文档库 最新最全的文档下载
当前位置:文档库 › 机械优化算法

机械优化算法

机械优化算法
机械优化算法

机械优化设计理论方法

摘要:机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量。现代工程装备的复杂性使得机械优化设计变得越来越困难,利用新的科学理论探索新的优化设计方法是该研究领域的一个重要方面。在综合大量文献的基础上,阐述机械优化设计的含义、目的及必要性,总结机械优化设计的特点,从优化设计数学模型建立和求解算法两方面探讨现代机械优化设计的理论方法和研究现状,并指出该领域中应当进一步研究的问题和发展方向。关键词:机械;优化设计;数学模型;优化方法;智能优化优化设计是20世纪60年代随计算机技术发展起来的一门新学科,是构成和推进现代设计方法产生与发展的重要内容。机械优化设计是综合性和实用性都很强的理论和技术,为机械设计提供了一种可靠、高效的科学设计方法,使设计者由被动地分析、校核进入主动设计,能节约原材料,降低成本,缩短设计周期,提高设计效率和水平,提升企业竞争力、经济效益与社会效益。国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视,并开展了大量工作,其基本理论和求解手段已逐渐成熟。国内优化设计起步较晚,但在众多学者和科研人员的不懈努力下,机械优化设计发展迅猛,在理论上和工程应用中都取得了很大进步和丰硕成果,但与国外先进优化技术相比还存在一定差距,在实际工程中发挥效益的优化设计方案或设计结果所占比例不大。计算机等辅助设备性能的提高、科技与市场的双重驱动,使得优化技术在机械设计和制造中的应用得到了长足发展,遗传算法、神经网络、粒子群法等智能优化方法也在优化设计中得到了成功应用。

1 机械优化设计研究内容机械优化设计是一种现代、科学的设计方法,集思考、绘图、计算、实验于一体,其结果不仅“可行”,而且“最优”。该“最优”是相对的,随着科技的发展以及设计条件的改变,最优标准也将发生变化"。。优化设计反映了人们对客观世界认识的深化,要求人们根据事物的客观规律,在一定的物质基础和技术条件下充分发挥人的主观能动性,得出最优的设计方案。

2 传统优化设计理论方法传统优化设计方法种类很多,按求解方法特点可分为准则优化法、线性规划法和非线性规划法。作者仅从工程应用角度对之进行归纳和整理,具体算法可参考其他资料。

2.1 准则优化法准则优化法不应用数学极值原理,而根据力学、物理或其他原则构造评优准则,然后依据此准则进行寻优。优点是概念直观、计算简单,少约束时优化效率较高,特别适合工程应用;缺点是只能考虑一个或很少方面,多约束时优化效率大大降低,甚至不收敛。。如满应力准则法直接从结构力学的原理出发,实质是在结构几何形状固定和构件材料确定的情况下选择截面,使结构中每一构件至少在一种工况下达到满应力,从而使杆件材料得以充分利用。迭代法是满应力设计最简单的方法。

2.2 线性规划法线性规划法是根据数学极值原理求解目标函数和约束条件同为设计变量的线性优化问题,是机械优化设计的重要方法之一。主要方法有单纯形法和序列线性规划法。

2.3 非线性规划法实际工程的机械优化设计大都属于非线性规划,且非线性程度越来越高,完全简化成线性问题是不妥当的。非线性规划从数学极值原理出发求解优化问题,可分为无约束直接法、无约束间接法、有约束直接法和有约束间接法。现代优化设计理论方法优化准则法对于不同类型的约束、变量、目标函数等需导出不同的优化准则,通用性较差,且多为近似最优解;规划法需多次迭代、重复分析,代价昂贵,效率较低,往往还要求目标函

数和约束条件连续、可微,这都限制了其在实际工程优化设计中的推广应用。而且现代机械设计日趋复杂,传统优化算法渐显力不从心。因此,遗传算法、神经网络、粒子群算法、进化算法等智能优化法于20世纪80年代相继提出,不需要目标函数和约束条件的导数信息,且可获得全局最优解,为复杂机械的优化设计提供了新的思路和方法,取得了良好效果,并在实际工程优化设计中有了成功应用。

3.1 遗传算法遗传算法起源于20世纪60年代对自然和人工自适应系统的研究,最早由美国密歇根大学Holland教授提出,是模拟生物进化过程、高度并行、随机、自适应的全局优化概率搜索算法。它按照获得最大效益的原则进行随机搜索,不需要梯度信息,也不需要函数的凸性和连续性,能够收敛到全局最优解,具有很强的通用性、灵活性和全局性;缺点是不能保证下一代比上一代更好,只是在总趋势上不断优化,运行效率较低,局部寻优能力较差。

3.2 神经网络法神经网络是一个大规模自适应的非线性动力系统,具有联想、概括、类比、并行处理以及很强的鲁棒性,且局部损伤不影响整体结果。美国物理学家Hopfield最早发现神经网络具有优化能力,并根据系统动力学和统计学原理,将系统稳态与最优状态相对应,系统能量函数与优化目标函数相对应,神经网络参数与优化设计变量相对应,系统演化过程与优化寻优过程相对应,与Tank在1986年提出了第一个求解线性优化问题的TH选型优化神经网络。该方法利用神经网络的稳定平衡点总是对应网络能量函数的极小点进行优化设计,并利用神经网络强大的并行计算、近似分析和非线性建模能力,提高优化计算的效率,其关键是神经网络的构造,多用于求解组合优化、约束优化和复杂优化Ⅲ1。近些年,神经网络法有较大发展,Barker等将神经网络用于航空工程结构件的优化设计。Adeline和Park 将结构优化设计与罚函数法、Yaupon稳定性定理、K-T条件等神经动力学概念相结合,提出了具有极高稳定性和鲁棒性的神经动力学模型,特别适用于大型结构的自动设计与优化设计。

3.3 模拟退火法模拟退火法是一种能够跳离局部最优、随机的、全局优化算法,于1985年由加拿大多伦多大学教授G E Hinton等人基于统计物理学和Boltzmarm提出,其基本思想源于研究多自由度系统在某温度下达到热平衡时的行为特性的统计力学。金属在高温熔化时,所有原子都处于高能自由运动状态,随着温度的降低,原子的自由运动减弱,物体能量降低。只要在凝结温度附近使温度下降足够慢,原子排列就非常规整,从而形成结晶结构,这一过程称为退火过程。物理系统和优化问题之间具有明显的类似点,物体的结晶过程可对应于多变量函数的优化过程,因此可通过模拟退火过程来研究多变量的优化。

3.4 粒子群算法Kennedy和Ebehart于1995年提出了模拟鸟群觅食过程的粒子群法,从一个优化解集开始搜索,通过个体间协作与竞争,实现复杂空间中最优解的全局搜索。粒子群法与遗传算法相比,原理简单、容易实现、有记忆性,无须交叉和变异操作,需调整的参数不多,收敛速度快,算法的并行搜索特性不但减小了陷入局部极小的可能性,而且提高了算法性能和效率,是近年被广为关注和研究的一种随机起始、平行搜索、有记忆的智能优化算法。目前,粒子群算法已应用于目标函数优化、动态环境优化、神经网络训练等诸多领域,但用于机械优化设计领域研究还很少。

3.5 多目标优化法功能、强度和经济性等的优化始终是机械设计的追求目标,实际工程机械优化设计都属于多目标优化设计。多目标优化广泛的存在性与求解的困难性使其一直富

有吸引力和挑战性,理论方法还不够完善,主要可分为两大类:(1)把多目标优化转化成一个或一系列单目标优化,将其优化结果作为多目标优化的一个解;(2)直接求非劣解,然后从中选择较好的解作为最优解。具体有主要目标法、统一目标法、目标分层法和功效系数法

机械优化设计论文(基于MATLAB工具箱的机械优化设计)

基于MATLAB工具箱的机械优化设计 长江大学机械工程学院机械11005班刘刚 摘要:机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计效率和质量。本文系统介绍了机械优化设计的研究内容及常规数学模型建立的方法,同时本文通过应用实例列举出了MATLAB 在工程上的应用。 关键词:机械优化设计;应用实例;MATLAB工具箱;优化目标 优化设计是20世纪60年代随计算机技术发展起来的一门新学科, 是构成和推进现代设计方法产生与发展的重要内容。机械优化设计是综合性和实用性都很强的理论和技术, 为机械设计提供了一种可靠、高效的科学设计方法, 使设计者由被动地分析、校核进入主动设计, 能节约原材料, 降低成本, 缩短设计周期, 提高设计效率和水平, 提升企业竞争力、经济效益与社会效益。国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视, 并开展了大量工作, 其基本理论和求解手段已逐渐成熟。 国内优化设计起步较晚, 但在众多学者和科研人员的不懈努力下, 机械优化设计发展迅猛, 在理论上和工程应用中都取得了很大进步和丰硕成果, 但与国外先进优化技术相比还存在一定差距, 在实际工程中发挥效益的优化设计方案或设计结果所占比例不大。计算机等辅助设备性能的提高、科技与市场的双重驱动, 使得优化技术在机械设计和制造中的应用得到了长足发展, 遗传算法、神经网络、粒子群法等智能优化方法也在优化设计中得到了成功应用。目前, 优化设计已成为航空航天、汽车制造等很多行业生产过程的一个必须且至关重要的环节。 一、机械优化设计研究内容概述 机械优化设计是一种现代、科学的设计方法, 集思考、绘图、计算、实验于一体, 其结果不仅“可行”, 而且“最优”。该“最优”是相对的, 随着科技的发展以及设计条件的改变, 最优标准也将发生变化。优化设计反映了人们对客观世界认识的深化, 要求人们根据事物的客观规律, 在一定的物质基和技术条件下充分发挥人的主观能动性, 得出最优的设计方案。 优化设计的思想是最优设计, 利用数学手段建立满足设计要求优化模型; 方法是优化方法, 使方案参数沿着方案更好的方向自动调整, 以从众多可行设计方案中选出最优方案; 手段是计算机, 计算机运算速度极快, 能够从大量方案中选出“最优方案“。尽管建模时需作适当简化, 可能使结果不一定完全可行或实际最优, 但其基于客观规律和数据, 又不需要太多费用, 因此具有经验类比或试验手段无可比拟的优点, 如果再辅之以适当经验和试验, 就能得到一个较圆满的优化设计结果。 传统设计也追求最优结果, 通常在调查分析基础上, 根据设计要求和实践

《机械设计基础》复习重点、要点总结

《机械设计基础》 第1章机械设计概论 复习重点 1. 机械零件常见的失效形式 2. 机械设计中,主要的设计准则 习题 1-1 机械零件常见的失效形式有哪些? 1-2 在机械设计中,主要的设计准则有哪些? 1-3 在机械设计中,选用材料的依据是什么? 第2章润滑与密封概述 复习重点 1. 摩擦的四种状态 2. 常用润滑剂的性能 习题 2-1 摩擦可分哪几类?各有何特点? 2-2 润滑剂的作用是什麽?常用润滑剂有几类? 第3章平面机构的结构分析 复习重点 1、机构及运动副的概念 2、自由度计算 平面机构:各运动构件均在同一平面内或相互平行平面内运动的机构,称为平面机构。 3.1 运动副及其分类 运动副:构件间的可动联接。(既保持直接接触,又能产生一定的相对运动) 按照接触情况和两构件接触后的相对运动形式的不同,通常把平面运动副分为低副和高副两类。 3.2 平面机构自由度的计算 一个作平面运动的自由构件具有三个自由度,若机构中有n个活动构件(即不包括机架),在未通过运动副连接前共有3n个自由度。当用P L个低副和P H个高副连接组成机构后,每个低副引入两个约束,每个高副引入一个约束,共引入2P L+P H个约束,因此整个机构相对机架的自由度数,即机构的自由度为 F=3n-2P L-P H (1-1)下面举例说明此式的应用。 例1-1 试计算下图所示颚式破碎机机构的自由度。 解由其机构运动简图不难看出,该 机构有3个活动构件,n=3;包含4个转 动副,P L=4;没有高副,P H=0。因此, 由式(1-1)得该机构自由度为 F=3n-2P L-P H =3×3-2×4-0=1

机械优化设计方法论文

浅析机械优化设计方法基本理论 【摘要】在机械优化设计的实践中,机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量。每一种优化方法都是针对某一种问题而产生的,都有各自的特点和各自的应用领城。在综合大量文献的基础上,总结机械优化设计的特点,着重分析常用的机械优化设计方法,包括无约束优化设计方法、约束优化设计方法、基因遗传算方法等并提出评判的主 要性能指标。 【关键词】机械;优化设计;方法特点;评价指标 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等。 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。

机械优化设计——复合形方法及源程序

机械优化设计——复合形方法及源程序 (一) 题目:用复合形法求约束优化问题 ()()()2221645min -+-=x x x f ;0642 2211≤--=x x g ;01013≤-=x g 的最优解。 基本思路:在可行域中构造一个具有K 个顶点的初始复合形。对该复合形各顶点的目标函数值进行比较,找到目标函数值最大的顶点(即最坏点),然后按一定的法则求出目标函数值有所下降的可行的新点,并用此点代替最坏点,构成新的复合形,复合形的形状每改变一次,就向最优点移动一步,直至逼近最优点。 (二) 复合形法的计算步骤 1)选择复合形的顶点数k ,一般取n k n 21≤≤+,在可行域内构成具有k 个顶点的初始复合形。 2)计算复合形个顶点的目标函数值,比较其大小,找出最好点x L 、最坏点x H 、及此坏点x G .. 3)计算除去最坏点x H 以外的(k-1)个顶点的中心x C 。判别x C 是否可行,若x C 为可行点,则转步骤4);若x C 为非可行点,则重新确定设计变量的下限和上限值,即令C L x b x a ==,,然后转步骤1),重新构造初始复合形。 4)按式()H C C R x x x x -+=α计算反射点x R,必要时改变反射系数α的值,直至反射成功,即满足式()()()()H R R j x f x f m j x g

机械优化设计综述及其应用举例

机械优化设计综述与应用 苟晓明 (重庆理工大学重庆汽车学院,重庆市400054) 摘要:机械优化设计是一门实践性很强的综合性学科,在现代机械设计中占有非常重要的地位,其应用价值十分高,是非常有发展潜力的研究方向。文章对机械优化设计的基本理论,基本研究思路、优化设计方法、软件的应用情况以及应用中可能遇到的问题等分别进行了简述,分析了优化设计应用的发展趋势。并应用Matlab优化工具箱对产品进行了优化设计应用实例分析。 关键词:机械优化设计;优化方法;蜗杆传动;Matlab Summary of Mechanical Optimal Design and Application GOU Xiao Ming (Chongqing University of Technology, Chongqing Automobile Institute,Chongqing,400054,Chain) Abstract: Mechanical optimal design is a very practical comprehensive discipline, it plays a very important role in modern mechanical design. Its value is very high, and is very promising research direction. This article summarized the basic theory of optimal design, research ideas, optimal design method, the application of software and possible problems in use the software. Analyze the application and trends of optimization methods. And use Matlab optimization toolbox to analyze the optimal design of products. Key words:mechanical optimal design; optimization method;worm transmission; Matlab 0 引言 优化设计是20世纪60年代发展起来的,以数学规划理论为基础,根据最优化的原理和方法,应用计算机技术,寻求最优设计参数的一种新方法,为工程设计提供了一种重要的科学设计方法。优化设计首先需根据工程需要将实际问题转化成数学模型,然后选择合理的优化方法,通过计算机求得最优解。能使设计周期大大缩短,提高计算精度、设计效率和设计质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门,已成为设计方法的一个重要发展趋势。 1 优化设计基本概念 机械优化设计就是在满足给定的载荷、环境条件、产品的形态、几何尺寸关系或其它约束条件下,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立目标函数和约束条件, 利用数值优化计算方法使目标函数获得最优设计方案一 种现代设计方法]3 1[ 。进行最优化设计时,首先必须将实际问题加以数学描述,形成一组由数学表达式组成的数学模型,然后选择一种最优化数值计算方法和计算机程序,在计算机上运算求解,得到一组由数学表达式组成的最优设计参数。利用优化设计,可进一步改善和提高产品的性能;在满足各种设计条件下减少产品或工程结构重量,从而节省产品成本消耗、降低工程造价;可以进一步提高产品或工程设计效率。因此,优化设计是直接提高产品设计性能、降低产品成本的有效设计方法。优化设计可给企业带来直接的经济效益,从而提高企业产品的竞争能力。 优化设计的目标是使设计对象最优,而优化设计的手段是计算机及优化计算软件。优化计算软件是以优化计算方法为基础而形成的应用程序系统。因此,优化设计还可以被理解为采用计算程序的从设计空间搜索最佳设计方案的现代设计手段。优化设计与常规设计相比具有借助计算机为工具的明显特征。优化设计中优化计算方法的数学基础包括线性规划、非线性规划、动态规划、几何规划等内容的数学规划理论。 优化设计一般包含如下主要内容:①将设计中的实际物理模型抽象为数学模型。确定设计过程中主要的设计目标和设计条件,在此基础上构造评价设计方案的目标函数和约束条件等。②数学模型的求解。根据数学模型的性质,选择合适的优化方法,并利用计算机进行数学模型的求解,得到优化设计方案。 任何机械设计问题,总是要求满足一定的工作条件、载荷和工艺等方面要求,并在强度、刚度、

机械设计基础重点总结修订稿

机械设计基础重点总结 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

《机械设计基础》课程重点总结 绪论 机器是执行机械运动的装置,用来变换或传递能量、物料、信息。 原动机:将其他形式能量转换为机械能的机器。 工作机:利用机械能去变换或传递能量、物料、信息的机器。 机器主要由动力部分、传动部分、执行部分、控制部分四个基本部分组成,它的主体部分是由机构组成。 机构:用来传递运动和力的、有一个构件为机架的、用构件间能够相对运动的连接方式组成的构件系统。 机构与机器的区别:机构只是一个构件系统,而机器除构件系统外,还含电器、液压等其他装置;机构只用于传递运动和力,而机器除传递运动和力之外,还具有变换或传递能量、物料、信息的功能。 零件是制造的单元,构件是运动的单元,一部机器可包含一个或若干个机构,同一个机构可以组成不同的机器。 机械零件可以分为通用零件和专用零件。 机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和计算方法。 第一章平面机构的自由度和速度分析 1.平面机构:所有构件都在相互平行的平面内运动的机构;构件相对参考系的独立运动 称为自由度;所以一个作平面运动的自由机构具有三个自由度。 2.运动副:两构件直接接触并能产生一定相对运动的连接。两构件通过面接触组成的运 动副称为低副;平面机构中的低副有移动副和转动副;两构件通过点或线接触组成的运动副称为高副; 3.绘制平面机构运动简图;P8 4.机构自由度计算公式:F=3n-2P l -P H 机构的自由度也是机构相对机架具有的独立运动 的数目。原动件数小于机构自由度,机构不具有确定的相对运动;原动件数大于机构自由度,机构中最弱的构件必将损坏;机构自由度等于零的构件组合,它的各构件之间不可能产生相对运动;机构具有确定的运动的条件是:机构自由度F > 0,且F等于原动件数 5.计算平面机构自由度的注意事项:(1)复合铰链:两个以上构件同时在一处用转动 副相连接(图1-13)(2)局部自由度:一种与输出构件运动无关的的自由度,如凸轮滚子(3)虚约束:重复而对机构不起限制作用的约束 P13(4)两个构件构成多个平面高副,各接触点的公共法线彼此重合时只算一个高副,各接触点的公共法线彼此不重合时相当于两个高副或一个低副,而不是虚约束。 6.自由度的计算步骤:1)指出复合铰链、虚约束和局部自由度;2)指出活动构件、低 副、高副;3)计算自由度;4)指出构件有没有确定的运动。 7.发生相对运动的任意两构件间都有一个瞬心。瞬心数计算公式:N=K(K-1)/2 三心定 理:作相对平面运动的三个构件共有三个瞬心,这三个瞬心位于同一直线上。 第二章平面连杆机构 1.平面连杆机构是由若干构件用低副(转动副、移动副)连接组成的平面机构,又称平面 低副机构;最简单的平面连杆机构由四个构件组成,称为平面四杆机构。按所含移动副数目的不同,可分为:全转动副的铰链四杆机构、含一个移动副的四杆机构和含两个移动副的机构。 2.铰链四杆机构:全部用转动副相连的平面四杆机构;机构的固定构件称为机架,与机 架用转动副相连接的构件称为连架杆,不与机架直接相连的构件称为连杆;整转副:

关于现代机械设计创新方法的研究

关于现代机械设计创新方法的研究 摘要:随着我国企业机械优化设计方案的不断创新,一些新型的企业机械设计 程序对提升机械软件的创新应用具有重要的作用。机械软件人员还应当不断加强 专业学习,巩固专业知识,尤其要实现机械设计方案的创新发展与推广。相关企 业应当加强机械设计领域的成本投入与质量监管机制,使我国企业机械设计方案 得到优化。 关键词:机械设计;创新;研究 Abstract:with the continuous innovation of mechanical optimization design schemes in Chinese enterprises,some new enterprise mechanical design programs play an important role in promoting the innovative application of mechanical software. Mechanical software personnel should also continue to strengthen professional learning,consolidate professional knowledge,especially to realize the innovative development and promotion of mechanical design schemes. 前言: 时代的发展使得机械行业快速前进,此时与之相关的设计规定也越来越严格。创新是该 行业的一次重大发展。对于发展中的我们国家来讲,要想和世界先进水平保持一致,就要不 断优化设计理念,积极开展创新工作。 1 有关现代机械设计优化原理的概述 1.1 企业机械设计的概念和优化原理 企业机械设计主要是一些技术人员进行编程系统或者机械软件的设计工作,尤其是要实 现一些设计领域与机械设计方案的有效结合。计算机技术人员应当实现一些机械软件的有效 应用,尤其要实现机械设计原理的不断优化,创新机械工程设计方案。[1]企业机械设计人员 要合理设计相关的技术参数,将机械设计方案适用实现最优化。[2]企业机械设计人员还应当 实现机械系统的充分运用、充分发挥企业机械设计系统的创新功能,这有利于提升现代机械 设计的技术标准,这有利于促进我国现代机械人员实现整套机械设计的科学编制和优化设计。 1.2 现代企业机械设计的联系及特点 现代企业机械设计作为一种包含目标函数、控制语句、数据结构、对象编程的高级阵列 语言,企业机械设计和机械设计软件开发人员应当控制好输出和输入系统,有效指引用户在 命令窗口中输入有效的执行命令,编写灵活科学的应用程序和运行。现代企业机械设计具有 可拓展性强、可移植性好、工具方便特点的新型企业机械设计语言,有利于深入分析科学研 究和工程计算的不同领域,使软件用户能够充分利用企业机械设计的目标函数和数据文件, 具体包括企业机械设计桌面的编辑器和调试器,做好路径搜索和用户浏览工作,确保调试系 统的完备程序的有序运行。 2 现代企业机械设计原理在创新设计中的运用探究 2.1 现代企业机械设计在计算机语言中的运用 随着互联网的快速发展,企业机械设计在计算机语言中的运用中,它广泛运用于一些子 程序的机械优化设计中,并且具备了非常好的的语言指导功能和非常高的可靠性。现在企业

机械优化设计的应用及展望解博

机械优化设计的应用及展望 解博 (陕西理工学院机械工程学院,陕西汉中723003 [摘要]论述了机械优化设计的内涵;分析了机械优化设计在机械工业、汽车工业、航空航天工业的应用;并对机械优化设计的发展进行了 展望。 [关键词]机械优化设计;应用;展望 机械优化设计是最优化设计技术在机械设计领域的和应用,机械优计,涉及到飞机机身及飞机结构整体机械优化设计;涉及到火箭发动机化设计基本思想是根据机械设计的基本理论,方法和现有的标准规范等壳体及航空发动机轮盘机械优化设计;涉及到潜艇结构及潜艇外部液压建立起能够反映工程设计问题和符合优化所需数学要求的数学模型,并舱机械优化设计;涉及到机器人等机械优化设计。机械优化设计的理论采用数学规划的基本方法和计算机技术自动找出优化设计问题的最优方与方法也应用于大规模的工程建设,涉及到筑桥梁及石油钻井井架机械案。当前,机械优化设计的基本理论和基本方法随着现代设计理论及方优化设计;涉及到大型水轮机结构等机械优化设计。机械优化设计还应法的发展不断更新,并且优化设计所用工具软件也随着科学技术的发展用于运输工具零件的优化设计,涉及到汽车车架及悬挂机械优化设计;不断扩展和深化。目前机械优化设计主要是将优化设计的基础理论、国涉及到车身箱形梁结构及起重机机械优化设计;涉及到装载机平面或空际大型通用化的优化设计工具软件与现代工程应用实例密切结合,通过间桁架结构机械优化设计;涉及到各类减速器及制动器圆锥机械优化设机械工程实际应用使得工程技术人员掌握优化设计方法的实质内容及工计;涉及到圆柱齿轮及连杆机构和凸轮机构机械优化设计;涉及到各类程应用技巧。所以,加强机械优化设计的应用研究具有一定的实际意义。弹簧及轴承等机械优化设计。 1 机械优化设计的内涵机械优化设计随着现代制造科学的发展应用领域更加广泛。机械 机械优化设计是一门综合性的学科,既涉及到数学、物理学知识,优化设计正以微电子、信息、新材料为代表的新一代工程科学与技术的又涉及到应用化学、应用力学和材料学知识,具有理论价值和应用价发展为基础。所以,机械优化设计一方面极大地拓展了制造领域的深度值,是非常有发展潜力的学科。机械的优化设计与机构设计、机械传动和广度,另一方面改变了现代制造过程的设计方法、产品结构。同样,设计和机械强度评价共同组成了机械设计的内涵。机械

机械设计基础知识点总结

n P t P α γ C D A B ω P 12δδt h s = 12ωδt h v = 2=a 21222δδt h s =12 1 24δδωt h v =22 124t h a δω=2122)(2δδδ-- =t t h h s )(4121 2δδδω-=t t h v 22124t h a δ ω-=绪论:机械:机器与机构的总称。机器:机器是执行机械运动的装置,用来变换或传递能量、物料、信息。机构:是具有确定相对运动的构件的组合。用来传递运动和力的有一个构件为机架的用构件能够相对运动的连接方式组成的构件系统统称为机构。构件:机构中的(最小)运动单元一个或若干个零件刚性联接而成。是运动的单元,它可以是单一的整体,也可以是由几个零件组成的刚性结构。零件:制造的单元。分为:1、通用零件,2、专用零件。 一:自由度:构件所具有的独立运动的数目称为构件的自由度。 约束:对构件独立运动所施加的限制称为约束。运动副:使两构件直接接触并能产生一定相对运动的可动联接。高副:两构件通过点或线接触组成的运动副称为高副。低副:两构件通过面接触而构成的运动副。根据两构件间的相对运动形式,可分为转动副和移动副。F = 3n- 2PL-PH 机构的原动件(主动件)数目必须等于机构的自由度。复合铰链:三个或三个以上个构 件在同一条轴线上形成的转动副。由m 个构件组成的复合铰链包含的转动副数目应 为(m-1)个。虚约束:重复而不起独立限制作用的约束称为虚约束。计算机构的自由度时,虚约束应除去不计。局部自由度: 与输出件运动无关的自由度,计算机构自由度时可删除。 二:连杆机构:由若干构件通过低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。优点:(1)面接触低副,压强小,便于润滑,磨损轻,寿命长,传力大。(2)低副易于加工,可获得较高精度,成本低。(3)杆可较长,可用作实现远距离的操纵控制。(4)可利用连杆实现较复杂的运动规律和运动轨迹。缺点:(1)低副中存在间隙,精度低。(2)不容易实现精确复杂的运动规律。铰链四杆机构:具有转换运动功能而构件数目最少的平面连杆机构。整转副:存在条件:最短杆与最长杆长度之和小于或等于其余两杆长度之和。构成:整转副是由最短杆及其邻边构成。类型判定:(1)如果:lmin+lmax ≤其它两杆长度之和,曲柄为最短杆;曲柄摇杆机构:以最短杆的相邻构件为机架。双曲柄机构:以最短杆为机架。双摇杆机构:以最短杆的对边为机架。(2)如果: lmin+lmax >其它两杆长度之和;不满足曲柄存在的条件,则不论选哪个构件为机架,都为双摇杆机构。急回运动:有不少的平面机构,当主动曲柄做等速转动时,做往复运 动的从动件摇杆,在前进行程运行速度较慢,而回程运动速度要快,机构的这种性质就是所谓的机构的“急回运动”特性。 压力角:作用于C 点的力P 与C 点绝对速度方向所夹的锐角α。传动角:压力角的余角γ,死点:无论我们 在原 动件上施加 多大的力都不能使机构运 动,这种位置我们称为死点γ=0。解决办法:(1)在机构中安装大质量的飞轮,利用其惯性闯过转折点;(2)利用多组机构来消除运动不确定现象。即连杆BC 与摇杆CD 所夹锐角。 三:凸轮: 一个具有曲线轮廓或凹槽的构件。从动件: 被凸轮直接推动的构件。机架: 固定不动的构件(导路)。凸轮类型:(1)盘形回转凸轮(2)移动凸轮 (3)圆柱回转凸轮 从动件类型:(1)尖顶从动件(2)滚子从动件(3)平底从动件(1)直动从动件 (2)摆动从动件 1基圆:以凸轮最小向径为半径作的圆,用rmin 表示。2推程:从动件远离中心位置的过 程。推程运动角δt ;3远休止:从动件在远离中心位置停留不动。远休止角δs ;4回程:从动件由远离中心位置向中心位置运动的过程。回程运动角δh ;5近休止:从动件靠近中心位置停留不动。近休止角δs ˊ;6行程:从动件在推程或回程中移动的距离,用 h 表示。7从动件位移线图:从动件位移S2与凸轮转角δ1之间的关系曲线称为从动件位移 线图。1.等 速运动规 律: 1、特点:设计简单、匀速进给。始点、末点有刚性冲击。适于低速、轻载、从动杆质量不大,以及要求匀速的情况。 2、等加速等减速运动规律: 推程等加速段运动方程: 推 程 等减速段运动方程: 柔 性冲击:加速度发 生有限值的突变(适用于中速场合) 3、简谐运动规律: 柔性冲击 四:根切根念:用范成法加工齿轮时,有时会发现刀具的顶部切入了轮齿的根部,而把齿根切去了一部分,破坏了渐开线齿廓,如图这种现象称为根切。 根切形成的原因:标准齿轮:刀具的齿顶线超过了极限啮合点N 。 不根切的条件可以表示为: 不根切的最少齿数为: 标准齿轮:指m 、α、ha*、c* 均取标准值,具有标准的齿顶高和齿根高,且分度圆齿厚s 等于齿槽宽e 的齿轮。 成型法:加工原理:成形法是用渐开线齿形的成形铣刀直接切出齿形。加工:(a) 盘形铣刀加工齿轮。(b)指状铣刀加工齿轮。缺点:加工精度低;加工不连续,生产率低;加工成本高。优点:可以用普通铣床加工。 范成法:加工原理:根据共轭曲线原理,利 用一对齿轮互相啮合传动时,两轮的齿廓互为包络线的原理来加工。加工:(a)齿轮插刀:是一个齿廓为刀刃的外齿轮。(b)齿条插刀(梳齿刀):是一个齿廓为刀刃的齿条。原理与用齿轮插刀加工相同,仅是范成运动变为齿条与齿轮的啮合运动。(c)滚刀切齿:原理与用齿条插刀加工基本相同,滚刀转动时,刀刃的螺旋运动代替了齿条插刀的展成运动和切削运动。 九:失效:机械零件由于某种原因不能正常工作时,称为失效。类型:(1)断裂。在机械载荷或应力作用下(有时还兼有各种热、腐蚀等因素作用),使物体分成几个部分的现象,通常定义为固体完全断裂,简称断裂。静力拉断、疲劳断裂。(2)变形。由于作用零件上的应力超过了材料的屈服极限,使零 1 1PN PB ≤2 sin sin * α α mz m h a ≤ α 2* min sin 2a h z = )]cos(1[212δδπt h s -=)sin(2112δδπδωπt t h v =)cos(2122122δδπ δωπt t h a =

30586机械优化设计考纲

高纲1513 江苏省高等教育自学考试大纲 30586 机械优化设计 南京理工大学编 江苏省高等教育自学考试委员会办公室 Ⅰ课程性质与课程目标 一、课程性质和特点 《机械优化设计》是高等工科院校中机械设计制造及其自动化专业现代设计方法模块的一门选修课程,它综合运用先修课程所学到的数学、计算机编程和机械等方面知识与理论,来解决机械工程领域内有关机构、机械零部件、机械结构及机械系统的优化设计问题及机械工程领域的其他优化问题。通过课程的学习可以培养学生运用现代设计理论与方法来更好地解决机械工程设计问题的能力。为进一步深入学习现代机械设计的理论与方法及更好地从事机械工程方面的设计、制造和管理等相关工作打下良好的基础。本课程的特点是数学基础理论与计算机编程语言与机械设计专业知识高度结合的综合课程。 二、课程目标 本门课程通过授课、练习和上机实践等教学环节,使学生树立机械优化设计的基本思想,了解机械优化设计的基本概念,初步掌握建立优化数学模型的基本方法和要求,了解和掌握一维搜索、无约束优化和约束优化中的一些基本算法及各种基本优化方法的特点和相关优化参数的选用原则,具有一定的编制和使用优化软件工具的能力,并具备一定的将机械工程问题转化为最优化问题并求解的应用能力。 三、与相关课程的联系与区别 本课程教学需要的先修课程:高等数学、理论力学、材料力学、机械原理、机械设计、机械制造装备设计、计算机编程语言。 本门课程要利用高等数学中有关偏导数、函数、极值、线性代数和矩阵等知识来

构建优化的方法;利用力学、机械设计和机械制造等方面的专业知识将工程问题转化成规范的优化设计数学模型,并利用计算机编程语言将优化方法和数学模型转化成可以执行的计算机程序,从而得到优化问题的解。因此,它既区别于基础的数学、力学课程和计算机编程语言课,又不同于机械设计和机械制造等机械专业课程,是利用数学方法和编程语言来解决机械工程设计问题的综合性课程。需要培养学生综合应用各选修课程知识解决工程设计问题的能力。 四、课程的重点和难点 本课程的重点内容:机械优化设计的基本概念、一维搜索优化方法、基本的无约束优化方法和约束优化方法。 本课程的次重点内容:机械优化数学模型建立方法和原则、优化设计的数学基础、线性规划方法、多目标和离散变量的优化方法。 本课程的的难点内容:约束优化方法、优化方法在机械工程设计中的实际应用。 Ⅱ考核目标 本大纲在考核目标中,按照识记、领会和应用三个层次规定其应达到的能力层次要求。三个能力层次是递升的关系,后者必须建立在前者的基础上。各能力层次的含义是: 识记(Ⅰ):要求考生能够识别和记忆本课程中有关优化设计数学模型和各种基本优化方法基本概念、基本原理、算法特点、算法步骤等主要内容并能够根据考核的不同要求,做正确的表述、选择和判断。 领会(Ⅱ):要求考生能够领悟和理解本课程中有关优化问题数学建模、求解及各种基本优化方法的概念及原理的内涵及外延,理解各种优化方法的数学基础和求解步骤的确切含义,掌握每种方法的适用条件和优化参数选用原则;理解相关知识的区别和联系,做出正确的判断、解释和说明。 应用(Ⅲ):要求考生能够根据所学的方法,对简单的优化问题求解,得出正确的结论或做出正确的判断。能够针对具体、实际的工程情况发现问题,并能探究解决问题的方法,建立合理的数学模型,用所学的优化方法进行求解,并学会编程或利用现有优化软件求解优化问题。 Ⅲ课程内容与考核要求 绪论 一、学习目的与要求 了解机械优化设计的特点、发展概况以及本课程的主要内容。 二、课程内容 传统设计和优化设计的特点和区别,机械优化设计发展概况及本课程的主要内容。 三、考核知识点与考核要求 1. 传统设计和优化设计 识记:传统设计特点,传统设计流程; 领会:优化设计特点,现代设计流程。 2. 机械优化设计发展概况

机械优化设计方法基本理论

机械优化设计方法基本理论 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。 1.2 约束条件 约束条件是设计变量间或设计变量本身应该遵循的限制条件,按表达方式可分为等式约束和不等式约束。按性质分为性能约束和边界约束,按作用可分为起作用约束和不起作用约束。针对优化设计设计数学模型要素的不同情况,可将优化设计方法分类如下。约束条件的形式有显约束和隐约束两种,前者是对某个或某组设计变量的直接限制,后者则是对某个或某组变量的间接限制。等式约束对设计变量的约束严格,起着降低设计变量自由度的作用。优化设计的过程就是在设计变量的允许范围内,找出一组优化的设计变量值,使得目标函数达到最优值。

MATLAB软件在机械优化设计中的应用研究

摘要本文分析了MATLAB软件在机械优化设计中常用的线性规划、一维优化、无约束非线性优化及约束非线性优化四种优化问题的标准数学模型、调用函数及参数的设置。并以具体实例对利用MATLAB解决优化问题的具体过程进行了详细的阐述,该过程可以供工程设计人员参考,以提高优化设计效率。 关键词机械优化设计MATLAB Research on Application of MATLAB Software in Mecha-nical Optimization Design//Jiao Lili Abstract Standard mathematical model,function and the para-meter settings of matlab software which used in mechanical optimization design such as linear programming,one-dimensional optimization,unconstrained nonlinear optimization and constrained nonlinear optimization were analyzed.Specific process of solving the optimization problem with Matlab is expounded by concrete examples,the process could be referenced by engineering staff, and then improve the efficiency optimization design. Key words mechanism;optimization design;Matlab Author's address Faculty of UG,Yancheng Institute of Techn-ology,224051,Yancheng,Jiangsu,China 机械优化设计就是在给定的载荷或环境条件下,在对机械产品的形态、几何尺寸关系以及其他因素的限制(约束)范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立目标函数和约束条件,并使目标函数获得最优值的一种现代设计方法。目前,已有很多成熟的优化方法程序可供选择,但它们各有自己的特点和适用范围,实际应用时必须注意因为优化方法或初始参数选择而带来的收敛性等问题。而M ATLAB语言的优化工具箱则选用最佳方法求解、初始参数输入简单、语法符合工程设计语言要求、编程工作量小、优越性明显。 1MATLAB优化函数介绍 M ATLAB是美国M athWorks公司于20世纪80年代中期推出的数学软件,其优秀的数值计算能力和卓越的数据可视化能力使其很快在数学软件中脱颖而出。M ATLAB优化工具箱可以解决线性规划、非线性规划和多目标规划等问题。具体包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题以及整数规划等问题的求解。另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中的大型课题的求解方法。为优化方法在工程中的实际应用提供了更方便快捷的途径。 M ATLAB优化工具箱能解决很多优化问题,但从目标函数、约束条件和设计变量的性质上划分,典型的机械优化问题大致分为线性规划问题、一维优化问题、多维无约束非线性规划问题、约束非线性规划问题几大类型。表1中列出了几种优化类型的标准数学模型、M ATLAB优化函数及相应的调用形式、函数中的一些参数的详细说明。 当优化问题的目标函数是优化变量的线性函数,且约束条件也是优化变量的线性等式或不等式时,该问题为线性规划问题。当优化问题中只有一个变量时,无论目标函数是变量的线性关系还是非线性关系都属于一维优化问题,只要调用fminbnd函数即可实现优化目标的求解。如目标函数和约束函数中存在一个或多个非线性函数时,则为非线性规划问题。非线性规划问题则又分为无约束和有约束两大类。 求解无约束优化问题的方法有很多,包括直接搜索法的坐标轮换法、鲍威尔法、单形替换法,间接法的梯度法、牛顿法和变尺度法等。直接搜索法适用于目标函数高度非线性,没有导数或导数很难求的情况,其缺点是收敛速度慢。在函数的导数可求的情况下,梯度法是一种更优的方法,该法利用函数梯度(一阶导数)和Hessian矩阵(二阶导数)构造算法,可获得更快的收敛速度。M ATLAB优化工具箱中的fminunc或fminsearch函数其默认实现思想是BFGS(Broy-den-Fletcher-Gold farb-Shanno)变尺度法。函数fminunc要求目标函数必须连续,函数fminsearch常用来处理不连续的目标函数,对于求解二次以上的问题,fminsearch函数比fmin-unc函数有效。 机械优化设计问题大多是有约束非线性规划问题。有约束非线性规划问题的解法有很多,但这些算法仅能解决某类特殊的非线性规划问题。早期的方法通常是通过构造惩罚函数来将有约束的优化问题转化为无约束优化问题进 中图分类号:TH122文献标识码:A文章编号:1672-7894(2011)16-090-02 优化类型线性规划一维约束优 化 无约束非线 性规划 约束非线性 规划 数学模型min f(x) M ATLAB 优化函数linprog fminbnd fminunc、 fminsearch fmincon 常用调用形式[x,fval,exitflag]= linprog(f,A,b,Aeq, beq,lb,ub,x0) [x,fval,exitflag] =fminbnd(fun, lb,ub) [x,fval,exitflag] =fminunc [/fminsearch] (fun,x0) [x,fval,exitflag] =fmincon(fun, x0,A,b,Aeq, beq,lb,ub, nonlcon) 参数解释1.线性规划中f为优化变量x的系数向量,其他类型的f(x)要定义成M ATLAB函数文件(fun); 2.Ax≤b为线性不等式约束,A为不等式约束系数矩阵,b为不等式约束右端向量; 3.Aeq*x=Beq为线性等式约束,Aeq为等式约束系数矩阵,beq 为等式约束右端向量; 4.c(x)≤0和ceq(x)=0分别为非线性不等式约束和等式约束,要定义成M ATLAB函数文件(nonlcon); 5.ub,lb,x0分别为优化变量x的上界、下界和初始值; 6.x,fval,exitflag分别是返回目标函数的最优解x,在x点的函数值,算法的终止标志(为1时算法收敛)。 表1MATLAB优化函数 min f T x s.t. Ax≤b Aeq*x=Beq lb≤x≤u ≤ b s.t.lb≤x≤ub min f(x) s.t. Ax≤b Aeq*x=Beq c(x)≤0 ceq(x)=0 lb≤x≤u ≤ ≤ ≤ ≤≤ ≤ ≤ ≤ ≤≤ ≤ b min f(x) 90

机械设计基础知识点总结

机械设计基础知识点总结 1、通用零件, 2、专用零件。一:自由度:构件所具有的独立运动的数目称为构件的自由度。 约束:对构件独立运动所施加的限制称为约束。运动副:使两构件直接接触并能产生一定相对运动的可动联接。高副:两构件通过点或线接触组成的运动副称为高副。低副:两构件通过面接触而构成的运动副。根据两构件间的相对运动形式,可分为转动副和移动副。F =3n-2PL-PH机构的原动件(主动件)数目必须等于机构的自由度。复合铰链:三个或三个以上个构件在同一条轴线上形成的转动副。由m个构件组成的复合铰链包含的转动副数目应为(m-1)个。虚约束:重复而不起独立限制作用的约束称为虚约束。计算机构的自由度时,虚约束应除去不计。局部自由度: 与输出件运动无关的自由度,计算机构自由度时可删除。二:连杆机构:由若干构件通过低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。优点: (1)面接触低副,压强小,便于润滑,磨损轻,寿命长,传力大。 (2)低副易于加工,可获得较高精度,成本低。(3)杆可较长,可用作实现远距离的操纵控制。(4)可利用连杆实现较复杂的运动规律和运动轨迹。缺点:(1)低副中存在间隙,精度低。(2)不容易实现精确复杂的运动规律。CDAB铰链四杆机构:具有转换运动功

能而构件数目最少的平面连杆机构。整转副:存在条件:最短杆 与最长杆长度之和小于或等于其余两杆长度之和。构成:整转副 是由最短杆及其邻边构成。类型判定:(1)如果:lmin+lmax≤其它两杆长度之和,曲柄为最短杆;曲柄摇杆机构:以最短杆的相 邻构件为机架。双曲柄机构:以最短杆为机架。双摇杆机构:以 最短杆的对边为机架。(2)如果: lmin+lmax>其它两杆长度之和;不满足曲柄存在的条件,则不论选哪个构件为机架,都为双摇杆机构。急回运动:有不少的 平面机构,当主动曲柄做等速转动时,做往复运动的从动件摇 杆,在前进行程运行速度较慢,而回程运动速度要快,机构的这 种性质就是所谓的机构的“急回运动”特性。 压力角:作用于C点的力P与C点绝对速度方向所夹的锐角α。传动角:压力角的余角γ,死点:无论我们在原动件上施加多大的力都不能使机构运动,这种位置我们称为死点γ=0。解决办法:(1)在机构中安装大质量的飞轮,利用其惯性闯过转折点;(2)利用多组机构来消除运动不确定现象。即连杆BC与摇 杆CD所夹锐角。 三:凸轮: 一个具有曲线轮廓或凹槽的构件。从动件: 被凸 轮直接推动的构件。机架: 固定不动的构件(导路)。凸轮类型:(1)盘形回转凸轮(2)移动凸轮 (3)圆柱回转凸轮从动件类型:(1)尖顶从动件(2)滚子从动件(3)平底从动件(1)直动从动件 (2)摆动从动件1基圆:以凸轮最小向径为半径作的圆,用rmin表示。2

相关文档
相关文档 最新文档