给 每一个 学生表 现个人 的机 会。 学生板 演3、 4,注重 步骤。 学生完 成 鼓励学 生先尝 试分 析。 学生 展示 应用整 合,强 化新知 教师补 充知识 点归纳 不同层 次的题 目,层 层递 进,持 续提升 学生的 水平。 不但巩 固新学 的知 识,而 且让不 同层次 的学生 得到不 同的收 获. 通过典 型例题 让学生 理解本 节的知 识点 ) ( , b ) 3 ) ( ) ( ) ( ) 2 ) ( , 1 . 1 b k a k a c b a c b a c b a b b a = = ? ? ? = ? ? = ? = ? 则 则 若 ) 判断真假:

知识小结2分钟 布置作业小结2、数量积证明空间垂直的实用性 例3.如图所示,已知P A⊥平面ABC, ∠ABC=120°,P A=AB=BC=6,则PC 等于. 小结3、求两点间的距离或长度的方法(向量法) 例4 在空间四边形OABC中,连接AC, OB,OA=8,AB=6,AC=4,BC=5,∠OAC =45°,∠OAB=60°,求直线OA与BC所成 角的余弦值. 四、课堂小结 通过学习, 我们能够利用向量数量积解决立体几 何中的以下问题: 1、证明两直线垂直; 2、求两点之间的距离或线段长度; 3、求两直线所成角. 五、作业 全品P41 1~12题 学生总 结归纳 所学知 识 作业: 将所学 知识进 一步巩 固 培养学 生总结 归纳的 水平 使不同 的学生 得到不 同的锻 炼 作业能 够反映 学生对 本节知 识的掌 握水 准。可 根据作 业情 况,强 化训 练。 O A B C

空间向量的数量积运算练习题

空间向量的数量积运算 练习题 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

课时作业(十五) 一、选择题 1.设a 、b 、c 是任意的非零平面向量,且它们相互不共线,下列命题:①(a ·b )c -(c ·a )b =0;②|a |=a ·a ;③a 2b =b 2a ;④(3a +2b )·(3a -2b )=9|a |2-4|b |2.其中正确的有( ) A .①② B .②③ C .③④ D .②④ 【解析】 由于数量积不满足结合律,故①不正确,由数量积的性质知②正确,③中|a |2·b =|b |2·a 不一定成立,④运算正确. 【答案】 D 2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则a 与b 的夹角〈a ,b 〉=( ) A .30° B .45° C .60° D .以上都不对 【解析】 ∵a +b +c =0,∴a +b =-c ,∴(a +b )2=|a |2+|b |2 +2a ·b =|c |2 ,∴a ·b =32,∴cos 〈a ,b 〉=a ·b |a ||b |=1 4 . 【答案】 D 3.已知四边形ABCD 为矩形,PA ⊥平面ABCD ,连结AC ,BD , PB ,PC ,PD ,则下列各组向量中,数量积不为零的是( ) A.PC →与BD → B.DA →与PB → C.PD →与AB → D.PA →与CD → 【解析】 用排除法,因为PA ⊥平面ABCD ,所以PA ⊥CD ,故PA →·CD → =0,排除D ;因为AD ⊥AB ,PA ⊥AD ,又PA ∩AB =A ,所以AD

空间向量的数量积运算

空间向量的数量积运算 (45分钟 100分) 一、选择题(每小题6分,共30分) 1.若a,b均为非零向量,则a·b=|a||b|是a与b共线的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2.已知空间向量a,b满足a·b=0,|a|=1,|b|=2,则|2a-b|= ( ) A.0 B.2错误!未找到引用源。 C.4 D.8 3.(2013·天水高二检测)已知四边形ABCD满足:错误!未找到引用源。·错误!未 找到引用源。>0,错误!未找到引用源。·错误!未找到引用源。>0, 错误!未找到引用源。·错误!未找到引用源。>0,错误!未找到引用源。·错误!未 找到引用源。>0,则该四边形为( ) A.平行四边形 B.梯形 C.平面四边形 D.空间四边形 4.如图,在大小为45°的二面角A-EF-D中,四边形ABFE,CDEF都是边长为1的正 方形,则B,D两点间的距离是( ) A.错误!未找到引用源。 B.错误!未找到引用源。 C.1 D.错误!未找到引用源。 5.(2013·杭州高二检测)如图,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,∠ABC=

A.45° B.60° C.90° D.120° 二、填空题(每小题8分,共24分) 6.(2013·安阳高二检测)已知向量a与b的夹角是120°,且|a|=|b|=4,则b·(2a+b)= . 7.如图所示,在几何体A-BCD中,AB⊥平面BCD,BC⊥CD,且AB=BC=1,CD=2,点E为CD的中点,则AE的长为. 8.如图∠BAC=90°,等腰直角三角形ABC所在的平面与正方形ABDE所在的平面互相垂直,则异面直线AD与BC所成角的大小是. 三、解答题(9题,10题14分,11题18分) 9.如图所示,直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°,

3-1-3 空间向量的数量积运算

能力拓展提升 一、选择题 11.若a 、b 均为非零向量,则a ·b =|a ||b |是a 与b 共线的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 [答案] A [解析] a ·b =|a ||b |?cos 〈a ,b 〉=1?〈a ,b 〉=0°,即a 与b 共线,反之不成立,因为当a 与b 共线反向时,a ·b =-|a ||b |. 12.已知P A ⊥平面ABC ,垂足为A ,∠ABC =120°,P A =AB =BC =6,则PC 等于( ) A .62 B .6 C .12 D .144 [答案] C [解析] ∵PC →=P A →+AB →+BC →, ∴PC →2=P A →2+AB →2+BC →2+2AB →·BC →=36+36+36+2×36cos60°=144. ∴|PC → |=12. 13.已知|a |=1,|b |=2,且a -b 与a 垂直,则a 与b 的夹角为

( ) A .60° B .30° C .135° D .45° [答案] D [解析] ∵a -b 与a 垂直,∴(a -b )·a =0, ∴a ·a -a ·b =|a |2-|a |·|b |·cos 〈a ,b 〉 =1-1·2·cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=22. ∵0°≤〈a ,b 〉≤180°,∴〈a ,b 〉=45°. 14.设A 、B 、C 、D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .不确定 [答案] B [解析] BD →=AD →-AB →,BC →=AC →-AB → , BD →·BC →=(AD →-AB →)·(AC →-AB →)=AD →·AC →-AD →·AB →-AB →·AC →+|AB →|2

相关文档
相关文档 最新文档