文档库 最新最全的文档下载
当前位置:文档库 › 火焰切割工艺参数汇总

火焰切割工艺参数汇总

火焰切割工艺参数汇总
火焰切割工艺参数汇总

火焰切割工艺汇总

火焰切割精度是指被切割完的工作几何尺寸与其图纸尺寸对比的误差关系,切割质量是指工件切割断面的表面粗糙度、切口上边缘的熔化塌边程度、切口下边缘是否有挂渣和割缝宽度的均匀性等。而火焰切割精度依靠其工艺参数来保证,影响火焰切割的主要因素有以下几种:

1、可燃气体种类;

2、割炬型号;

3、切割氧纯度、压力、流量、氧流形状;

4、切割速度、倾角;

5、火焰调整;

6、预热火焰能率;

7、割嘴与工件间的倾斜角、割嘴离工件表面的距离等。

其中切割氧流起着主导作用。切割氧流既要使金属燃烧,又要把燃烧生成的氧化物从切口中吹掉。因此,切割氧的纯度、流量、流速和氧流形状对火焰切割质量和切割速度有重要的影响。

一、可燃气体种类

火焰切割中,常用的可燃性气体有乙炔、煤气、天然气、丙烷等,国外有些厂家还使用MAPP,即:甲烷+乙烷+丙烷。一般来说,燃烧速度快、燃烧值高的气体适用于薄板切割;燃烧值低、燃烧速度缓慢的可燃性气体更适用于厚板切割,尤其是厚度在200mm以上的钢板,如采用煤气或天然气进行切割,将会得到理想的切割质量,只是切割速度会稍微降低一些。

相比较而言,乙炔比天然气要贵得多,但由于资源问题,在实际生产中,一般多采用乙炔气体,只是在切割大厚板同时又要求较高的切割质量以及资源充足时,才考虑使用天然气。

二、割炬型号

被割件越厚,割炬型号、割嘴号码、氧气压力均应增大,氧气压力与割件厚度、割炬型号、割嘴号码的关系详见下表

三、切割氧纯度、压力、流量、氧流形状

切割氧纯度

氧气的纯度对氧气消耗量、切口质量和气割速度也有很大影响。氧气纯度降低,氧气中的杂质如氮等在气割过程中会吸收热量,并在切口表面形成气体薄膜,阻碍金属燃烧,会使金属氧化过程缓慢、切割速

度大为降低、割缝也随之变宽、切割面粗糙、切

口下缘沾渣,而且氧气消耗量的增加。图为氧气

纯度对气割时间和氧气消耗量的影响曲线,1表

示气割时间;2表示氧气消耗量。在氧气纯度为

97.5%~99.5%的范围内,氧气纯度每降低l%

时,气割1m长的割缝,气割时间将增加10%~

15%;氧气消耗量将增加25%~35%。

因此,气割用的氧气的纯度应尽可能地提高,

一般要求在99.5%以上。若氧气的纯度降至95%

以下,气割过程将很难进行。要获得无粘渣的气

割切口,氧气纯度需达到99.6%。

采用液氧切割,虽然一次性投资大,但从长

远看,其综合经济指标比想象的要好得多。

切割氧压力

当割件较薄时,切割氧压力可适当降低。但切割氧的压力不能过低,也不能过高。若切割氧压力过高,则切割缝过宽,切割速度降低,不仅浪费氧气,同时还会使切口表面粗糙,而且还将

对割件产生强烈的冷却作用。若

氧气压力过低,会使气割过程中

的氧化反应减慢,切割的氧化物

熔渣吹不掉,在割缝背面形成难

以清除的熔渣粘结物,甚至不能

将工件割穿。

随着切割氧压力的提高,氧

流量相应增加,因此能够切割板

厚度随之增大。但压力增加到一

定值,可切割的厚度也达到最大

值,再增大压力,可切割的厚度

反而减小。切割氧压力对切割速

度的影响大致相同。

由图可见,用普通割嘴气割时,在压力较低的情况下,随着压力增加,切割速度也提高,但当压力超过0.3MP以后,切割速度反而下降;再继续加大压力,不但切割速度降低,而且切口加宽,切口断面粗糙。用扩散形割嘴气割时,如果切割氧压力符合割嘴的设计压力,则压力增大时,由于切割氧流的流速和动量增大,所以切割速度比用普通割嘴时也有所增加。

对所采用的割嘴,当风线最清晰、且长度最长时,这时的切割压力即为合适值,可获得最佳的切割效果。

切割氧流量

切割厚度12mm钢板时氧气流量对切割速度的影响如图所示。由图可见,随着氧流量的增加,切割速度逐渐增大,切割速度提高,但超过某个界限值反而降低。因此,对某一钢板厚度存在一个最佳氧流量值,此时不但切割质量最高,而且切割质量最好。

四、切割速度、倾角

切割速度

切割速度与工件厚度、割嘴形式有关,一般随工件厚度增大而减慢。切割速度必须与切口内金属的氧化速度想适应。切割速度直接影响到切割过程的稳定性和切割断面质量。如果想人为地调高切割速度来提高生产效率和用减慢切割速度来最佳地改善切割断面质量,那是办不到的,只能使切割断面质量变差。切割速度太慢会降低生产率,使切口上缘熔化塌边,下边缘产生圆角、切割断面下半部分出现水冲状的深沟凹坑等;太快则后拖量过大,使切割断面出现凹陷和挂渣等质量缺陷,严重的甚至割不透,造成切割中断。

机器切割速度比手工切割速度平均可提高20%,表列出机械化切割时切割速度的推荐数据。

通过观察熔渣从切口喷出的特点,可调整到合适的切割速度。在正常的火焰切割过程中,切割氧流相对垂直的割炬来说稍微偏后一个角度,其对应的偏移叫后拖量(见图)。切割速度可根据熔渣火花在切口中落下的方向来掌握,速度过低时,没有后拖量,工件下面割口处的火花束向切割方向偏移。如提高割炬的运行速度,火花束就会向相反的方向偏移,当火花束与切割氧流平行或稍偏向前方排出时时,就认为该切割速度正常。速度过高时,火花束明显后偏。 直线切割时,可采用火花稍偏向后方排出的较快的速度

切割倾角

割嘴与割件间的切割倾角直接影响气割速度和后拖

量。切割倾角的大小主要根据工件厚度来确定。一般气割

4mm 以下厚的钢板时,割嘴应后倾25°~45°;气割4~

20mm 厚的钢板时,割嘴应后倾20°~30°;气割20~30mm

厚的钢板时,割嘴应垂直于工件;气割工件厚度大于30mm

时,起割时为5°~10°的前倾角,割透后割嘴垂直于工

件,结束时为5°~10°的后倾角。手工曲线切割时,割

嘴垂直于工件。

割嘴的切割倾角与切割厚度的关系如图所示。

割嘴与工件间的倾角对气割速度和后拖量产生直接影响,

如果倾角选择不当,不但不能提高气割速度,反而会增加氧气的

消耗量,甚至造成气割困难。

五、火焰的调整

通过调整氧气和乙炔的比例可以得到三种切割火焰:中性焰(即正常焰),氧化焰,还原焰,见下图。

正常火焰的特征是在其还原

区没有自由氧和活性碳,有三个

明显的区域,焰芯有鲜明的轮廓

(接近于圆柱形)。焰芯的成分是

乙炔和氧气,其末端呈均匀的圆

形和光亮的外壳。外壳由赤热的

碳质点组成。焰芯的温度达

1000℃。还原区处于焰芯之外,

与焰芯的明显区别是它的亮度较

暗。还原区由乙炔未完全燃烧的

产物——氧化碳和氢组成,还原区的温度可达3000℃左右。外焰即完全燃烧区,位于还原区之外,它由二氧化碳和水蒸气、氮气组成,其温度在1200~2500℃之间变化。

氧化焰是在氧气过剩的情况下产生的,其焰芯呈圆锥形,长度明显地缩短,轮廓也不清楚,亮度是暗淡的;同样,还原区和外焰也缩短了,火焰呈紫蓝色,燃烧时伴有响声,响声大小与氧气的压力有关,氧化焰的温度高于正常焰。如果使用氧化焰进行切割,将会使切割质量明显地恶化。

还原焰是在乙炔过剩的情况下产生的,其焰芯没有明显的轮廓,其焰芯的末端有绿色的边缘,按照这绿色的边缘来判断有过剩的乙炔;还原区异常的明亮,几乎和焰芯混为一体;外焰呈黄色。当乙炔过剩太多时,开始冒黑烟,这是因为在火焰中乙炔燃烧缺乏必须的氧气造成的。

预热火焰的能量大小与切割速度、切口质量关系相当密切。随着被切工件板厚的增大和切割速度的加快,火焰的能量也应随之增强,但又不能太强,尤其在割厚板时,金属燃烧产生的反应热增大,加强了对切割点前沿的预热能力,这时,过强的预热火焰将使切口上边缘严重熔化塌边。太弱的预热火焰,又会使钢板得不到足够的能量,逼使减低切割速度,甚至造成切割过程中断。所以说预热火焰的强弱与切割速度的关系是相互制约的。

一般来说,切割200mm以下的钢板使用中性焰可以获得较好的切割质量。在切割大厚度钢板时应使用还原焰预热切割,因为还原焰的火焰比较长,火焰的长度应至少是板厚的1.2倍以上。

六、预热火焰能率

预热火焰的作用是把金属工件加热至金属在氧气中燃烧的温度,并始终保持这一温度,同时还使钢材表面的氧化皮剥离和熔化,便于切割氧流与金属接触。预热火焰是影响气割质量的重要工艺参数。气割时一般选用中性焰或轻微的氧化焰。碳化焰因有游离碳的存在,会使切口边缘增碳,所以不能采用。同时火焰的强度要适中。应根据工件厚度、割嘴种类和质量要求选用预热火焰。如在气割厚钢板时,由于气割速度较慢,为防止割缝上缘熔化,应相应使火焰能率降低;若此时火焰能率过大,会使割缝上缘产生连续珠状钢粒,甚至熔化成圆角,同时还造成割缝背面粘附熔渣增多,而影响气割质量。如在气割薄钢板时,因气割速度快,可相应增加火焰能率,但割嘴应离工件远些,并保持一定的倾斜角度;若此时火焰能率过小,使工件得不到足够的热量,就会使气割速度变慢,甚至使气割过程中断。

1、预热火焰的功率要随着板厚的增大而加大,割件越厚,预热火焰功率越大;

2

使外焰长一些。

3、使用扩散型割嘴和氧帘割嘴切割厚度200mm以下钢板时,火焰功率选大一些,以加速切口的前缘加热到燃点,从而获得较高的切割速度。

4、切割碳含量较高或合金元素教多的钢材时,因为他们燃点较高,预热火焰的功率要大一些。

5、用单割嘴切割坡口时,因熔渣被吹向切口外侧,为补充能量,要加大火焰功率。

气体火焰切割的预热时间应根据割件厚度而定,以下列出火焰切割选定预热时间的经验数据。

七、割嘴与工件间的倾斜角、割嘴离工件表面的距离

割嘴到工件表面的距离是根据工件厚度及预热火焰长度来确定。割嘴高度过低会使切口上线发生熔塌,飞溅时易堵塞割嘴,甚至引起回火。割嘴高度过大,热损失增加,且预热火焰对切口前缘的加热作用减弱,预热不充分,切割氧流动能下降,使排渣困难,影响切割质量。同时进入切口的氧纯度也降低,导致后拖量和切口宽度增大,在切割薄板场合还会使切割速度降低。

割嘴离工件表面的距离通常火焰焰

芯离开工件表面的距离应保持在3~5mm

的范围内,这样,加热条件最好,而且渗

碳的可能性也最小。如果焰芯触及工件表

面,不仅会引起割缝上缘熔化,还会使割

缝渗碳的可能性增加。

一般来说,切割薄板时,由于切割速

度较快,火焰可以长些,割嘴离开工件表

面的距离可以大些;切割厚板时,由于气

割速度慢,为了防止割缝上缘熔化,预热

火焰应短些,割嘴离工件表面的距离应适

当小些,这样,可以保持切割氧流的挺直

度和氧气的纯度,使切割质量得到提高。

数控火焰切割质量缺陷与原因分析

在实际生产过程中,经常会产生这样或那样的质量问题,一般有如下几种缺陷:边缘缺陷,切割断面缺陷,挂渣、裂纹等。而造成质量事故的原因很多,如果氧气纯度保证正常,设备运行正常,那么造成火焰切割质量缺陷的原因主要表现在如下几个方面:割炬、割嘴、钢材本身质量、钢板材质。

1、上边缘切割质量缺陷这是由于熔化而造成的质量缺陷

(1)上边缘塌边

现象:边缘熔化过快,造成圆角塌边。

原因:①切割速度太慢,预热火焰太强; ②割嘴与工件之间的高度太高或太低;③使用的割嘴号太大,火焰中的氧气过剩。

(2)水滴状熔豆串

现象:在切割的上边缘形成一串水滴状的熔豆。

原因:①钢板表面锈蚀或有氧化皮; ②割嘴与钢

板之间的高度太小,预热火焰太强; ③割嘴与钢板之

间的高度太大。

(3)上边缘塌边并呈现房檐状

现象:在切口上边缘,形成房檐状的凸出塌边。

原因:① 预热火焰太强;② 割嘴与钢板之间

的高度太低;③切割速度太慢;割嘴与工件之间

的高度太大,使用的割嘴号偏大,预热火焰中氧气

过剩。

(4)切割断面的上边缘有挂渣

现象:切口上边缘凹陷并有挂渣。

原因:① 割嘴与工件之间的高度太大,切割氧压力太高;

② 预热火焰太强。

2、切割断面凹凸不平,即平面度差

(1)切割断面上边缘下方,有凹形缺陷

现象:在接受切割断面上边缘处有凹陷,同时上边缘有

不同程度的熔化塌边。

原因:① 切割氧压力太高;② 割嘴与工件之间的高度

太大;割嘴有杂物堵塞,使风线受到干扰变形。

(2)割缝从上向下收缩

现象:割缝上宽下窄。

原因:① 切割速度太快;② 割嘴与工件之间的高度太

大,割嘴有杂物堵塞,使风线受到干扰变形。

(3)割缝上窄下宽

现象:割缝上窄下宽,成喇叭状。

原因:①切割速度太快,切割氧压力太高;②割嘴号

偏大,使切割氧流量太大;③ 割嘴与工件之间的高度太大;

(4)切割断面凹陷

现象:在整个切割断面上,尤其中间部位有凹陷。

原因:① 切割速度太快;② 使用的割嘴太小,切割压力太低,割嘴堵塞或损坏;③ 切割氧压力过高,风线受阻变坏。

(5)切割断面呈现出大的波纹形状

现象:切割断面凸凹不平,呈现较大的波纹形状。

原因:① 切割速度太快;② 切割氧压力太低,割嘴堵塞或损坏,使风线变坏;③ 使用的割嘴号太大。

(6)切口垂直方向的角度偏差

现象:切口不垂直,出现斜角。

原因:① 割炬与工件面不垂直;② 风线不正。

(7)切口下边缘成圆角

现象:切口下边缘有不同程度的熔化,成圆角状。

原因:① 割嘴堵塞或者损坏,使风线变坏;② 切割速度太快,切割氧压力太高。

(8)切口下部凹陷且下边缘成圆角

现象:接近下边缘处凹陷并且下边缘熔化成圆角。

原因:切割速度太快,割嘴堵塞或者损坏,风线受阻变坏。

3.切割断面的粗糙度缺陷

切割断面的粗糙度直接影响后续工序的加工质量,切断面的粗糙度与割纹的超前量及其深度有关。

(1)切割断面后拖量过大

现象:切割断面割纹向后偏移很大,同时随着偏移量的大小

而出现不同程度的凹陷。

原因:① 切割速度太快;② 使用的割嘴太小,切割氧流量

太小,切割氧压力太低;③ 割嘴与工件的高度太大。

(2)在切割断面上半部分,出现割纹超前量

现象:在接近上边缘处,形成一定程度的割纹超前量。

原因:①割炬与切割方向不垂直,割嘴堵塞或损坏;② 风

线受阻变坏;

现象:在靠近切割断面下边缘处出现割纹超前量太大。

原因:① 割嘴堵塞或损坏,风线受阻变坏;② 割炬不垂直

或割嘴有问题,使风线不正、倾斜。

4、挂渣在切割断面上或下边缘产生难以清除的挂渣

(1)下边缘挂渣

现象:在切割断面的下边缘产生连续的挂渣。

原因:①切割速度太快或太慢,使用的割嘴号太小,切割

氧压力太低;②预热火焰中燃气过剩,钢板表面有氧化皮锈蚀

或不干净;③ 割嘴与工件之间的高度太大,预热火焰太强。

(2)切割断面上产生挂渣

现象:在切割断面上有挂渣,尤其在下半部分有挂渣。

原因:合金成份含量太高。

5、裂纹

现象:在切割断面上出现可见裂纹,或在切割断面附近的内部出现脉动裂纹,或只是在横断面上可见到裂纹。

原因:含碳量或含合金成份太高,采用预热切割法时,工件预热温度不够,工件冷却时间太快,材料冷作硬化。

一、气割前的准备工作

被切割金属的表面,应仔细地清除铁锈、尘垢或油污。被切割件应垫平,以便于散放热量和排除熔渣。决不能放在水泥地上切割,因为水泥地面遇高温后会崩裂。切割前的具体要求如下。

①检查工作场地是否符合安全要求,割炬、氧气瓶、乙炔瓶(或乙炔发生器及回火防止器)、橡胶管、压力表等是否正常,将气割设备按操作规程连接好。

②切割前,首先将工件垫平,工件下面留出一定的间隙,以利于氧化铁渣的吹除。切割时,为了防止操作者被飞溅的氧化铁渣烧伤,必要时可加挡板遮挡。

③将氧气调节到所需的压力。对于射吸式割炬,应检查割炬是否有射吸能力。检查的方法是:首先拔下乙炔进气软管并弯折起来,再打开乙炔阀门和预热氧阀门。这时,将手指放在割炬的乙炔过气管接头上,如果手指感到有抽力并能吸附在乙炔进气管接头上,说明割炬有射吸能力,可以使用;反之,说明割炬不正常,不能使用,应检查修理。

④检查风线,方法是点燃火焰并将预热火焰调整适当。然后打开切割氧气阀门,观察切割氧流(即风线)的形状,风线应为笔直、清晰的圆柱体并有适当的长度。这样才能使工件切口表面光滑干净,宽窄一致。如果风线不规则,应关闭所有的阀门,用通针或其他工具修整割嘴的内表面,使之光滑。

预热火焰的功率应根据板材厚度不同加以调整,火焰性质应采用中性焰。

二、钢板表面预处理

钢板从钢铁厂经过一系列的中间环节到达切割车间,在这段时间里,钢板表面难免产生一层氧化皮。再者,钢板在轧制过程中也产生一层氧化皮附着在钢板表面。这些氧化皮熔点高,不容易燃烧和熔化,增加了预热时间,降低了切割速度;同时经过加热,氧化皮四处飞溅,极易对割嘴造成堵塞,降低了割嘴的使用寿命。所以,在切割前,很有必要对钢板表面进行除锈预处理。

常用的方法是抛丸除锈,之后喷漆防锈。即将细小铁砂用喷丸机喷向钢板表面,靠铁砂对钢板的冲击力除去氧化皮,再喷上阻燃、导电性好的防锈漆。

钢板切割之前的除锈喷漆预处理已成为金属结构生产中一个不可缺少的环节。

钢板火焰切割面质量要求

.专业资料分享. SW ********设备制造有限公司企业标准 Q/SW.J04.01-04 —————————————————— 钢板火焰切割面质量要求 (试行) 2004年8月29日发布 2004年8月31日实施——————————————————————————————*******机电设备制造有限公司批准

钢板火焰切割面质量要求(试行) 1.主要内容与适用范围 本标准规定了钢板、型材火焰切割面质量要求和精度等级以及切割表面加工余量标准。 本标准主要适用于机械自动、半自动火焰切割,板厚4.5~200mm范围。 2.引用标准: JB/T 10045.3-1999 热切割气割质量和尺寸偏差 S/ZZM0004.2-86 氧割下料质量技术要求 Q/MTZ1015-85 金属焊接结构件通用技术条件 MT/T587-1996 液压支架结构件制造技术条件 3.氧割手工划线宽度不大于0.5mm,交角处圆角半径等于1.0mm。 4.切割表面的质量 4.1.切割表面垂直度(平面度)的偏差(C):指实际切割断面与被切割金属表面的垂线之间的最大偏差,或是沿切割方向垂直于切割面上的凹凸程度。按表4-1的规定 表4-1 mm 注:对不重要的切割表面,其垂直度应放宽取Ⅳ级精度c≤%4δ。本公司选用Ⅱ级。手工切割按Ⅲ级标准要求执行。 4.2.切割表面的粗糙度:指切割表面波纹峰与谷之间的距离。(取任意5点的平均值,用G表示)。按表4-2的规定:本公司选用Ⅱ-Ⅲ级 表4-2 mm

注:对不重要的切割表面粗糙度可从宽,作为Ⅳ级对待G<0.35mm。 4.3.切割表面的直线度:是指切割直线时,沿切割方向将起止两端连成的直线同实际切割面之间的间隙。其公差由板厚δ和长度L决定(用P表示)应符合表4-3的规定。 表4-3 mm 4.4.切割面角度偏差,倒角(坡口)偏差,应符合表4-4的规定。 表4-4 mm

气体火焰切割工艺及参数

气体火焰切割工艺及参数 影响气割过程的主要参数 影响气体火焰切割过程(包括切割速度和质量)的主要工艺因素有: ①切割氧的纯度; ②切割氧的流量、压力及氧流形状; ③切割氧流的流速、动量和攻角; ④预热火焰的功率; ⑤被切割金属的成分、性能、表面状态及初始温度; ⑥其他工艺因素。 其中切割氧流起着主导作用。切割氧流既要使金属燃烧,又要把燃烧生成的氧化物从切口中吹掉。因此,切割氧的纯度、流量、流速和氧流形状对气割质量和切割速度有重要的影响。 ⑴切割氧的纯度 氧气的纯度是影响气割过程和质量的重要因素。氧气纯度差,不但切割速度大为降低、切割面粗糙、切口下缘沾渣,而且氧气消耗量的增加。氧气纯度从99.5%降到98%,即下降1.5%,切割速度下降25%,而耗氧量增加50%。一般认为,氧气纯度低于95%,就不能气割,要获得无粘渣的气割切口,氧气纯度需达到99.6%。 ⑵切割氧流量 切割厚度12mm钢板时氧气流量对切割速度的影响如图1所示。由图可见,随着氧流量的增加,切割速度逐渐增大,切割速度提高,但超过某个界限值反而降低。因此,对某一钢板厚度存在一个最佳氧流量值,此时不但切割质量最高,而且切割质量最好。 ⑶切割氧压力 随着切割氧压力的提高,氧流 量相应增加,因此能够切割板厚度随之增大。但压力增加到一定值,可切割的厚度也达到最大值,再增大压力,可切割的厚度反而减小。切割氧压力对切割速度的影响大致相同。如图2所示。

由图2可见,用普通割嘴气割时,在压力较低的情况下,随着压力增加,切割速度也提高,但当压力超过0.3MP以后,切割速度反而下降;再继续加大压力,不但切割速度降低,而且切口加宽,切口断面粗糙。用扩散形割嘴气割时,如果切割氧压力符合割嘴的设计压力,则压力增大时,由于切割氧流的流速和动量增大,所以切割速度比用普通割嘴时也有所增加。气割工艺参数 气割的工艺参数包括预热火焰功率、氧气压力、切割速度、割嘴到工件的距离以及切割倾角等。 ⑴预热火焰的选择 预热火焰是影响气割质量的重要工艺参数。气割时一般选用中性焰或轻微的氧化焰。同时火焰的强度要适中。应根据工件厚度、割嘴种类和质量要求选用预热火焰。 ①预热火焰的功率要随着板厚的增大而加大,割件越厚,预热火焰功率越大。氧-乙 炔预热火焰的功率与板厚的关系见表1。 ③使用扩散行割嘴和氧帘割嘴切割厚度200mm以下钢板时,火焰功率选大一些,以加速切口的前缘加热到燃点,从而获得较高的切割速度。 ④切割碳含量较高或合金元素教多的钢材时,因为他们燃点较高,预热火焰的功率要大一些。 ⑤用单割嘴切割坡口时,因熔渣被吹向切口外侧,为补充能量,要加大火焰功率。 气体火焰切割的预热时间应根据割件厚度而定,表2列出火焰切割选定预热时间的经验数 据。

激光切割机技术参数...

FIBERBLADE Cutting System 光纤激光切割机 一、Messer激光切割系统介绍 1、机器原理 梅塞尔公司在工业用激光切割机的开发和制造领域已有近40年的经验. 其激光技术得到 了世界范围的认可, 并在许多不同领域得到应用. 划时代的技术发展, 如专利激光切割头, 表明了梅塞尔公司的技术能力. 在此领域为激光加工建立的新标准将为客户带来巨大的利益. 产品系列包括: 2维激光切割系统 3维激光切割系统

激光焊接系统 自动化设备 装料及卸料系统 通过与世界领先的激光器厂商的常年合作, 保证机器与激光的最佳组合. 其大激光功率及用户友好式的CNC数控系统适应高速切割及广泛的生产制造领域. Fiberblade具备良好的动态性能, 在宽广范围内可实现切割与零件重量无关的高精度无挂渣的成品零件. 机器配合编程软件及相应自动套料程序, 可实现快速高效的零件编程, 扩展机器应用. 应用激光束作为工具, 切割速度快, 成品部件割缝窄, 精度高. 可无困难地实现复杂轮廓的切割. 切口边缘光洁、无毛刺, 绝大多数场合下无需后续处理. Fiberblade主要应用领域为金属加工, 特别是碳钢、不锈钢和铝材. 该系统既可应用氧气切割, 也可采用保护气体实现高压切割. 经测试其可切割性后, 该系统可切割金属合金、塑料以及非金属材料机器设计理念除了实现最佳切割结果外, 同样关注环境保护问题. 采用抽烟除尘装置可满足最严格的排放标准. 机器可满足现有安全规程, 满足相关CE标准. 2、功能描述

Fiberblade激光切割机,是一个集最新动力工程,电脑数控和光纤激光器技术的全新技术 发展水平的设计它是市面上最先进的紧凑型中规格工业级光纤激光切割系统;无需激光器 维护的低维修费系统,高效率、低功耗。 机器工作台采用交换式工作台系统,减少上料时间. 该系统交替使用两块台面. 切割一块台面上的板材, 同时另一块台面位于工作区域外. 操作员可取下成品部件并换上新板, 机器同时进行切割. 另一台面上的工件完成后, 由工作区域换出, 新板就位. 板材置于工作台支架上并确定位置后, 切割头随垂直定位轴下降. 传感控制器保证切割头维持正确定位, 可避免板材变形引起的问题. 激光束通过光纤传输到切割头上, 然后由透镜聚焦. 切割头沿工件轮廓移动, 但不与工件接触, 激光束和切割气体通过割嘴聚集到工件上. 横向运动通过溜板滑动定位实现. 纵向运动由车架自行移动实现. 两套同步驱动伺服电机确保设备的高精度, 轴向运动的高加速度, 可变激光功率控制, 可切割如窄条, 尖角等的复杂图形部件. 通过CNC数控系统可自动设定切割参数如气体种类, 气体压力, 激光参数. CNC数控系统内的切割数据及图形数据的分离, 可实现快速变化的工作要求, 并增加机器功能的灵活性, 适用范围更广. 由随动式直接抽风系统, 把切割过程中产生的尘粒抽出, 并经过烟尘过滤后, 达到安全及环境规范的排放要求. 二、标准配置介绍 1、机器构造

火焰切割操作说明书

火焰切割操作说明书集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

切割项目机器人 操作说明书 重庆罗伯百思特智能装备有限公司 2016年5月(第一版) 导。在操作和维护该系统时,必须遵守该手册中的操作程序。本手册仅针对本系统。 目录 5. 维修保养注意事项 ................ (14) 1.安全注意事项 生产过程中始终遵守安全注意事项可以防止意外事故及潜在危险的发生! 1.请指定专业人员培训上岗维护,操作设备. 2.未经培训人员禁止操作该设备。 3.发现问题及时解决,不要使设备带病作业. 4.氧气、天然气,确保工作正常。请确保安全可靠. 5.作业前有必要请您戴好劳保防护用具,确保人身安全与健康. 6.出于说明目的,使用设备时,警示牌和护栏必须放置到位。 危险: *必须单独使用可靠的接地线,否则有被漏电,静电击打的危险!

*各工位运转时严禁调整触摸,否则有卷入的危险! *高温部件(如割炬)加热后禁止触摸,否则有烫伤的危险! *保持气路通排气畅通,否则有放炮爆破的危险! 电气 系统内使用了三相五线制电源(3*380+N+PE),有可能对人体造成危险。 a.定期检查接线端子是否接触良好。 b.如发现有损坏的电气元件,在修复或更换前要先隔离该元件。 c.定期对电气控制柜进行卫生清理。 d.只允许有资格的电气技术人员进行检修工作。 机械 a.请不要将工具、螺丝等放置在变位机及机器人上,以免造成设备损坏。 b.确定机器人完全处于停止状态不能自行再启动状态,方可进入机器人工作范 围。 c.转动变位机前确定机器人处于安全停止状态,才可以启动变位机。 开停机 开机前先检查系统总的电源、气源是否正常开启,停机后再关闭系统总的电源、气源,其他操作必须遵守开停机程序来保证工作人员的安全。 通道 在系统周围应有足够的通道和照明,以便操作和维护的安全。 安全用具 当操作人员进行工作时,须戴手套和护目镜(或按照地方有关部门及工厂规定穿戴防护用品)。 安全检查表 a.将所有紧急电话、应急处理措施贴在明显位置。 b.保证所有操作人员熟悉与该设备相关的安全事项。 c.熟悉所有气源阀门的关闭位置。 d.确保设备周围通道畅通和足够的照明。 e.保持设备洁净。 f.处提供足够的通风。

火焰切割工艺处理汇总

火焰切割工艺汇总 火焰切割精度是指被切割完的工作几何尺寸与其图纸尺寸对比的误差关系,切割质量是指工件切割断面的表面粗糙度、切口上边缘的熔化塌边程度、切口下边缘是否有挂渣和割缝宽度的均匀性等。而火焰切割精度依靠其工艺参数来保证,影响火焰切割的主要因素有:1、可燃气体种类;2、割炬型号;3、切割氧纯度、压力、流量、氧流形状;4、切割速度、倾角;5、火焰调整;6、预热火焰能率;7、割嘴与工件间的倾斜角、割嘴离工件表面的距离等。其中切割氧流起着主导作用。切割氧流既要使金属燃烧,又要把燃烧生成的氧化物从切口中吹掉。因此,切割氧的纯度、流量、流速和氧流形状对火焰切割质量和切割速度有重要的影响。 一、可燃气体种类 火焰切割中,常用的可燃性气体有乙炔、煤气、天然气、丙烷等,一般来说,燃烧速度快、燃烧值高的气体适用于薄板切割;燃烧值低、燃烧速度缓慢的可燃性气体更适用于厚板切割,尤其是厚度在200mm 以上的钢板,如采用煤气或天然气进行切割,将会得到理想的切割质量,只是切割速度会稍微降低一些。 二、割炬型号 被割件越厚,割炬型号、割嘴号码、氧气压力均应增大,氧气压力与割件厚度、割炬型号、割嘴号码的关系是切割速度会稍微降低一些。(在实际生产当中,切割速度差不多的情况下应优先选用小点的割嘴,优点有:切割面质量比较高、热变形小、节约燃气和氧气。 三、切割氧纯度、压力、流量、氧流形状 切割氧纯度

氧气的纯度对氧气消耗量、切口质量和气割速度也有很大影响。氧气纯度降低,氧气中的杂质如氮等在气割过程中会吸收热量,并在切口表面形成气体薄膜,阻碍金属燃烧,会使金属氧化过程缓慢、切割速度大为降低、割缝也随之变宽、切割面粗糙、切口下缘沾渣,而且氧气消耗量的增加。因此,气割用的氧气的纯度应尽可能地提高,一般要求在99.5%以上。若氧气的纯度降至95%以下,气割过程将很难进行。要获得无粘渣的气割切口,氧气纯度需达到99.6%。(这就是为什么液氧要比空气分离的氧气好用的原因。) 切割氧压力 当割件较薄时,切割氧压力可适当降低。但切割氧的压力不能过低,也不过高。若切割氧压力过高,则切割缝过宽,切割速度降低,不仅浪费氧气,同还会使切口表面粗糙,而且还将对割件产生强烈的冷却作用。若氧气压力过低,会使气割过程中的氧化反应减慢,切割的氧化物熔渣吹不掉,在割缝背面形成难以清除的熔渣粘结物,甚至不能将工件割穿。 随着切割氧压力的提高,氧流量相应增加,因此能够切割板厚度随之增大。但压力增加到一 定值,可切割的厚度也达到最大值,再增大压力,可切割的厚度反而减小。切割氧压力对切割速 度的影响大致相同。 在实际切割工作中,最佳切割氧压力可用试放“风线”的办法来确定。对所采用的割嘴,当风线最清晰、且长度最长时,这时的切割压力即为合适值,可获得最佳的切割效果。 切割氧流量 切割钢板时氧气流量对切割速度的影响,随着氧流量的增加,切割速度逐渐增大,切割速度提高,但超过某个界限值反而降低。因此,对某一钢板厚度存在一个最佳氧流量值,此时不但切割质量最高,而 且切割质量最好。 四、切割速度、倾角 切割速度

激光切割机工艺手册

第一章 激光切割方法 1.1 激光熔化切割 在激光熔化切割中,工件被局部熔化后借助气流把熔化的材料喷射出去。因为材料的转移只发生在其液态情况下,所以该过程被称作激光熔化切割。 激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参于切割。 ——激光熔化切割可以得到比气化切割更高的切割速度。气化所需的能量通常高于把材料熔化所需的能量。在激光熔化切割中,激光光束只被部分吸收。 ——最大切割速度随着激光功率的增加而增加,随着板材厚度的增加和材料熔化温度的增加而几乎反比例地减小。在激光功率一定的情况下,限制因数就是割缝处的气压和材料的热传导率。 ——激光熔化切割对于铁制材料和钛金属可以得到无氧化切口。 ——产生熔化但不到气化的激光功率密度,对于钢材料来说,在104W/cm2~105 W/cm2之间。 1.2 激光火焰切割 激光火焰切割与激光熔化切割的不同之处在于使用氧气作为切割气体。借助于氧气和加热后的金属之间的相互作用,产生化学反应使材料进一步加热。由于此效应,对于相同厚度的结构钢,采用该方法可得到的切割速率比熔化切割要高。 另一方面,该方法和熔化切割相比可能切口质量更差。实际上它会生成更宽的割缝、明显的粗糙度、增加的热影响区和更差的边缘质量。 ——激光火焰切割在加工精密模型和尖角时是不好的(有烧掉尖角的危险)。可以使用脉冲模式的激光来限制热影响。 ——所用的激光功率决定切割速度。在激光功率一定的情况下,限制因数就是氧气的供应和材料的热传导率。 1.3 激光气化切割 在激光气化切割过程中,材料在割缝处发生气化,此情况下需要非常高的激光功率。 为了防止材料蒸气冷凝到割缝壁上,材料的厚度一定不要大大超过激光光束的直径。该加工因而只适合于应用在必须避免有熔化材料排除的情况下。该加工实际上只用于铁基合金很小的使用领域。 该加工不能用于,象木材和某些陶瓷等,那些没有熔化状态因而不太可能让材料蒸气再凝结的材料。另外,这些材料通常要达到更厚的切口。 ——在激光气化切割中,最优光束聚焦取决于材料厚度和光束质量。 ——激光功率和气化热对最优焦点位置只有一定的影响。

数控火焰切割机设计论文

中文摘要 摘要 本课题所设计的数控火焰切割机是一种小型切割设备,它可以很方便的对金属材料进行直线或曲线切割,可广泛应用于机械、建筑、化工、航天等行业。 首先,本文通过对火焰切割技术及数控火焰切割机的国内外研究现状的分析,对火焰切割机的总体结构进行了设计,整体采用龙门式结构,纵向、横向和垂直三个方向进给运动均选用步进电动机带动滚珠丝杠传动的开环控制系统。由于火焰切割机切割工件时无切削力,所以纵向进给运动采用电机直接驱动工作台运动来完成。其次,利用三维设计软件Solid Works完成了火焰切割机各零件的三维实体造型,并根据各零部件之间的定位关系,完成了总体装配,验证了设计的合理性。最后,为了加工制造的方便还绘制了切割机的所有零部件和装配体的工程图。 关键词:数控火焰切割机,龙门式,结构设计,Solid Works I

Abstract The CNC flame cutter designed in this topic is small cutting equipment. It can easily cut metal materials with linear or curvilinear drawings and can be widely used in machining, architecture, chemical industry, spaceflight and other industry. Firstly, through the analysis of research actuality about the flame cutting technology and the CNC flame cutting machine at home and abroad the whole structure of the flame cutter is designed in this article. The whole structure uses the gantry structure, the open-loop control systems, using stepping motor to drive ball screws, were chosen at longitudinal, horizontal and vertical directions. Since there is no cutting power when the flame cutter cuts work-piece, therefore, the vertical movement is provided by the movement of worktable driven directly by stepping motor. Secondly, the three-dimensional entity modeling of all the flame cutter parts is finished by using the three-dimensional design software Solid Works and the assembly of the whole is accomplished through the orientation of every parts to validate the rationality of the design. In the end, all the drawings of parts and assembly are protracted in order to facilitate the manufacture. Keywords:Numerical control flame cutter, gantry type, Structural design, Solid Works II

火焰切割工艺

数控火焰切割工艺 气割精度是指被切割完的工作几何尺寸与其图纸尺寸对比的误差关系,切割质量是指工件切割断面的表面粗糙度、切口上边缘的熔化塌边程度、切口下边缘是否有挂渣和割缝宽度的均匀性等。 一、气割前的准备工作 被切割金属的表面,应仔细地清除铁锈、尘垢或油污。被切割件应垫平,以便于散放热量和排除熔渣。决不能放在水泥地上切割,因为水泥地面遇高温后会崩裂。切割前的具体要求如下。 ①检查工作场地是否符合安全要求,割炬、氧气瓶、乙炔瓶(或乙炔发生器及回火防止器)、橡胶管、压力表等是否正常,将气割设备按操作规程连接好。 ②切割前,首先将工件垫平,工件下面留出一定的间隙,以利于氧化铁渣的吹除。切割时,为了防止操作者被飞溅的氧化铁渣烧伤,必要时可加挡板遮挡。 ③将氧气调节到所需的压力。对于射吸式割炬,应检查割炬是否有射吸能力。检查的方法是:首先拔下乙炔进气软管并弯折起来,再打开乙炔阀门和预热氧阀门。这时,将手指放在割炬的乙炔过气管接头上,如果手指感到有抽力并能吸附在乙炔进气管接头上,说明割炬有射吸能力,可以使用;反之,说明割炬不正常,不能使用,应检查修理。 ④检查风线,方法是点燃火焰并将预热火焰调整适当。然后打开切割氧气阀门,观察切割氧流(即风线)的形状,风线应为笔直、清晰的圆柱体并有适当的长度。这样才能使工件切口表面光滑干净,宽窄一致。如果风线不规则,应关闭所有的阀门,用通针或其他工具修整割嘴的内表面,使之光滑。 预热火焰的功率应根据板材厚度不同加以调整,火焰性质应采用中性焰。 二、钢板表面预处理 钢板从钢铁厂经过一系列的中间环节到达切割车间,在这段时间里,钢板表面难免产生一层氧化皮。再者,钢板在轧制过程中也产生一层氧化皮附着在钢板表面。这些氧化皮熔点高,不容易燃烧和熔化,增加了预热时间,降低了切割速度;同时经过加热,氧化皮四处飞溅,极易对割嘴造成堵塞,降低了割嘴的使用寿命。所以,在切割前,很有必要对钢板表面进行除锈预处理。常用的方法是抛丸除锈,之后喷漆防锈。即将细小铁砂用喷丸机喷向钢板表面,靠铁砂对钢板的冲击力除去氧化皮,再喷上阻燃、导电性好的防锈漆。钢板切割之前的除锈喷漆预处理已成为金属结构生产中一个不可缺少的环节。 三、影响钢板火焰切割质量的三个基本要素(气体、切割速度、割嘴高度)1.气体 (1)氧气氧气是可燃气体燃烧时所必须的,以便为达到钢材的点燃温度提供所需的能量;另外,氧气是钢材被预热达到燃点后进行燃烧所必须的。 切割钢材所用氧气必须要有较高的纯度,一般要求在99.5%以上,一些先进国家的工业标准要求氧气纯度在99.7%以上。氧气纯度每降低0.5%,钢板的切割速度就要降低10%左右。如果氧气纯度降低0.8%-1%,不仅切割速度下降15%-20%,同时,割缝也随之变宽,切口下端挂渣多并且清理困难,切割断面质量亦明显劣变,气体消耗量也随着增加。显然,这就降低了生产效率和切割质量,生产成本

大族激光切割工艺p参数

大族激光切割工艺p参数, [table=98%] [tr][td=3,1,604] 切割层1(CUT1)工艺参数 [/td][/tr] [tr][td=63] P100 [/td][td=220] 切割速度 [/td][td=321] 单位: mm/min [/td][/tr] [tr][td=63] P101 [/td][td=220] 切割激光功率 [/td][td=321] 单位: 瓦(W) [/td][/tr] [tr][td=63] P102 [/td][td=220] 最小切割激光功率百分比 [/td][td=321] 单位: 0-100% [/td][/tr] [tr][td=63] P103 [/td][td=220] 切割激光模式(CS/PRC激光器) [/td][td=321] 1=连续, 2=门脉冲(CS/PRC激光器) [/td][/tr] [tr][td=63] P104 [/td][td=220] 切割脉冲频率 [/td][td=321] 1~8:对应激光器上设置的激光脉冲频率(CS/ROFIN激光器) 0-999Hz PRC激光器) [/td][/tr] [tr][td=63] P105

切割脉冲占空比(PRC激光器) [/td][td=321] 1-100% [/td][/tr] [tr][td=63] P106 [/td][td=220] 切割喷嘴高度 [/td][td=321] 单位: [tr][td=63] P107 [/td][td=220] 切割气体压力 [/td][td=321] 单位: [/td][/tr] [tr][td=63] P108 [/td][td=220] 切割气体类型 [/td][td=321] 1=空气, 2=氧气, 3=氮气 [/td][/tr] [tr][td=63] P109 [/td][td=220] 切割头是否提升 [/td][td=321] 单位: 0-50mm [/td][/tr] [tr][td=3,1,604] 穿孔(PIERCE)工艺参数 [/td][/tr] [tr][td=63] P110 [/td][td=220] 穿孔方式 [/td][td=321] 0-3(穿孔方式);0=不穿孔;1=正常穿孔;2=渐进式穿孔;3=强力穿孔 [/td][/tr] [tr][td=63] P111 [/td][td=220] 穿孔激光功率

火焰切割工艺

火焰切割工艺 影响钢板火焰切割质量的三个基本要素(气体、切割速度、割嘴高度) 1.气体 氧气:氧气是可燃气体燃烧时所必须的,以便为达到钢材的点燃温度提供所需的能量;另外,氧气是钢材被预热达到燃点后进行燃烧所必须的。 切割钢材所用氧气必须要有较高的纯度,一般要求在99.5%以上,氧气纯度每降低0.5%,钢板的切割速度就要降低10%左右。如果氧气纯度降低0.8%-1%,不仅切割速度下降15%-20%,同时,割缝也随之变宽,切口下端挂渣多并且清理困难,严重影响切割质量,同时气体消耗量也随着增加。 可燃性气体:火焰切割中,常用的可燃性气体有乙炔、煤气、天然气、丙烷等,国外有些厂家还使用MAPP,即:甲烷+乙烷+丙烷。 一般来说,燃烧速度快、燃烧值高的气体适用于薄板切割;燃烧值低、燃烧速度缓慢的可燃性气体更适用于厚板切割,尤其是厚度在200mm以上的钢板,如采用煤气或天然气进行切割,将会得到理想的切割质量,只是切割速度会稍微降低一些。 相比较而言,乙炔比天然气要贵得多,但由于资源问题,在实际生产中,一般多采用乙炔气体,只是在切割大厚板同时又要求较高的切割质量以及资源充足时,才考虑使用天然气。 火焰的调火 通过调整氧气和燃气的比例一般可以得到三种切割火焰:中性焰(即正常焰),氧化焰,还原焰

正常火焰的特征是在其还原区没有自由氧和活性碳,有三个明显的区域,焰芯有鲜明的轮廓(接近于圆柱形)。焰芯的成分是乙炔和氧气,其末端呈均匀的圆形和光亮的外壳。外壳由赤热的碳质点组成。焰芯的温度达1000℃。还原区处于焰芯之外,与焰芯的明显区别是它的亮度较暗。还原区由乙炔未完全燃烧的产物——氧化碳和氢组成,还原区的温度可达3000℃左右。外焰即完全燃烧区,位于还原区之外,它由二氧化碳和水蒸气、氮气组成,其温度在1200~2500℃之间变化。 氧化焰是在氧气过剩的情况下产生的,其焰芯呈圆锥形,长度明显地缩短,轮廓也不清楚,亮度是暗淡的;同样,还原区和外焰也缩短了,火焰呈紫蓝色,燃烧时伴有响声,响声大小与氧气的压力有关,氧化焰的温度高于正常焰。如果使用氧化焰进行切割,将会使切割质量明显地恶化。 还原焰是在乙炔过剩的情况下产生的,其焰芯没有明显的轮廓,其焰芯的末端有绿色的边缘,按照这绿色的边缘来判断有过剩的乙炔;还原区异常的明亮,几乎和焰芯混为一体;外焰呈黄色。当乙炔过剩太多时,开始冒黑烟,这是因为在火焰中乙炔燃烧缺乏必须的氧气造成的。 预热火焰的能量大小与切割速度、切口质量关系相当密切。随着被切工件板厚的增大和切割速度的加快,火焰的能量也应随之增强,但又不能太强,尤其在割厚板时,金属燃烧产生的反应热增大,加强了对切割点前沿的预热能力,这时,过强的预热火焰将使切口上边缘严重熔化塌边。太弱的预热火焰,又会使钢板得不到足够的能量,逼使减低切割速度,甚至造成切割过程中断。所以说预热火焰的强弱与切割速度的关系是相互制约的。 一般来说,切割200mm以下的钢板使用中性焰可以获得较好的切割质量。在切割大厚度钢板时应使用还原焰预热切割,因为还原焰的火焰比较长,火焰的长度应至少是板厚的1.2倍以上。 2.切割速度 钢板的切割速度是与钢材在氧气中的燃烧速度相对应的。在实际生产中,应根据所用割嘴的性能参数、气体种类及纯度、钢板材质及厚度来调整切割速度。切割速度直接影响到切割过程的稳定性和切割断面质量。如果想人为地调高切割速度来提高生产效率和用减慢切割速度来最佳地改善切割断面质量,那是办不到的,只能使切割断面质量变差。 过快的切割速度会使切割断面出现凹陷和挂渣等质量缺陷,严重的有可能造成切割中断;过慢的切割速度会使切口上边缘熔化塌边、下边缘产生圆角、切割断面下半部分出现水冲状的深沟凹坑等等。通过观察熔渣从切口喷出的特点,可调整到合适的切割速度。在正常的火焰切割过程中,切割氧流相对垂直的割炬来说稍微偏后一个角度,其对应的偏移叫后拖量。 速度过低时,没有后拖量,工件下面割口处的火花束向切割方向偏移。如提高割炬的运行速度,火花束就会向相反的方向偏移,当火花束与切割氧流平行时, 就认为该切割速度正常。速度过高时,火花束 明显后偏。

激光切割机工艺手册

第一章激光切割方法 1.1 激光熔化切割 在激光熔化切割中,工件被局部熔化后借助气流把熔化的材料喷射出去。因为材料的转移只发生在其液态情况下,所以该过程被称作激光熔化切割。 激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参于切割。 ——激光熔化切割可以得到比气化切割更高的切割速度。气化所需的能量通常高于把材料熔化所需的能量。在激光熔化切割中,激光光束只被部分吸收。 ——最大切割速度随着激光功率的增加而增加,随着板材厚度的增加和材料熔化温度的增加而几乎反比例地减小。在激光功率一定的情况下,限制因数就是割缝处的气压和材料的热传导率。 ——激光熔化切割对于铁制材料和钛金属可以得到无氧化切口。 ——产生熔化但不到气化的激光功率密度,对于钢材料来说,在104W/cm2~105 W/cm2之间。 1.2 激光火焰切割 激光火焰切割与激光熔化切割的不同之处在于使用氧气作为切割气体。借助于氧气和加热后的金属之间的相互作用,产生化学反应使材料进一步加热。由于此效应,对于相同厚度的结构钢,采用该方法可得到的切割速率比熔化切割要高。 另一方面,该方法和熔化切割相比可能切口质量更差。实际上它会生成更宽的割缝、明显的粗糙度、增加的热影响区和更差的边缘质量。 ——激光火焰切割在加工精密模型和尖角时是不好的(有烧掉尖角的危险)。可以使用脉冲模式的激光来限制热影响。 ——所用的激光功率决定切割速度。在激光功率一定的情况下,限制因数就是氧气的供应和材料的热传导率。 1.3 激光气化切割 在激光气化切割过程中,材料在割缝处发生气化,此情况下需要非常高的激光功率。 为了防止材料蒸气冷凝到割缝壁上,材料的厚度一定不要大大超过激光光束的直径。该加工因而只适合于应用在必须避免有熔化材料排除的情况下。该加工实际上只用于铁基合金很小的使用领域。 该加工不能用于,象木材和某些陶瓷等,那些没有熔化状态因而不太可能让材料蒸气再凝结的材料。另外,这些材料通常要达到更厚的切口。 ——在激光气化切割中,最优光束聚焦取决于材料厚度和光束质量。 ——激光功率和气化热对最优焦点位置只有一定的影响。

火焰切割操作说明书

切割项目机器人 操作说明书 重庆罗伯百思特智能装备有限公司 2016年5月(第一版) 该系统时,必须遵守该手册中的操作程序。本手册仅针对本系统。

目录 1.安全注意事项 (5) 1.1电气 (5) 1.2机械 (5) 1.3开停机 (5) 1.4 通道 (5) 1.5 安全用具 (5) 1.6 安全检查表 (6) 2 火焰切割工艺 (6) 3 设备功能 (6) 4. 设备使用说明 (6) 5. 维修保养注意事项..................................... (14)

1.安全注意事项 生产过程中始终遵守安全注意事项可以防止意外事故及潜在危险的发生! 1.请指定专业人员培训上岗维护,操作设备. 2.未经培训人员禁止操作该设备。 3.发现问题及时解决,不要使设备带病作业. 4.氧气、天然气,确保工作正常。请确保安全可靠. 5.作业前有必要请您戴好劳保防护用具,确保人身安全与健康. 6.出于说明目的,使用设备时,警示牌和护栏必须放置到位。 危险: *必须单独使用可靠的接地线,否则有被漏电,静电击打的危险! *各工位运转时严禁调整触摸,否则有卷入的危险! *高温部件(如割炬)加热后禁止触摸,否则有烫伤的危险! *保持气路通排气畅通,否则有放炮爆破的危险! 1.1电气 系统内使用了三相五线制电源(3*380+N+PE),有可能对人体造成危险。 a.定期检查接线端子是否接触良好。 b.如发现有损坏的电气元件,在修复或更换前要先隔离该元件。 c.定期对电气控制柜进行卫生清理。 d.只允许有资格的电气技术人员进行检修工作。 1.2机械 a.请不要将工具、螺丝等放置在变位机及机器人上,以免造成设备损坏。 b.确定机器人完全处于停止状态不能自行再启动状态,方可进入机器人工作范围。 c.转动变位机前确定机器人处于安全停止状态,才可以启动变位机。 1.3开停机 开机前先检查系统总的电源、气源是否正常开启,停机后再关闭系统总的电源、气源,其他操作必须遵守开停机程序来保证工作人员的安全。 1.4 通道 在系统周围应有足够的通道和照明,以便操作和维护的安全。 1.5 安全用具 当操作人员进行工作时,须戴手套和护目镜(或按照地方有关部门及工厂规定穿戴防

激光切割工艺详解-共30页

激光切割工艺 发表于 2009-10-26 20:50 | 只看该作者发表的帖子 1# 本文章共4286字,分3页,当前第1页,快速翻页:123 激光切割工艺 激光切割的工艺参数 (1)光束横模 ① 基模又称为高斯模,是切割最理想的模式,主要出现在功率小于1kW的激光器。 ② 低阶模与基模比较接近,主要出现在1~2kW的中功率激光器。 ③ 多模是高阶模的混合,出现在功率大于3kW的激光器。

切割速度与横模及板厚的关系见图1。由图可以看出,300W的单模激光和500W的多模有同等的切割能力。但是,多模的聚焦性差,切割能力低,单模激光的切割能力优于多模。常用材料的单模激光切割工艺参数见表1,多模激光切割工艺参数见表2。 表1 常用材料的单模激光切割工艺参数 材料 厚度/mm 辅助气体 切割速度/cmmin-1 切缝宽度/mm 功率/W 低碳钢 3.0 O2 60 0.2 250 不锈钢 1.0 O2 150 0.1

40.0 O2 50 3.5 钛合金 10.0 O2 280 1.5 有机透明玻璃10.0 N2 80 0.7 氧化铝 1.0 O2 300 0.1 聚酯地毯

N2 260 0.5 棉织品(多层)15.0 N2 90 0.5 纸板 0.5 N2 300 0.4 波纹纸板 8.0 N2 300 0.4 石英玻璃 1.9

60 0.2 聚丙烯 5.5 N2 70 0.5 聚苯乙烯 3.2 N2 420 0.4 硬质聚氯乙烯7.0 N2 120 0.5 纤维增强塑料3.0 N2

0.3 木材(胶合板)18.0 N2 20 0.7 低碳钢 1.0 N2 450 - 500 3.0 N2 150 6.0 N2 50 1.2 O2

火焰切割资料

方坯火焰切割机——技术资料 1、简述 FG—l A型火焰切割机是炼钢厂连续铸钢机配套的主要设备,可将矫直的普通碳铡和低合令钢方坯、矩形坯切割成所需的定尺长度: 2.结构原理及特点 2.1.特点说明 本火焰切割机是由机械、能源介质控制、电气控制、冷却水几大主要系统构成的机械式自动火焰切割机。其结构紧凑合理,运行平稳可靠,维修方便;所配备的连铸割嘴及连铸割枪,具有动量大、切割速度快、割缝窄、切断面质量好等优点。切割机同步机构采用气缸夹紧式;切割采用机械摆动式;返程采用配重返回。 2.2.结构 主要包括:切割小车总成、机架及导轨、小车返程机构、能源介质系统、气动阀台、管路系统。 注:参见FP148-0《方坯火焰切割机》 2.2.1.切割小车总成 主要由水冷式框架、左夹钳臂、右夹钳臂、切割枪摆臂、切割机行走滚轮、水冷式夹(抱)紧气缸等几部分组成。 4只带沿行走滚轮支撑小车沿导轨做往返运动; 切割机通过左夹钳臂、右夹钳臂、气缸来完成夹紧与松丌铸坯的动作,以保证切割小车与铸坯同步并沿着导轨运动; 由夹钳臂推动切割枪摆臂来保证预热位置(可调)的可靠,当切割氧打开后,切割枪摆臂由割枪摆臂滚轮引导,沿斜导板运动,割枪做圆弧摆动,完成切割过程。 注:参见XC031H-0《切割小车-右》 2.2.2.机架及导轨 包括前立柱、后立柱,前横梁、后横梁、导轨梁(一)、导轨梁(二)、导轨梁(三)、斜导板组成。小车行走导轨采用机加导轨,以保证切割小车行走平稳,无抖动现象;框架一侧安装有斜导板,框架有冷却水冷却。 2.2.3.小车返程机构 主要由重锤、牵引线、滑轮组成。 当切割机完成切割后,夹(孢)紧气缸松开,此时小车在连接重锤的牵引线拉力下,拉动切割小车返回到原始位置,等待下一次切割过程。 2.2.4.能源介质系统 能源介质控制系统是将从甲方管道送来的各种不同压力的能源介质凋整到火焰切割机正常使用所需的工作压力。 组成 (1)氧气总管路; (2)燃气总管路; (3)切割氧支路(切割氧减压阀、电磁阀、球阀及联接管件); (4)燃气支路(燃气减压阀、电磁阀、球阀及联接管件); (5)箱体。 要求 (1)设备管接头选型标准:割枪为英制,其余处为公制; (2)介质管线(水管除外)要求采用不锈钢材质,能源介质箱内各联接管件采

厚度大于50mm的厚钢板一般采用火焰切割

厚度大于50mm的厚钢板一般采用火焰切割,也叫氧气切割。 一、火焰切割工艺: (1)根据切割钢板的厚度安装适当孔径的割嘴; (2)将氧气和燃气压力调至规定值; (3)用切割点火器点燃预热焰,接着慢慢打开预热氧气阀,调节火焰白心长度,使火焰成中性焰,预热起割点; (4)在切割起点上只用预热焰加热,割嘴垂直于钢板表面,火焰白心尖端距钢板表面1.5~2.5mm; (5)当起点达到燃烧温度(辉红色)时,打开切割氧气阀,瞬间就可进行切割;(6)在确认已割至钢板下表面后,就沿着切割线以适当的速度移动割嘴继续往前切割; (7)切割终了时,先关闭切割氧气阀,再关闭预热焰的氧气阀。 二、定尺切割 定尺方式有碰球定尺和非在线定尺切割: (1) 碰球定尺 即切割机定尺脉冲信号由定尺碰球发出,但由于钢坯表面的氧化皮的导电率差,尽管碰到了碰球,但不一定接触良好,为防止误切,系统利用拉矫机速度信号进行积分运算来计算坯长,并与定尺信号进行比较,确保定尺信号的准确性。 (2) 非在线定尺切割 利用专门的非在线式铸坯长度测量装置,根据热坯热辐射的原理,通过探头锁定铸坯在导轨内的区域,当铸坯进入区域并占满整个区域后发出定尺信号,然后再给出剪切命令。 三、氧气切割的基本原理: 氧气切割是利用气体火焰的热能将工件切割处预热到燃点后,喷出高速切割氧流,使金属燃烧并放出热量而实现切割的方法。 四、氧气切割过程: ⑴预热气割开始时,利用气体火焰(氧乙炔焰或氧丙烷焰)将工件待切割处预热到该种金属材料的燃烧温度——燃点(对于碳钢约为1100~1150℃)。 ⑵燃烧喷出高速切割氧流,使已达燃点的金属在氧流中激烈燃烧,生成氧化物。 ⑶吹渣金属燃烧生成的氧化物被氧流吹掉,形成切口,使金属分离,完成切割过程。 五、氧气切割的三条件: 金属材料要进行氧气切割应满足以下三个条件: 1)金属燃烧生成氧化物的熔点应低于金属熔点,且流动性要好。 2)金属的燃点应比熔点低。 3)金属在氧流中燃烧时能放出大量的热量,且金属本身的导热性要低。

金属火焰切割工艺

金属火焰切割工艺 火焰切割的原理是用燃气与氧混合燃烧产生的热量( 即预热火焰的热量) 预热金属表面,使预热处金属达到燃烧温度,并使其呈活化状态,然后送进高纯度、高速度的切割氧流,使金属在氧中剧烈燃烧,牛成氧化熔渣同时放出大量热量,借助这些燃烧热和熔渣不断加热切口处金属,并使热量迅速传送、直到工件底部,向时借助高速氧流的动员把燃烧个成的氧化熔消吹除,被切工件与割炬割相对移动形成割缝,达到切割金属的目的。 1金属火焰切割所需要的条件 不是所有金属都可以进行火焰切割,金属火焰切割要满足以下一些条件: 1)金属的熔点应该高于它的燃点。低碳钢的燃点为1050℃,对于Wc=0.25%的钢为1250℃,熔点接近1500℃,可以满足上述条件。 2)金属氧化物的熔点应该低于金属本身的熔点。高铬钢、镍铬钢等金属其本身熔点低于氧化物熔点,不能用一般的火焰切割方法切割。 3)在氧流中燃烧时,所放出的热量应该足以维持切割过程继续进行而不中断。

4)金属的导热性不应过高,否则,预热火焰的热量和在切割过程中产生的热量将被金属由切割处剧烈地散失,使切割过程中断。 5)金属的氧化物府富有流动性,否则切割时形成的氧化物不能很好地被氧射流吹掉,妨碍切割过程。 从上面的几个条件可以看到,适于火焰切割的材料有普通低碳钢、低合金钢、高合金钢、不锈钢、灰铸铁等。 2.用于火焰切割的气体 火焰用燃气最早使用的是乙炔。随着工业的发展,人们在探索各种各样的乙炔代用气体。目前作为乙炔的代用气体中丙烷的用量最大,其使用效果、成本和气源情况都比较理想。 3.影响火焰切割及切割过程的因素 火焰割受诸多因素的影响,但影响切割质量及切割过程的主要因素有以下几个方面: (])氧气纯度的影响在气割过程中氧气纯度对切割速度、氧气耗量及切割质量的影响反比较大的。氧气纯度降低,切割速度变慢,金属在氧气中燃烧效果变差,必将影响切割质量。 (2)金屑中杂质和缺陷的影响金属中含有杂质对火焰切割有很

气体火焰切割技

气体火焰切割技术 1.坡口的气割 焊接之前常需要对钢板的接头处开坡口,坡口切割方法有手工切割和机械切割两种。在设备条件好的情况下,可采用机械切割,如采用坐标式切割机、平面四边形切割机或专为切割坡口用的切割设备等。采用机械方法切割的坡口,只要把熔渣清理干净,不需要进行任何的机械加工就可进行焊接。在成批生产中,采用机械方法切割坡口的经济效益更为显著。 由于手工切割坡口设备简单(采用普通气割设备),方便灵活,对于组合的部件和结构较复杂的零件以及单件生产,手工切割比较方便、有效。但手工切割坡口的质量在很大程度上受切割技术熟练程度的影响。对于重要构件或受压容器的焊接坡口,在没有把握的情况下最好不用手工切割。 焊接结构中常见的焊接坡口有V形、Y形、X形(带钝边或不带钝边)、U 形,如图1所示。其中V形和Y形坡口当单侧坡口角度大于30°时,通常不易气割,需把坡口面置于背面进行切割。 在正确掌握切割参数和操作技术的条件下,气割坡口的质量良好,可直接用于工件装配和焊接。 (1)V形坡口的气割 用机械方法切割单面V形坡口时,可采用两把割炬同时进行切割。一把割炬垂直于被切割金属表面,另一把割炬与切割表面成一定角度。调整好割炬倾角后,一般用半自动气割机或手扶式半自动气割机进行切割。垂直的割炬在前移动,倾斜的割炬在后面移动。须按实际切割厚度选定割嘴号码和气割参数。

也可用手工方法切割单面V形坡口。单割炬切割V形坡口的示意见图2。气割前先按坡口尺寸划好线,然后将割嘴按坡口角度找好,以往后拖或向前推的操作方法进行切割,切割速度稍慢,预热火焰功率应适当增加,切割氧的压力也应稍大些。 为了得到宽窄一致和角度相等的切割坡口,可将割嘴靠在扣放的角钢上进行切割,如图3所示。为了更好地控制切割坡口的角度,还可将割嘴安装在角度可调的滚轮架上(一般是自制的),这样可以进一步保证切割质量,而且操作灵活〔见图3(c)〕。利用角钢切割直边及斜边(坡口)的操作示意见图4。 手工切割与机械切割的不同之处在于:手工切割时,不能同时用两把割炬进行切割,应先割好垂直缝,再按要求的宽度划好线,将割嘴偏斜一个角度,沿着划线向前或向后移动割炬,就能切割出单面坡口。 ①单割炬二次切割,即先切割直边,再切割坡口斜边。单割炬切割Y型坡口的示意如图5所示。

相关文档