文档库 最新最全的文档下载
当前位置:文档库 › 关于LED封装散热技术

关于LED封装散热技术

关于LED封装散热技术
关于LED封装散热技术

关于LED封装散热技术

前言:

LED(Light Emitting Diode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个"P-N结".当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长决定光的颜色,是由形成P-N结材料决定的。

LED的亮度是跟LED的发光角度有必然关系的,LED的角度越小它的亮度越高,没有什么超亮不超亮的,那是骗小孩的,如果是质量好的LED不管是哪家LED厂家生产的大家的亮度都差不多的,只是生产工艺不一样,使用寿命略有不同,因为大家用的都是那几家国外的LED芯片。如果是5MM的LED180度角的白光的亮度只有几百MCD,如果是15度角的亮度就要去到一万多两万MCD的亮度了,亮度相差好几十倍了,如果是用于照明用的,在户外最好是用大功率的LED了,亮度就更高了,单个功率有1W,3W,5W,还有的是用多个大功率组合成一个大功率的LED,功率去到几百都有。

依据Haitz定律的推论,亮度达100lm/W(每瓦发出100流明)的LED约在2008年;2010年间出现,不过实际的发展似乎已比定律更超前,2006年6月日亚化学工业(Nichia)已经开始提供可达100lm/W白光LED的工程样品,预计年底可正式投入量产。

Haitz定律可说是LED领域界的Moore定律,根据Roland Haitz的表示,过去30多年来LED几乎每18;24个月就能提升一倍的发光效率,也因此推估未来的10年(2003年;2013年)将会再成长20倍的亮度,但价格将只有现在的1/10.

不仅亮度不断提升,LED的散热技术也一直在提升,1992年一颗LED的热阻抗(Thermal Resistance)为360℃/W,之后降至125℃/W、75℃/W、15℃/W,而今已是到了每颗6℃/W~10℃/W的地步,更简单说,以往LED每消耗1瓦的电能,温度就会增加360℃,现在则是相同消耗1瓦电能,温度却只上升6℃;10℃。

少颗数高亮度、多颗且密集排布是增热元凶

既然亮度效率提升、散热效率提升,那不是更加矛盾?应当更加没有散热问题不是?其实,应当更严格地说,散热问题的加剧,不在高亮度,而是在高功率;不在传统封装,而在新封装、新应用上。

首先,过往只用来当指示灯的LED,每单一颗的点亮电流多在5mA;30mA间,典型而言则为20mA,而现在的高功率型LED,则是每单一颗就会有330mA;1A的电流送入,增加了十倍、甚至数十倍。

在相同的单颗封装内送入倍增的电流,发热自然也会倍增,如此散热情况当然会恶化,但很不幸的,由于要将白光LED拿来做照相手机的闪光灯、要拿来做小型照明用灯泡、要拿来做投影机内的照明灯泡,如此只是高亮度是不够的,还要用上高功率,这时散热就成了问题。

上述的LED应用方式,仅是使用少数几颗高功率LED,闪光灯约1;4颗,照明灯泡约1;8颗,投影机内10多颗,不过闪光灯使用机会少,点亮时间不长,单颗的照明灯泡则有较宽裕的周遭散热空间,而投影机内虽无宽裕散热空间但却可装置散热风扇。

图中为InGaN与AlInGaP两种LED用的半导体材料,在各尖峰波长(光色)下的外部量子化效率图,虽然最理想下可逼近40%,但若再将光取效率列入考虑,实际上都在15%;25%间,何况两种材料在更高效率的部分都不在人眼感受性的范畴内,范畴之下的仅有20%.

可是,现在还有许多应用是需要高亮度,但又需要将高亮度LED密集排列使用的,例如交通号志灯、讯息广告牌的走马灯、用LED组凑成的电视墙等,密集排列的结果便是不易散热,这是应用所造成的散热问题。

更有甚者,在液晶电视的背光上,既是使用高亮度LED,也要密集排列,且为了讲究短小轻薄,使背部可用的散热设计空间更加拘限,且若高标要求来看也不应使用散热风扇,因为风扇的吵杂声会影响电视观赏的品味情绪。

统上,LED的调光是利用一个DC信号或滤液PWM对LED中的正向电流进行调节来完成的。减小LED电流将起到调节LED光输出强度的作用,然而,正向电流的变化也会改变LED 的彩色,因为LED的色度会随着电流的变化而变化。许多应用(例如汽车和LCD TV背光照明)都不能允许LED发生任何的色彩漂移。在这些应用中,由于周围环境中存在不同的光线变化,而且人眼对于光强的微小变化都很敏感,因此宽范围调光是必需的。通过施加一个PWM信号来控制LED亮度的做法允许不改变彩色的情况下完成LED的调光。

散热问题不解决有哪些副作用?

好!倘若不解决散热问题,而让LED的热无法排解,进而使LED的工作温度上升,如此会有什么影响吗?关于此最主要的影响有二:(1)发光亮度减弱、(2)使用寿命衰减。

举例而言,当LED的p-n接面温度(Junction Temperature)为25℃(典型工作温度)时亮度为100,而温度升高至75℃时亮度就减至80,到125℃剩60,到175℃时只剩40.很明显的,接面温度与发光亮度是呈反比线性的关系,温度愈升高,LED亮度就愈转暗。

温度对亮度的影响是线性,但对寿命的影响就呈指数性,同样以接面温度为准,若一直保持在50℃以下使用则LED有近20,000小时的寿命,75℃则只剩10,000小时,100℃剩5,000小时,125℃剩2,000小时,150℃剩1,000小时。温度光从50℃变成2倍的100℃,使用寿命就从20,000小时缩成1/4倍的5,000小时,伤害极大。

裸晶层:光热一体两面的发散源头:p-n接面

关于LED的散热我们同样从最核心处逐层向外讨论,一起头也是在p-n接面部分,解决方案一样是将电能尽可能转化成光能,而少转化成热能,也就是光能提升,热能就降低,以此来降低发热。

如果更进一步讨论,电光转换效率即是内部量子化效率(Internal Quantum Efficiency;IQE),今日一般而言都已有70%~90%的水平,真正的症结在于外部量子化效率(External Quantum Efficiency;EQE)的低落。

以Lumileds Lighting公司的Luxeon系列LED为例,Tj接面温度为25℃,顺向驱动电流为350mA,如此以InGaN而言,随着波长(光色)的不同,其效率约在5%~27%之间,波长愈高效率愈低(草绿色仅5%,蓝色则可至27%),而AlInGaP方面也是随波长而有变化,但却是波长愈高效率愈高,效率大体从8%~40%(淡黄色为低,橘红最高)。

从Lumileds公司Luxeon系列LED的横切面可以得知,硅封胶固定住LED裸晶与裸晶上的荧光质(若有用上荧光质的话),然后封胶之上才有透镜,此芯片也可强化ESD静电防护性,往下再连接散热块,部分LED也直接裸晶底部与散热块相连。

Lumileds公司Luxeon系列LED的裸晶实行覆晶镶嵌法,因此其蓝宝石基板变成在上端,同时还加入一层银质作为光反射层,进而增加光取出量,此外也在Silicon Submount内制出两个基纳二极管(Zener Diode),使LED获得稳压效果,使运作表现更稳定。

由于增加光取出率(Extraction Efficiency,也称:汲光效率、光取效率)也就等于减少热发散率,等于是一个课题的两面。

裸晶层:基板材料、覆晶式镶嵌

如何在裸晶层面增加散热性,改变材质与几何结构再次成为必要的手段,关于此目前最常用的两种方式是:1.换替基板(Substrate,也称:底板、衬底,有些地方也称为的材料。

2.经裸晶改采覆晶(Flip-Chip,也称:倒晶)方式镶嵌(mount)。

先说明基板部分,基板的材料并不是说换就能换,必须能与裸晶材料相匹配才行,现有AlGaInP常用的基板材料为GaAs、Si,InGaN则为SiC、Sapphire(并使用AlN做为缓冲层)。

为了强化LED的散热,过去的FR4印刷电路板已不敷应付,因此提出了内具金属核心的印刷电路板,称为MCPCB,运用更底部的铝或铜等热传导性较佳的金属来加速散热,不过也因绝缘层的特性使其热传导受到若干限制。

对光而言,基板不是要够透明使其不会阻碍光,因此再加入一个DBR反射层来进行反光。而Sapphire基板则是可直接反光,或透明的GaP基板可以透光。

除此之外,基板材料也必须具备良好的热传导性,负责将裸晶所释放出的热,迅速导到更下层的散热块(Heat Slug)上,不过基板与散热块间也必须使用热传导良好的介接物,好因应从p-n接面开始,传导到裸晶表面的温度。

除了强化基板外,另一种作法是覆晶式镶嵌,将过去位于上方的裸晶电极转至下方,电极直接与更底部的线箔连通,如此热也能更快传导至下方,此种散热法不仅用在LED上,现今高热的CPU、GPU也早就实行此道来加速散热。

从传统FR4 PCB到金属核心的MCPCB

将热导到更下层后,就过去而言是直接运用铜箔印刷电路板

(Printed Circuit Board;PCB)来散热,也就是最常见的FR4印刷电路基板,然而随着LED 的发热愈来愈高,FR4印刷电路基板已逐渐难以消受,理由是其热传导率不够(仅

0.36W/m.K)。

MCPCB 是指金属基印刷电路板(Metal Core PCB,MCPCB),即是将原有的印刷电路板附贴在另外一种热传导效果更好的金属上,可改善电路板层面的散热。不过,MCPCB也有些限

制,在电路系统运作时不能超过140℃,这个主要是来自介电层(Dielectric Layer,也称Insulated Layer,绝缘层)的特性限制,此外在制造过程中也不得超过250℃?300℃,这在过锡炉时前必须事先了解。MCPCB虽然比FR4 PCB散热效果佳,但MCPCB的介电层却没有太好的热传导率,散热块与金属核心板间的传导瓶颈。但还是比FR4 PCB好些,现有MCPCB 已可达到3W/m.K,而FR4仅0.3W/m.K.,所以才称为「Metal Core」,MCPCB的热传导效率就高于传统FR4 PCB,达1W/m.K~2.2W/m.K.

不过,MCPCB也有些限制,在电路系统运作时不能超过140℃,这个主要是来自介电层(Dielectric Layer,也称Insulated Layer,绝缘层)的特性限制,此外在制造过程中也不得超过250℃;300℃,这在过锡炉时前必须事先了解。

IMS强化MCPCB在绝缘层上的热传导

MCPCB虽然比FR4 PCB散热效果佳,但MCPCB的介电层却没有太好的热传导率,大体与FR4 PCB相同,仅0.3W/m.K,成为散热块与金属核心板间的传导瓶颈。

为了改善此一情形,有业者提出了IMS的改善法,将高分子绝缘层及铜箔电路以环氧方式直接与铝、铜板接合,然后再将LED配置在绝缘基板上,此绝缘基板的热传导率就比较高,达1.1;2W/m.K,比之前高出3;7倍的传导效率。

更进一步的,若绝缘层依旧被认为是导热性不佳,此作法很耐人寻味,因为过去的印刷电路板不是为插件组件焊接而凿,就是为线路绕径而凿,如今却是为散热设计而凿。

结尾

除了MCPCB、MCPCB+IMS法之外,也有人提出用陶瓷基板,或者是所谓的直接铜接合基板,或是金属复合材料基板。无论是陶瓷基板或直接铜接合基板都有24~170W/m.K的高传导率,其中直接铜接合基板更允许制程温度、运作温度达800℃以上,不过这些技术都有待更进一步的成熟观察。

Philips公司的彩色动态式LED照明模块,四组灯泡内各有一个1W的高亮度、高功率LED,且分别是红、绿、蓝、琥珀等四种颜色,主要用于购物场所的气氛照明、墙壁色调的改变、建筑物的户外特效照明等。

大功率LED灯珠封装流程工艺

HIGH POWER LED 封装工艺 一.封装的任务 是将外引线连接到LED芯片的电极上,同时保护好LED芯片,并且起到提高光取出效率的作用。 二.封装形式 LED封装形式可以说是五花八门,主要根据不同的应用场合采用相应的外形尺寸,散热对策和出光效果。LED按封装形式分类有Lamp-LED、TOP-LED、Side-LED、SMD-LED、High-Power-LED等。 三.封装工艺说明 1.芯片检验 镜检:材料表面是否有机械损伤及麻点麻坑(lockhill),芯片尺寸及电极大小是否符合工艺要求,电极图案是否完等。 2.扩晶 由于LED芯片在划片后依然排列紧密间距很小(约0.1mm),不利于后工序的操作。我们采用扩片机对黏结芯片的膜进行扩张,是LED芯片的间距拉伸到约0.6mm。也可以采用手工扩张,但很容易造成芯片掉落浪费等不良问题。 3.点底胶 在LED支架的相应位置点上银胶或绝缘胶。(对于GaAs、SiC导电衬底,具有背面电极的红光、黄光、黄绿芯片,采用银胶。对于蓝宝石绝缘衬底的蓝光、绿光LED芯片,采用绝缘胶来固定芯片。) 工艺难点在于点胶量的控制,在胶体高度、点胶位置均有详细的工艺要求。 由于银胶和绝缘胶在贮存和使用均有严格的要求,银胶的醒料、搅拌、使用时间都是工艺上必须注意的事项。 4.固晶 固晶分为自动固晶和手工固晶两种模式。 自动固晶其实是结合了沾胶(点胶)和安装芯片两大步骤,先在LED支架上点上银胶(绝缘胶),然后用真空吸嘴将LED芯片吸起移动位置,再安置在相应的支架位置上。 自动固晶在工艺上主要要熟悉设备操作编程,同时对设备的沾胶及安装精度进行调整。在吸嘴的选用上尽量选用胶木吸嘴,防止对LED芯片表面的损伤,特别是兰、绿色芯片必须用电木的。因为钢嘴会划伤芯片表面的电流扩散层。

功率型LED封装技术(精)

研究生课程小论文 课程名称:新型电子器件封装 论文题目 : 功率型 LED 封装技术论文评语 : 成绩 : 任课教师 : 评阅日期 : 目录 摘要 (1) Abstract . ................................................................................................................ 1 1 绪论 ................................................................................................................... 2 1.1 LED 芯片结构 . ....................................................................................... 2 1.1.1 水平结 构 ....................................................................................... 2 1.1.2 垂直结 构 ....................................................................................... 3 1.1.3 倒装结 构 ....................................................................................... 3 1.2 LED 的封装材 料 . ................................................................................... 3 1.2.1 基板材 料 ....................................................................................... 3 1.2.2 粘接材 料 (4) 1.2.3 封装胶 (4) 2 LED封装方式和工艺 (5) 2.1 LED 封装方式 . ....................................................................................... 5 2.1.1 引脚式封装 ................................................................................... 5 2.1.2 表面贴装式 ( SMT . ...................................................................... 5 2.1.3 板上芯片直装式 ( COB . .............................................................. 5 2.1.4 系统封装式 ( SiP (6) 2.2 LED 封装工艺 . (6)

大功率LED封装技术详解

大功率LED封装技术 关键词: 从实际应用的角度来看,安装使用简单、体积相对较小的大功率LED器件在大部分的照明应用中必将取代传统的小功率LED器件。由小功率LED组成的照明灯具为了满足照明的需要,必须集中许多个LED的光能才能达到设计要求,但带来的缺点是线路异常复杂、散热不畅,为了平衡各个LED之间的电流、电压关系,必须设计复杂的供电电路。相比之下,大功率单体LED的功率远大于若干个小功率LED的功率总和,供电线路相对简单,散热结构完善,物理特性稳定。所以说,大功率LED器件的封装方法和封装材料并不能简单地套用传统的小功率LED器件的封装方法与封装材料。大的耗散功率、大的发热量以及高的出光效率,给LED封装工艺、封装设备和封装材料提出了新的更高的要求。 1、大功率LED芯片 要想得到大功率LED器件,就必须制备合适的大功率LED芯片。国际上通常的制造大功率LED芯片的方法有如下几种: ①加大尺寸法。通过增大单体LED的有效发光面积和尺寸,促使流经TCL层的电流均匀分布,以达到预期的光通量。但是,简单地增大发光面积无法解决散热问题和出光问题,并不能达到预期的光通量和实际应用效果。 ②硅底板倒装法。首先制备出适合共晶焊接的大尺寸LED芯片,同时制备出相应尺寸的硅底板,并在硅底板上制作出供共晶焊接用的金导电层及引出导电层(超声金丝球焊点),再利用共晶焊接设备将大尺寸LED芯片与硅底板焊接在一起。这样的结构较为合理,既考虑了出光问题又考虑到了散热问题,这是目前主流的大功率LED的生产方式。 美国Lumileds公司于2001年研制出了AlGaInN功率型倒装芯片(FCLED)结构,其制造流程是:首先在外延片顶部的P型GaN上淀积厚度大于500A的NiAu层,用于欧姆接触和背反射;再采用掩模选择刻蚀掉P型层和多量子阱有源层,露出N型层;经淀积、刻蚀形成N型欧姆接触层,芯片尺寸为1mm1mm,P型欧姆接触为正方形,N型欧姆接触以梳状插入其中,这样可缩短电流扩展距离,把扩展电阻降至最小;然后将金属化凸点的AlGaInN芯片倒装焊接在具有防静电保护二极管(ESD)的硅载体上。 ③陶瓷底板倒装法。先利用LED晶片通用设备制备出具有适合共晶焊接电极结构的大出光面积的LED芯片和相应的陶瓷底板,并在陶瓷底板上制作出共晶焊接导电层及引出导电层,然后利用共晶焊接设备将大尺寸LED芯片与陶瓷底板焊接在一起。这样的结构既考虑了出光问题也考虑到了散热问题,并且采用的陶瓷底板为高导热陶瓷板,散热效果非常理想,价格又相对较低,所以为目前较为适宜的底板材料,并可为将来的集成电路一体化封装预留空间。 ④蓝宝石衬底过渡法。按照传统的InGaN芯片制造方法在蓝宝石衬底上生长出PN结后,将蓝宝石衬底切除,再连接上传统的四元材料,制造出上下电极结构的大尺寸蓝光LED芯片。

大功率LED封装技术详解(精)

大功率 LED 封装技术 关键词: 从实际应用的角度来看 , 安装使用简单、体积相对较小的大功率 LED 器件在大部分的照明应用中必将取代传统的小功率 LED 器件。由小功率 LED 组成的照明灯具为了满足照明的需要 , 必须集中许多个 LED 的光能才能达到设计要求 , 但带来的缺点是线路异常复杂、散热不畅 , 为了平衡各个 LED 之间的电流、电压关系 , 必须设计复杂的供电电路。相比之下 , 大功率单体 LED 的功率远大于若干个小功率 LED 的功率总和 , 供电线路相对简单 , 散热结构完善 , 物理特性稳定。所以说 , 大功率 LED 器件的封装方法和封装材料并不能简单地套用传统的小功率 LED 器件的封装方法与封装材料。大的耗散功率、大的发热量以及高的出光效率 , 给 LED 封装工艺、封装设备和封装材料提出了新的更高的要求。 1、大功率 LED 芯片 要想得到大功率 LED 器件 , 就必须制备合适的大功率 LED 芯片。国际上通常的制造大功率 LED 芯片的方法有如下几种: ①加大尺寸法。通过增大单体 LED 的有效发光面积和尺寸 , 促使流经 TCL 层的电流均匀分布 , 以达到预期的光通量。但是 , 简单地增大发光面积无法解决散热问题和出光问题 , 并不能达到预期的光通量和实际应用效果。 ②硅底板倒装法。首先制备出适合共晶焊接的大尺寸 LED 芯片 , 同时制备出相应尺寸的硅底板 , 并在硅底板上制作出供共晶焊接用的金导电层及引出导电层(超声金丝球焊点 , 再利用共晶焊接设备将大尺寸 LED 芯片与硅底板焊接在一起。这样的结构较为合理 , 既考虑了出光问题又考虑到了散热问题 , 这是目前主流的大功率 LED 的生产方式。 美国 Lumileds 公司于 2001年研制出了 AlGaInN 功率型倒装芯片 (FCLED结 构 , 其制造流程是:首先在外延片顶部的 P 型 GaN 上淀积厚度大于 500A 的 NiAu 层 , 用于欧姆接触和背反射 ; 再采用掩模选择刻蚀掉 P 型层和多量子阱有源层 , 露

大功率照明级LED封装技术

大功率照明级LED封装技术 大功率LED器件的封装方法和封装材料并不能简单地套用传统的小功率LED器件的封装方法与封装材料。大的耗散功率、大的发热量以及高的出光效率,给LED封装工艺、封装设备和封装材料提出了新的更高的要求。 从实际应用的角度来看,安装使用简单、体积相对较小的大功率LED器件在大部分的照明应用中必将取代传统的小功率LED器件。由小功率LED组成的照明灯具为了满足照明的需要,必须集中许多个LED的光能才能达到设计要求,但带来的缺点是线路异常复杂、散热不畅,为了平衡各个LED之间的电流、电压关系,必须设计复杂的供电电路。相比之下,大功率单体LED的功率远大于若干个小功率LED的功率总和,供电线路相对简单,散热结构完善,物理特性稳定。所以说,大功率LED器件的封装方法和封装材料并不能简单地套用传统的小功率LED器件的封装方法与封装材料。大的耗散功率、大的发热量以及高的出光效率,给LED封装工艺、封装设备和封装材料提出了新的更高的要求。 1、大功率LED芯片 要想得到大功率LED器件,就必须制备合适的大功率LED芯片。国际上通常的制造大功率LED芯片的方法有如下几种:

①加大尺寸法。通过增大单体LED的有效发光面积和尺寸,促使流经TCL 层的电流均匀分布,以达到预期的光通量。但是,简单地增大发光面积无法解决散热问题和出光问题,并不能达到预期的光通量和实际应用效果。 ②硅底板倒装法。首先制备出适合共晶焊接的大尺寸LED芯片,同时制备出相应尺寸的硅底板,并在硅底板上制作出供共晶焊接用的金导电层及引出导电层(超声金丝球焊点),再利用共晶焊接设备将大尺寸LED芯片与硅底板焊接在一起。这样的结构较为合理,既考虑了出光问题又考虑到了散热问题,这是目前主流的大功率LED的生产方式。 美国Lumileds公司于2001年研制出了AlGaInN功率型倒装芯片(FCLED)结构,其制造流程是:首先在外延片顶部的P型GaN上淀积厚度大于500A的NiAu层,用于欧姆接触和背反射;再采用掩模选择刻蚀掉P型层和多量子阱有源层,露出N型层;经淀积、刻蚀形成N型欧姆接触层,芯片尺寸为1mm×1mm,P型欧姆接触为正方形,N型欧姆接触以梳状插入其中,这样可缩短电流扩展距离,把扩展电阻降至最小;然后将金属化凸点的AlGaInN芯片倒装焊接在具有防静电保护二极管(ESD)的硅载体上。 ③陶瓷底板倒装法。先利用LED晶片通用设备制备出具有适合共晶焊接电极结构的大出光面积的LED芯片和相应的陶瓷底板,并在陶瓷底板上制作出共晶焊接导电层及引出导电层,然后利用共晶焊接设备将大尺寸LED芯片与陶瓷底板焊接在一起。这样的结构既考虑了出光问题也考虑到了散热问题,并且采用的陶瓷底板为高导热陶瓷板,散热效果非常理想,价格又相对较低,所以为目前较为适宜的底板材料,并可为将来的集成电路一体化封装预留空间。

LED十大封装企业

1.厦门三安光电 (主流全色系超高亮度LED 芯片,各项性能指标领先,蓝、绿光ITO(氧化铟锡)芯片的性能指标已接近国际最高指标,在同行内具有较强竞争力)厦门三安电子有限公司是目前国内最大、国际一流的超高亮度发光二极管外延及芯片产业化基地,占地5万多平方米。公司目前的产品主要有全色系LED外延片、芯片、光通讯核心元件等,产品技术指标属世界先进水平。公司被国家科技部列入国家半导体照明工程龙头企业。 2.大连路美(路美拥有上百个早期国际国内核心专利,,范围横跨外延、芯片、封装、灯具、发光粉等。)连路美芯片科技有限公司是由美国路美光电公司与大连路明科技集团公司共同投资设立的中外合资企业,公司总投资1.5亿美元,占地面积10.8万平米,总建筑面积63515平米,专业从事高品质LED半导体发光芯片和LD激光芯片的研发、生产与制造。美国路美光电公司的前身为美国纳斯达克上市公司AXT的光电公司,技术水平处于世界前四名。 3.杭州士兰明芯(其技术优势在于芯片制造工艺,同时受益母公司强大的集成电路和分立器件生产线经验。公司LED显示屏芯片的市场占有率超过50%,09年作为唯一的国产芯片厂商中标广场LED显示屏。)杭州士兰明芯科技有限公司是一家设计、制造高亮度全彩LED芯片的光电半导体器件公司。公司位于杭州经济技术开发区,为杭州士兰微电子股份有限公司与杭州士兰集成电路有限公司合资创办。公司注册资本金为1.5亿元人民币,占地75亩,拥有进口生产设备一百二十多台套。公司产品包括蓝、绿光氮化物半导体材料外延片和芯片两大部分,生产工艺技术已经达到国际水平。 4.武汉迪源光电(武汉迪源目前的产品主要以0.5W和1W LED芯片为主,月产能为10-15KK,主要生产45、50和60mil的大功率LED芯片,同时迪源已拥有1项美国专利和4项中国专利。) 5.广州晶科电子(是珠三角唯一一家大功率、高亮度、高稳定性蓝光LED芯片制造企业。晶科核心产品优势是功率型氮化镓蓝LED芯片和超大功率模组芯片(5W、10W、15W、30W等)。同时在美国和中国拥8项发明专利,并以每年申请2项发明专利的速度进行持续的技术创新,拥有晶片级倒装焊技术倒装大功率芯片制造技术及多芯片集成技术。) 6.上海蓝宝光电(以中科院物理所为技术支撑,拥有成熟的大功率倒装焊、RGB三基色集成、ITO镀膜、抗静电保护等核心技术。) 7.方大国科光电(母公司方大集团是国内第一家批量生产半导体照明用外延片和芯片企业。) 8.厦门晶宇光电(为全世界产量最大、产品最完善的LED外延片及芯片专业公司。) 晶宇光电成立于1996年,专业从事研发、生产超高亮度发光二极管(LED),为全世界产量最大、产品最完善的LED外延片及芯片专业公司。本公司重视自身技术的创新与发展,已获得的超过1,000件的国内外专利数量,关注产品及服务品质的提升,全力配合客户的发展需求。晶元光电将携手晶宇光电创造中国LED 产业在全世界发光发亮的愿景!

LED封装基本知识

LED封装基本知识 LED(发光二极管)封装是指发光芯片的封装,相比集成电路封装有较大不同。LED的封装不仅要求能够保护灯芯,而且还要能够透光,所以LED的封装对封装材料有特殊的要求。 封装简介 LED封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而LED封装则是完成输出电信号,保护管芯正常工作,输出:可见光的功,既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于LED。 自上世纪九十年代以来,LED芯片及材料制作技术的研发取得多项突破,透明衬底梯形结构、纹理表面结构、芯片倒装结构,商品化的超高亮度(1cd以上)红、橙、黄、绿、蓝的LED产品相继问市,2000年开始在低、中光通量的特殊照明中获得应用。LED的上、中游产业受到前所未有的重视,进一步推动下游的封装技术及产业发展,采用不同封装结构形式与尺寸,不同发光颜色的管芯及其双色、或三色组合方式,可生产出多种系列,品种、规格的产品。 技术原理 大功率LED封装由于结构和工艺复杂,并直接影响到LED的使用性能和寿命,特别是大功率白光LED封装更是研究热点中的热点。

LED封装的功能主要包括:1.机械保护,以提高可靠性;2.加强散热,以降低芯片结温,提高LED性能;3.光学控制,提高出光效率,优化光束分布;4.供电管理,包括交流/直流转变,以及电源控制等。 LED封装方法、材料、结构和工艺的选择主要由芯片结构、光电/机械特性、具体应用和成本等因素决定。经过40多年的发展,LED 封装先后经历了支架式(Lamp LED)、贴片式(SMD LED)、功率型LED(Power LED)等发展阶段。随着芯片功率的增大,特别是固态照明技术发展的需求,对LED封装的光学、热学、电学和机械结构等提出了新的、更高的要求。为了有效地降低封装热阻,提高出光效率,必须采用全新的技术思路来进行封装设计。 关于LED封装结构说明 LED的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高LED的内、外部量子效率。常规Φ5mm型LED封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合为内引线与一条管脚相连,负极通过反射杯和引线架的另一管脚相连,然后其顶部用环氧树脂包封。反射杯的作用是收集管芯侧面、界面发出的光,向期望的方向角内发射。顶部包封的环氧树脂做成一定形状,有这样几种作

大功率LED封装工艺系列之焊线篇

大功率LED封装工艺系列之焊线篇 大功率LED封装工艺系列之焊线篇 一、基础知识 1. 目的 在压力、热量和超声波能量的共同作用下,使金丝在芯片电极和外引线 键合区之间形成 良好的欧姆接触,完成内外引线的连接。 2. 技术要求 2.1 金丝与芯片电极、引线框架键合区间的连接牢固 2.2 金丝拉力:25μm金丝F最小>5CN,F平均>6CN: 32μm金丝F最 小>8CN,F平均>10CN。 2.3 焊点要求 2.3.1金丝键合后第一、第二焊点如图(1)、图(2) 2.3.2 金球及契形大小说明

金球直径A: ф25um金丝:60-75um,即为Ф的2.4-3.0倍; 球型厚度H:ф25um金丝:15-20um,即为Ф的0.6-0.8倍; 契形长度D: ф25um金丝:70-85um,即为Ф的2.8-3.4倍; 2.3.3 金球根部不能有明显的损伤或变细的现象,契形处不能有明显的 裂纹 2.4 焊线要求 2.4.1 各条金丝键合拱丝高度合适,无塌丝、倒丝,无多余焊丝 2.5 金丝拉力 2.5.1第一焊点金丝拉力以焊丝最高点测试,从焊丝的最高点垂直引线

框架表面在显微镜观察下向上拉,测试拉力。如图所示: 键合拉力及断点位置要求: 3.工艺条件 由于不同机台的参数设置都不同,所以没有办法统一。我在这里就简单 的说一下主要要设置的地方: 键合温度、第一第二焊点的焊接时间、焊接压力、焊接功率、拱丝高度、 烧球电流、尾丝长度等等。

4.注意事项 4.1 不得用手直接接触支架上的芯片以及键合区域。 4.2 操作人员需佩带防静电手环,穿防静电工作服,避免静电对芯片 造成伤害。 4.3 材料在搬运中须小心轻放,避免静电产生及碰撞,需防倒丝、塌丝、 断线及沾附杂物。 4.4 键合机台故障时,应及时将在键合的在制品退出加热板,避免材料在加热块上烘烤过久而造成银胶龟裂及支架变色。 二、键合设备

大功率LED封装工艺技术

大功率LED 封装工艺技术 【摘要】LED 是一种绿色照明光源,其核心是PN 结,原理是多数载流子与少数注入PN 结的载流子进行复合,从而产生光子。LED 封装是LED 的关键技术,主要负责管芯保护、可见光及电信号输出等工作。LED 管芯结构、材料质量、几何形状、成本、封装内部结构等直接影响着大功率LED 的稳定性、均匀性和发光效率。本文对LED 的封装形式、大功率LED 封装关键技术等问题作了详细的分析和系统的阐述。 【关键词】大功率LED ;封装工艺;技术研究 LED 工艺主要包括芯片设计、芯片封装。就目前来看,广大研究者一直致力于大功率LED 封装技术及其散热技术的研究,以求取得更好的研究成果。大功率LED 封装的工艺流程虽较为简单,但实际工艺操作却比较复杂,某个工艺流程不注意便会对LED 的使用寿命造成直接的影响。因而在进行大功率LED 封装时,应对诸多的影响因素(如电、光、热、机械等)进行充分考虑,以便满足设计要求。如电学方面应对大功率LED 的驱动电源设计等情况进行充分考虑;光学方面应对大功率LED 的光衰问题进行充分考虑;热学方面应对大功率LED 的散热问题进行充分考虑;机械方面应对LED 封装的形式等进行充分考虑。

1 LED 的封装形式 随着社会的发展和科技的进步,LED 的封装形式也在不断趋于完善,封装形式繁多,如引脚式LED 封装、系统封装式LED 封装、表面组装贴片式LED 封装、板上芯片直接式LED 封装等,具体作以下介绍: 1.1 引脚式LED 封装形式 引脚式LED 封装形式一般应用在小功率LED 封装当中,通常情况下见到的普通发光二极管大多采用引脚式LED 封装形式,应用比较普遍。引脚式LED 封装形式的散热问题比较好解决,主要是其热量由负极引脚架直接散发到PCB 板上,但该种封装形式在实际的使用当中仍存在一定的缺点和不足一一热阻较大,因而缩短了LED的使用寿命。 1.2 系统封装式LED 封装形式 系统封装式LED 封装形式的发展和应用时间相对较短,该种封装形式满足了系统小型化和系统便携式的诸多要求。系统封装式LED 封装形式较其他封装形式来说,成本较低,且具有较高的集成度,兼容性好,能够实现一个封装内多个LED 芯片的组装工作。 1.3 表面组装贴片式LED 封装 表面组装贴片式LED 封装亦是比较新型的一种LED 封装形式,该种封装技术的原理是在PCB 表面制定位置上贴、焊封装好的LED 器件。该种封装形式技术优势是具有较好的高频特性、较强的可

LED封装技术大全

LED封装技术大全 LED封装所驱动的功率大小受限于封装体热阻与所搭配之散热模块(Rca),两者决定LED的 系统热阻和稳态所能忍受的最大功率值。为降低封装热阻,业者试图加大封装体内LED晶粒分布距离,然LED晶粒分布面积不宜太大,过大的发光面积会使后续光学难以处理,也限制该产品的应用。不可一味将更多的LED晶粒封装于单一体内,以求达到高功率封装目的,因为仍有诸多因素待考虑,尤其是对于应用面。 多晶粒封装材料不断发展 随着LED封装功率提升,多晶粒封装(Multi-chip Package)成为趋势,传统高功率LED 封装多采用塑料射出之预成型导线架(Pre-mold Lead Frame)方式(图1a),封装载体(Carrier)又称为芯片承载(Die Pad),为一连续的金属块,已无法满足多晶粒串接之电性需求,电性串并联方式直接影响LED晶粒电测分档(Bin)的精密程度、可靠度寿命以及封装体在应用时所需要的驱动电路设计。于是众多LED封装型式陆续被提出,图2举出几个代表性高功率LED封装典型例子。 图1 常见高功率LED封装结构示意 图2 典型具代表性之高功率LED封装 广为业界使用的高功率LED封装结构,主要的差异大致可从封装载体之材料选用做区分,

实现方式不外乎采用高导热陶瓷基材或直接在金属基材上做植晶封装(图1b),成为板上芯片(Chip On Board, COB)的封装形式。但因为高导热陶瓷基材价格居高不下,另有经济的选择,为使用低导热积层陶瓷配合热导通孔(Thermal Via)的设计(图1c),热导通孔内添入烧结金属(如银材)作为导热路径;此外,亦另有先进的作法,是使用半导体制程硅材为载体(图1d)达到热电分离,同时兼具高功率密度和低热阻(<0.5℃/W)特性,可望将高功率LED 封装导入另一项革命。随着LED功率和功率密度升级,将加速LED在各应用领域逐次取代传统光源。 一级光学镜片封装材料选用举足轻重 耐高温且稳定的封合胶体(Encapsulation)已被广泛采用,不同硅胶基材间的取舍,除了加工性外,主要在于折射率的考虑,其将影响封装体的光学特性,此包括光分配(Beam Distribution)与出光效率等。为维持稳定一致的光学质量,赋予一级光学镜片(Primary Lens)有其必要性,好的镜片设计可提供更佳的光输出质量,如更均匀的光强度、色坐标分布等,对于LED的有效出光有绝对的影响。 一级光学镜片的设计,各家自有其道,一般在第一阶出光多采用大出光角(≧120o)方式,再透过后续的二阶光学处理调整达所需要的光形,大出光角的另一好处,是有利于将光萃取出来,呈现更好的发光效率值。 一级光学材料的选用是很大的关键点,在过去,受限于可光学成型材料的瓶颈,多数以光学聚碳酸脂(PC)或光学压克力(PMMA)材质为主(低阶产品甚或有使用氧树脂的例子),现阶段因硅胶材性质已多有突破,陆续被使用在一级光学镜片,然因胶材乃属黏弹性非坚硬结构,在光学精准性上会受到交链反应收缩程度差异影响,同时因硅胶容易吸收水气,在高潮湿环境下,硅胶镜片可能因吸湿膨胀而使原先设计的配光发生变化,硅胶材应用在高功率LED 封装,适处于推广阶段。至于在光学镜片材料选用上,还有另一种可行方式,对于实现更精致光学质量与高度可靠度需求者,可选用稳定的玻璃镜片,满足长寿命和容许恶劣使用环境下严格考验。 有效降低热阻值为首要课题 LED封装推向高功率,首要面对热的挑战。热效应始终为各种材料特性退化的一大加速因子,如何掌控结点温度,成为决定LED封装功率值的主要因素,现阶段固态照明产生白光的主流机制,仍以可见蓝光(450~470奈米)透过荧光材(Phosphor)激发黄色光谱混合,而产生人类视觉上的白光。 市面上可见之蓝光晶粒技术已达一定水平,晶粒本身对热冲击的忍受程度相当大(温度每提升10℃、发光效率衰退小于1%),然而热对于所有类型荧光材的效应则相对敏感,荧光材之光转换效率随温度上升而降低(图3),同时影响荧光材料寿命,特别当荧光材料温度超过70℃以上时会急速衰退,此意味着LED结点温度(Junction Temperature, Tj)须有效控制在70℃以下,始能有效确保LED可用寿命(一般寿命以L70计算,LED衰退至原来亮度70%之时间),作为寿命判断依据,而此要求一般皆在20,000小时以上。因此,当讨论LED最高功率以及效能时,须考虑其于正常操作状态下,达热稳定时之结果去推算始具意义。LED 封装体自身之热阻,决定该封装所能承受的最大功率,如何有效降低Rjc值,是为高功率

相关文档
相关文档 最新文档