文档库 最新最全的文档下载
当前位置:文档库 › 段间移相90_两单元永磁直线同步电机的建模与控制器设计

段间移相90_两单元永磁直线同步电机的建模与控制器设计

段间移相90_两单元永磁直线同步电机的建模与控制器设计
段间移相90_两单元永磁直线同步电机的建模与控制器设计

永磁同步电动机的分类和特点

永磁同步电动机的分类和特点 技术2008-08-09 15:13:38 阅读178 评论0 字号:大中小一,永磁同步电动机的特点 永磁同步电动机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。 我国是盛产永磁材料的国家,特别是稀土永磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4倍左右,号称“稀土王国”。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。因此,对我国来说,永磁同步电动机有很好的应用前景。 二,永磁同步电动机的分类

永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。因此,当转子旋转时,在定子上产生的反电动势波形也有两种:一种为正弦波;另一种为梯形波。这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)调速系统;而由梯形波(方波)永磁同步电动机组成的调速系统,在原理和控制方法上与直流电动机系统类似,故称这种系统为无刷直流电动机(BLDCM)调速系统。 永磁同步电动机转子磁路结构不同,则电动机的运行特性、控制系统等也不同。根据永磁体在转子上的位置的不同,永磁同步电动机主要可分为:表面式和内置式。在表面式永磁同步电动机中,永磁体通常呈瓦片形,并位于转子铁心的外表面上,这种电机的重要特点是直、交轴的主电感相等;而内置式永磁同步电机的永磁体位于转子内部,永磁体外表面与定子铁心内圆之间有铁磁物质制成的极靴,可以保护永磁体。这种永磁电机的重要特点是直、交轴的主电感不相等。因此,这两种电机的性能有所不同。 三无刷直流电动机(BLDCM) 1,BLDCM研究现状

爪极永磁同步电机的设计特点

爪极永磁同步电机的设计特点 李开成张健梅(华中理工大学武汉430074) 【摘要】介绍爪极永磁同步电机转子的结构及设计特点,并说明了一些主要结构尺寸间的关系。 【叙词】永磁电机同步电机设计 1引言 爪极永磁同步电机的永久磁铁形状简单,极间漏磁大,磁铁过载能力强,机械强度高,普遍用于变流机和变频机,发电机的制造容量自数百瓦到数千瓦。当频率在1000Hz以内时,制造容量可达数十千伏安。这种电机由于转子采用爪极结构,而爪极的形状又可多种多样,因此,较普通永磁同步电机计算复杂。这种电机的分析和设计,在国内外文献中介绍较少。本文介绍爪极永磁同步电机的设计特点及爪极转子的设计。 2爪极式转子的结构及其特点

爪极式转子通常由两个带爪的法兰盘和一个圆环形永久磁铁组成,如图1所示。图la和c为左右两个带爪子的法兰盘,二者爪数相等,且等于极数的1/2。图lb为圆环形磁铁沿转子轴向充磁。图ld为装配图,左右为两个法兰盘对合,二者爪子互相错开,沿圆周均匀分布。圆环形永久磁铁夹在两个带爪法兰盘中间,使一个法兰盘上的爪子皆为N极性,另一个法兰盘上的爪子皆为S极性,形成如图le所示的多极转子结构。显然,法兰盘上的爪子起了极靴的作用。 爪极永磁同步电机中,电机的全部磁通(P对极)轴向穿过圆环形磁铁,进入爪极,经气隙进入定子,爪极中的磁路如图2所示。 爪极通常由10号钢制成,或由钢板冲成,也可由粉末冶金直接压制成形。由于磁通轴向通过爪子,爪子的每一截面通过的磁通不相等,爪尖最少,爪根最多。爪子的截面积沿电机轴向是变化的,爪尖部分的面积最小,爪根部分最大。爪极的形状多种多样,有等宽爪极、梯形爪极,还有正弦爪极。图3为梯形爪极形状。

异步起动永磁同步电机设计

Ansoft EM专题讨论(三)——异步启动永磁同步电机设计最近有感于论坛Ansoft版区学习的氛围越来越好了,这与各位版主的努力都是分不开的。看到前面两个专题中,我们的超版和技术精英们都做了很多工作,本着向大家学习的原则,我也来凑个热闹 本人在读研期间曾经涉猎过这种电机的设计与仿真,下面就把我很久以前做的一个练习分享给大家。做的不一定对,希望大家多多批评指正!这也是和大家学习的过程,望各位不吝赐教 其实,这种电机在实际设计过程中需要注意的问题还是很多的。很遗憾在校期间没能彻底解决这个领域的一些问题。这里也希望大家广泛针对该类电机的设计进行讨论和交流,向大家学习了! 下面先给出电机结构示意图 电机为典型的4极36槽结构,绕组为单层交叉,Y接形式,内置径向W型永磁体,采用冲片类型为DW315-50。具体的其他的电机参数将在RMxprt设计中给出区别于前面两位版主的纯V11仿真,该算例采用了Ansoft RMxprt V5.0版本与Maxwell V11.1版进行了简易的联合2D仿真。对新人而言,V5.0的界面更加人性化和易于上手,推荐新同学使用。 运用Ansoft RMxprt V5.0进行基本的电磁设计,输入相应电机参数反复调试运行。下面给出本例的参数设置

基本参数 定子内外径和槽形尺寸

转子内外径和磁钢设计

转子槽形和端环设计 以上需要补充说明的是Ansoft RMxprt V5.0的材料设置问题和绕组编辑问题 就材料设置而言,大家可以利用软件自带的.h-b文件自行添加所需要的硅钢片材料,主要是需要查找一些手册来添加磁化曲线和损耗曲线,用记事本的格式进行编辑添加,放在指定的文件夹中,即可在设计中引用,图例DW315-50的.h-b文件,要对应操作窗口的各项参数进行添加,方可正确使用

永磁同步电机控制系统仿真模型的建立与实现资料

永磁同步电机控制系统仿真模型的建立与 实现

电机的控制 本文设计的电机效率特性如图 转矩(Nm) 转速(rpm) 异步电机效率特性 PMSM 电机效率特性 本文设计的电动汽车电机采用SVPWM 控制技术是一种先进的控制技术,它是以“磁链跟踪控制”为目标,能明显减少逆变器输出电流的谐波成份及电机的谐波损耗,能有效降低脉动转矩,适用于各种交流电动机调速,有替代传统SPWM 的趋势[2]。 基于上述原因,本文结合0=d i 和SVPWM 控制技术设计PMSM 双闭环PI 调速控制。其中,内环为电流环[3],外环为速度环,根据经典的PID 控制设计理论,将内环按典型Ⅰ系统,外环按典型Ⅱ系统设计PI 控制器参数[4]。 1. PMSM 控制系统总模型 首先给出PMSM 的交流伺服系统矢量控制框图。忽略粘性阻尼系数的影响, PMSM 的状态方程可表示为 ??????????-+????????????????????----=??????????J T L u L u i i P J P L R P P L R i i L q d m q d f n f n m n m n m q d ///002/30//ωψψωωω& && (1) 将0=d i 带入上式,有 ???? ??????-+??????????? ??? ??--=????? ?????J T L u L u i J P P L R P i i L q d m q f n f n m n m q d ///02/3/0ωψψωω& && (2) 转 矩 (N m )转速 (n /(m i n )) 效率 转速 (rpm) 转矩 (N m )

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

永磁同步电动机的分类和特点

永磁同步电动机的分类和特点 技术 2008-08-09 15:13:38 阅读178 评论0 字号:大中小 一,永磁同步电动机的特点 永磁同步电动机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。 我国是盛产永磁材料的国家,特别是稀土永磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4倍左右,号称“稀土王国”。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。因此,对我国来说,永磁同步电动机有很好的应用前景。 二,永磁同步电动机的分类 永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。因此,当转子旋转时,在定子上产生的反电动势波形也有两种:一种为正弦波;另一种为梯形波。这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)调速系统;而由梯形波(方波)永磁同步电动机组成的调速系统,在原理和控制方法上与直流电动机系统类似,故称这种系统为无刷直流电动机(BLDCM)调速系统。 永磁同步电动机转子磁路结构不同,则电动机的运行特性、控制系统等也不同。根据永磁体在转子上的位置的不同,永磁同步电动机主要可分为:表面式和内置式。在表面式永磁同步电动机中,永磁体通常呈瓦片形,并位于转子铁心的外表面上,这种电机的重要特点是直、交轴的主电感相等;而内置式永磁同步电机的永磁体位于转子内部,永磁体外表面与定子铁心内圆之间有铁磁物质制成的极靴,可以保护永磁体。这种永磁电机的重要特点是直、交轴的主电感不相等。因此,这两种电机的性能有所不同。 三无刷直流电动机(BLDCM) 1,BLDCM研究现状 永磁无刷直流电动机与传统有刷直流电动机相比, 是用电子换向取代原直流电动机的机械换向, 并 将原有刷直流电动机的定转子颠倒(转子采用永磁体)从而省去了机械换向器和电刷,其定子电流为方波, 而且控制较简单, 但在低速运行时性能较差, 主要是受转矩脉动的影响。 引起转矩脉动的因素很多, 主要有以下原因: (1)电枢反应引起的转矩脉动

永磁同步电机矢量控制简要原理

关于1.5KW永磁同步电机控制器的初步方案 基于永磁同步电机自身的结构特点,要实现对转速及位置的伺服控制,采用矢量控制算法结合SVPWM技术实现对电机的精确控制,通过改变电机定子电压频率即可实现调速,为防止失步,采用自控方式,利用转子位置检测信号控制逆变器输出电流频率,同时转子位置检测信号作为同步电机的启动以及实现位置伺服功能的组成部分。 矢量控制的基本思想是在三相永磁同步电动机上设法模拟直流 电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分量分解成产生磁通的励磁电流分量id和产生转矩的转矩电流iq分量,并使两分量互相垂直,彼此独立。当给定Id=0,这时根据电机的转矩公式可以得到转矩与主磁通和iq乘积成正比。由于给定Id=0,那么主磁通就基本恒定,这样只要调节电流转矩分量iq就可以像控制直流电动机一样控制永磁同步电机。 根据这一思想,初步设想系统的主要组成部分为:主控制板部分,电源及驱动板部分,输入输出部分。 其中主控制板部分即DSP板,根据控制指令和位置速度传感器以及采集的电压电流信号进行运算,并输出用于控制逆变器部分的控制信号。 电源和驱动板部分主要负责给各个部分供电,并提供给逆变器部分相应的驱动信号,以及将控制信号与主回路的高压部分隔离开。 输入输出部分用来输入控制量,显示实时信息等。

原理框图如下: 基本控制过程:速度给定信号与检测到的转子信号相比较,经过速度控制器的调节,产生定子电流转矩分量Isq_ref,用这个电流量作为电流控制器的给定信号。励磁分量Isd_ref由外部给定,当励磁分量为零时,从电机端口看,永磁同步电机相当于一台他励直流电机,磁通基本恒定,简化了控制问题。另一端通过电流采样得到三相定子电流,经过Clarke变换将其变为α-β两相静止坐标系下的电流,再通过park 变换将其变为d-q两相旋转坐标系下电流Isq,Isd,分别与两个调节器的参考值比较,经过控制器调节后变为电压信号Vsd_ref和Vsq_ref,再经过park逆变换,得到Vsa_ref和Vsb_ref作为SVPWM的控制信

交流永磁同步直线电机介绍及其控制系统设计

交流永磁同步直线电机介绍及其控制系统设计 制造业中需要的线形驱动力,传统的方法是用旋转电机加滚珠丝杠的方式提供。实践证明,在许多高精密、高速度场合,这种驱动已经显露出不足。在这种情况下直线电机应运而生。直线电机直接产生直线运动,没有中间转换环节,动力是在气隙磁场中直接产生的,可获得比传统驱动机构高几倍的定位精度和快速响应速度。 本文是在我系研制的同步直线电机基础上进行基于矢量变换控制的驱动系统设计应用。 2. 交流永磁工作原理 直线电机的工作原理上相当于沿径向展开后的旋转电机。交流永磁同步直线电机通入三相交流电流后,会在气隙中产生磁场,若不考虑端部效应,磁场在直线方向呈正弦分布。行波磁场与次级相互作用产生电磁推力,使初级和次级产生相对运动。图1所示为开发设计的交流永磁同步直线电机。 3. 永磁同步直线电机矢量控制原理 由于矢量控制动态响应快,相比较标量控制,在很快的时间内就能达到稳态运行。经过30多年工业实践的考验、改进与提高,目前已经达到成熟阶段[3],成为交流伺服电机控制的首选方法。因此,直线电机采用了交流矢量控制驱动的方法。

直线电机初级的三相电压(U、V、W相)构成了三相初级坐标系(a,b,c 轴系),其中的三相绕组相角相差120?,即在水平方向上互差1/3极距。参照旋转电机矢量变换理论,设定两相初级坐标系(α-β轴系),由三相初级坐标系到直角坐标系转换称为Clark变换,见式(1)。 从静止坐标系到旋转坐标系的变换称为Park变换,见式(2)。反之称Park 逆变换。 θ是d轴与轴的夹角。根据旋转电机的Park变换理论和两电机结构比较。由于电机运动部分的不同,故直线电机动子相当于旋转电机定子,直线电机定子相当于旋转电机动子。所以在旋转电机中旋转坐标系固定在动子上,旋转坐标系随着电机转子一起同步旋转。在直线电机中,由运动相对性原理,动子的直线运动,

永磁式同步电机的特点及其分类

永磁式同步电机的特点及其分类 永磁式同步电动机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。 近年来,随着永磁材料性能的不断提高和完善,特别是钕铁硼永磁的热稳定性和耐腐蚀性的改善和价格的逐步降低以及电力电子器件的进一步发展,加上永磁电机研究开发经验的逐步成熟,经大力推广和应用已有研究成果,使永磁电机在国防、工农业生产和日常生活等方面获得越来越广泛的应用。正向大功率化(高转速、高转矩) 、高功能化和微型化方面发展。目前,稀土永磁电机的单台容量已超过1000KW,最高转速已超过300000r/min ,最低转速低于0.01r/min ,最小电机的外径只有 0.8mm,长1.2mm 我国是盛产永磁材料的国家,特别是稀土永磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4 倍左右,号称“稀土王国”。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。因此,对我国来说,永磁同步电动机有很好的应用前景。充分发挥我国稀土资源丰富的优势,大力研究和推广应用以稀土永磁电机为代表的各种永磁电机,对实现我国社会主义现代化具有重要的理论意义和实用价值。 永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。因此,当转子旋转时,在定子上产生的反电动势波形也有两种:一种为正弦波;另一种为梯形波。这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)

永磁同步电机基础知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ?? ?-????? ??=--- ? ???? ???? ?+-+? ? (2)d/q 轴磁链方程: d d d f q q q L i L i ψψψ=+???=?? 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。

永磁同步电机的建模与仿真

研究生设计性实验论文 题目永磁同步电机的建模与仿真 专业机械工程课程名称、代码新能源汽车关键技术年级 2 013级姓名 学号 2131170103 时间 2014 年 1 月 任课教师成绩

永磁同步电机的数学建模与仿真 1. 永磁同步电机建模的流程图 2. 坐标变换的基本原理 电机控制中的坐标系有两种,一种是静止坐标系,一种是旋转坐标系。 (1)三相定子坐标系(A, B, C坐标系) 如图2-3所示,三相交流电机绕组轴线分别为A,B,C,彼此之间互差120度空间电角度,构成了一个A-B-C三相坐标系。空间任意一矢量V在三个坐标上的投影代表了该矢量在三个绕组上的分量。 (2)两相定子坐标系(α一β坐标系) 两相对称绕组通以两相对称电流也能产生旋转磁场。对于空间的任意一矢量,数学描述时习惯采用两相直角坐标系来描述,所以定义一个两相静止坐标系,即α一β坐标系,它的α轴和三相定子坐标系的A轴重合,β轴逆时针超前α轴90度空间电角度。由于轴固定在定子A相绕组轴线上,所以α一β坐标系也是静止坐标系。 (3)转子坐标系(d-q坐标系) 转子坐标系d轴位于转子磁链轴线上,q轴逆时针超前d轴90度空间电角度,该坐标系和转子一起在空间上以转子角速度旋转,故为旋转坐标系。对于同步电动机,d轴是转子磁极的轴线。永磁同步电机的空间矢量图如图2-3所示。 图中A、B、C为定子三相静止坐标系,选定α轴方向与电机定子A相绕组轴线一致,α-β为定子两相静止坐标系,转子坐标系d-q与转子同步旋转;θ为转子磁极d轴相对定子A相绕组或a轴的转子空间位置角;δ为定、转子磁链矢量

s ψ 、f ψ间夹角,即电机功角[8 ,9]。 图1静止两相坐标系到旋转两相坐标系变换 图2 坐标变换矢量图 从三相定子坐标系(A,B,C坐标系)变换到静止坐标系(α,β坐标系)的关系式为: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - = ? ? ? ? ? ? c b a ? ? ? ? ? β α 2 3 2 1 2 3 2 1 1 3 2 (2-1) 从两相静止坐标系(α,β坐标系)变换到两相旋转坐标系(d,q坐标系)的关系式为: ? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? β α ? ? θ θ θ θ ? ? cos sin sin cos q d(2-2)从两相旋转坐标系(d,q坐标系)变换到两相静止坐标系(α,β坐标系)的关系式为:

永磁同步直线电机矢量控制系统中初始寻相和电角度的测定

永磁同步直线电机矢量控制系统中初始寻相和电角度的测定 摘要:介绍了永磁同步直线电机的结构。根据矢量控制的特点和要求,提出了一种基于增量式位置传感器的初始寻相和电角度测量方法,并经试验加以验证。 关键词:初始寻相;电角度测定;矢量控制;永磁电机;同步电机;直线电机;实验 O 引言 永磁同步交流直线电机由于其行程长、推力大、响应快等优点,在机械装备中越来越受到重视。 永磁交流直线电机系统存在多个电磁变量和机械变量,在这些变量之间存在较强的耦合作用。为了提高控制效果,获得良好的动态调速特性,矢量控制技术成为永磁直线电机系统中重要的控制手段。 对于永磁同步直线电机矢量控制系统,初始寻相和电角度的测量是影响系统性能的关键之一”如果系统上电时无法精确测定电机的初始相位或者在运行时不能精确测定电机的电角度,系统将无法正确完成直线矢量控制的一系列算法,导致直线电机运动混乱,甚至无法起动。本文针对这个问题,提出了一种基于增量式位置传感器的初始寻相和电角度测量方法。 1永磁同步直线电机及其矢量控制系统 根据永磁体的安装位置,永磁同步直线电机分为表面磁极型和内部磁极型。用于伺服目的的一般采用表面磁极的结构;其凸极效应很弱,气隙均匀且有效气隙大。图1为其结构简图。 在定子表面交错排列着不同极性的铷铁硼磁体。 对于永磁同步旋转电机,矢量控制的中的d轴方向沿着转子上永磁体的磁极方向,q轴超前d轴90。 电角度。永磁同步直线电机可以看成是将永磁同步旋转电机沿轴向剖开而形成的。据此可以确定永磁同步直线电机的d轴和q轴的位置,如图1所示,电角度θ就是d轴和q轴间的夹角。

永磁同步直线电机的矢量控制系统的完薹结构则如图2所示。矢量控制一般采用id=O的控制策略,即控制初级电枢电流矢量在d—g坐标系中的d轴分量为零。此外由于电机的d轴和q轴电压分量仍然存在耦合,需要采用前馈补偿的方法进行接耦。由图2可以看出,电角度θ主要用在2s/二R和2R/2s 变换中。由此可见,直线电机在起动对的初始相位以及在运行时的电角度,是实现矢量控制的重要参数。两参数能否精确测定,关系到矢量控制系统能否实现。 2 电机初始寻相的实现 直线电机在起动时,动子的位置具有不确定性。直线伺服系统中一般采用增量式光栅尺作为位置传感器,无法确定动子的绝对位置及电机的初始相位角。对于直线伺服系统一般还需要一个确定的机械零点;对于增量式系统,每次上电后都需要进行回零点操作,之后才能建立起坐标系统。 为了让直线电机有一个确定的机械零点,可以在直线电机端部安装一个接近开关,并保证在接近开关能检测到的范围内光栅尺有一个z轴脉冲。将光栅尺的z轴脉冲和接近开关的输出信号进行逻辑与,用

高效永磁同步电动机设计技术研究

高效永磁同步电动机设计技术研究

目录 1、基本情况及背景介绍 (2) 2、高效永磁同步电动机关键技术的研究 (3) 2.1优化转子磁路结构,提高电机的可靠性 (3) 2.2永磁电机防退磁技术研究 (5) 2.3漏磁系数准确计算的研究 (7) 2.4稀土永磁材料的高温退磁特性及应用技术的研究 (10) 2.5稀土永磁材料的剩磁测试技术的研究 (14) 2.6电机的起动性能 (16) 2.7失步转矩倍数 (17) 2.8其它性能指标 (18)

1、基本情况及背景介绍 稀土永磁是一种高性能的功能材料,它的高剩磁密度、高矫顽力、高磁能积等优异磁性能特别适合于制造电机。用它制成的永磁同步电机,不需要用以产生磁场的无功励磁电流,可显著提高功率因数,减少定子电流和定子电阻损耗。在稳定运行时没有转子电阻损耗,使电机温升有较大裕度,从而可将风扇减小甚至不安装风扇,以减少风摩损耗提高电机效率。与普通的电励磁同步电动机相比,不需要用以产生磁场的励磁绕组和直流励磁电源,取消了容易出问题的集电环和电刷装置,成为无刷电机,运行可靠,又效率提高。因此,国内外都投入大量人力物力从事高效钕铁硼永磁电机的研制开发。 相对于异步电机,永磁同步电动机(PMSM)具有体积小、功率密度高等优点,效率比同规格的感应异步电机高2~8%。我国稀土永磁资源储量占世界储量的80%,发展永磁电机具有得天独厚的优势。 早在1980年,我国有关高校及科研院所就开始从事高效永磁电动机的研制开发,先后研制开发出多种类型电动机的样机,技术水平参差不齐,还存在着转子磁路单一、永磁材料可能退磁、测试和制造工艺复杂等问题,性能价格比不够理想,价格偏高。 为了充分发挥钕铁硼永磁材料的优异磁性能,针对钕铁硼永磁电动机在磁、电、机、热等方面的特点,进行技术集成和创新,特别对转子磁路结构、钕铁硼永磁材料的热稳定性做了深入研究,并应用于产品开发过程,提高其效率、性价比,可靠性(主要指不退磁),扩大应用领域,为把稀土资源优势转化为经济优势作贡献。

永磁同步电机的仿真模型

永磁同步电机的仿真模型 1、永磁同步电机介绍 永磁同步电动机(permanent Magnets synchronous Motor, PMSM),转子采用永磁材料,定子为短距分布式绕组,采用三相正弦波交流电驱动,且定子感应电动势波形呈正弦波"定子绕组通过控制功率管(如IGBT)的不同开关组合,产生旋转磁场跟踪永磁转子的位置,自动地维持与转子的磁场有900的空间夹角,以产生最大的电机转矩"旋转磁场的转速则严格地由永磁转子的转速所决定,PMSM具有直流电动机的特性,有稳定的起动转矩,可以自行起动,并可类似直流电动机对电机进行闭环控制,多用于伺服系统和高性能的调速系统。 永磁同步电动机按转子形状可以分为两类:凸极式永磁同步电机和隐极式永磁同步电机。它们的区别在于转子磁极所在的位置,凸极式永磁同步电机转子磁极是突起在轴上的,其直轴和交轴电感参数不相等"而隐极式永磁同步电机的转子磁极是内置在轴内的,直轴和交轴电感参数相等"凸极式转子具有明显的磁极,定子和转子之间的气隙是不均匀的,因此其磁路与转子的位置有关。 2、永磁同步电机的控制方法 目前对永磁同步电机的控制技术主要有磁场定向矢量控制技术(field orientation control,FOC)与直接转矩控制技术(direct torque control,DTC)。在这里我们使用磁场定向矢量控制技术来建立永磁同步电机的仿真模型。 磁场定向矢量控制技术的核心是在转子旋转坐标系中针对激磁电流id和转矩电流iq分别进行控制,并且采用的是经典的PI线性调节器,系统呈现出良好的线性特性,可以按照经典的线性控制理论进行控制系统的设计,逆变器控制采用了较成熟的SPWM、SVPWM等技术。磁场定向矢量控制技术较成熟,动态、稳态性能较佳,所以得到了广泛的实际应用。该方法摒弃了矢量控制中转子磁场定向的思想,采用定子磁场定向,分别对定子磁链和转矩直接进行控制。直接转矩控制的实现方法是:计算得到磁链和转矩的实际值与参考值之间的偏差,通过滞环比较以及当前定子磁链的空间位置确定控制信号,在离线计算的开关表中选取合适的空间电压矢量,再通过离散的bang-bang 控制方式调制产生PWM 信号,以控制逆变器产生合适的电压和电流驱动电机转动。直接转矩控制摒弃了复杂的空间矢量坐标运算,电机的数学模型得到了简化,控制结构也简单,对电机参数变化不敏感,控制系统的动态性能得到了极大提高。然而有利也有弊,直接转矩控制逆变器的开关频率不固定;转矩、电流脉动大;采样频率也非常高。 下图为磁场定向矢量控制技术的原理图。 FOC控制技术的原理:原理图中涉及到双反馈,第一层反馈为转速反馈:设定电机转速初始值作为给定值,然后与反馈的实际值(位置传感器采集到的位移微分得到)进行比较,得到的差值输入PI控制器进行控制,得到交轴电流iq。同时三相绕组输出的电流iA,iB,iC经过clarke变换和park变化得到iq和id的实际值,分别与给定值进行比较,将比较后的值再进行park转换,得到的结果经过SVPWM技术调制之后输入到逆变器,继而可以驱动三相电机。

电动汽车用永磁同步电机控制系统设计

硕士学位论文 二0一五 年 六 月 作者姓名 指导教师 学科专业 控制工程 电动汽车用永磁同步电机控制系统设计 Design of permanent magnet synchronous motor control system for electric vehicle

摘要 本文在开始先介绍了研究电动汽车的背景及其意义,并介绍了电动汽车在国内外的发展现状,然后从电动汽车的燃油经济性,驱动性,安全性及舒适度,三个方面分析了电动汽车比其他燃料汽车存在的优越性。电动机是电动汽车的核心部件,本文中从其驱动方式把电动机分为四大类,直流有刷电动机,永磁同步电动机,永磁无刷直流电动机和开关磁阻电动机。本章从工作原理与性能方面分析了,这四种电动机各存在的优点和不足。从中得出永磁同步电动机是电动汽车比较理想的选择。本文刚开始介绍了永磁同步电动机PMSM的三种不同的控制方式,恒压频比控制,矢量控制,直接转矩控制,并从三者之间比较得出,PMSM采用直接转矩控制DTC的方式有着比其他两者更好的稳定性。 随后从永磁同步电动机PMSM的结构及其特点,分析了其优越性,并建立数学模型,根据空间矢量坐标关系推导出PMSM的在各坐标系下DTC的原理。本章分析了定子磁链与电磁转矩的估算和滞环控制,通过其原理研究了开关表控制的方式,并对PMSM的直接转矩控制DTC的Matlab/Simulink仿真,最终得出了DTC 较其它控制方式的稳定性。 其次分析了永磁同步电机PMSM的直接转矩控制DTC存在的诸多缺点,并提出基于SVM技术的SVPWM的控制方式,即空间矢量调制DTC控制策略,通过Matlab/Simulink仿真,得出SVPWM比PMSM DTC有着更好的稳定性。 TI公司推出的TMS320F2812 DSP芯片的控制系统设计,从硬件电路的设计和软件的设计,两个方面研究了该芯片。DSP硬件方面包含了智能模块的自保护特性,并设计了检测电路,保护电路,驱动电路和CAN通信等模块,软件系统方面分析了,其初始化流程图,接收流程图等。 关键词:永磁同步电机;直接转矩控制;DSP;SVPWM

机械毕业设计954交流永磁直线电机及其伺服控制系统的设计

摘 要 直线电机在各行各业中发挥着越来越重要的作用,特别是在机床进给驱动系统中。本 文以平板式交流永磁同步直线电机为研究对象,从电机机体到伺服驱动系统的软、硬件设 计作了深入研究。 本文首先介绍了交流永磁同步直线电机机体设计过程中电枢绕组、铝芯和定子磁钢的 设计和改进方法,较大程度上减小了推力波动,并且结合大推力直线电机的特点设计了方 便有效的装配过程。 建立交流永磁同步直线电机的数学模型,在此基础上分析了当今最通用的伺服控制策 略,选择了矢量控制方法。确定0 d i 的矢量控制实现形式。通过SVPWM 方法进行脉宽调 制,合成三相正弦波。选用TI 公司2000系列最新DSP TMS320F2812,深入研究了以上算法 在DSP 中的实现形式。采用了C 语言和汇编语言混合编程的实现方法。在功率放大装置中, 以智能功率模块IPM 为核心,设计了功率伺服驱动系统。还包括电流采样、光电隔离、过 压欠压保护和电源模块等。 由于知识和能力的限制,本次课题只对直线电机做一些理论研究。 关键词:永磁同步直线电机 DSP SVPWM 矢量控制

Abstract Line motors are playing a more and more important role in all kinds of trade , especially in machine tool feed system. We carry out our study in motor , software and hardware servo system based on flat AC permanent magnet synchronous linear motor(PMSLM). First introduce the design method of armature ,core of al and magnet which can minish the thrust ripples, then introduce the means of assembly base on high thrust permanent magnet synchronous motors. To ensure the accuracy to a high requirements and get a wide speed range, we choose the dsp of Texas Instruments named TMS320F2812 which is the core of the servo system .In the paper we set up mathematical model of PMSLM, then analyse the current control strategies and choose the vector control method which is realized by the method of 0 d i .The three phase sine wave is compounded by space voltage pulse width modulation(SVPWM).The arithmetic realized by C language and assembly language in DSP. Intelligent Power Model (IPM) is the core of the power amplification circuit system which also contains current sampling circuit, photoelectric-isolation circuits, over-voltage protection circuits, under-voltage protection circuits and power supply. As a result of the knowledge and ability limit, this topic only does a fundamental research to the linear motor. Key words: permanent magnet synchronous linear motor(PMSLM), DSP, SVPWM, vector control

永磁同步电机控制器

基于TMS320LF2406的交流永磁同步电机控制器设计 介绍了一种交流永磁同步电机全数字伺服控制器的软硬件组成及设计方案,系统采用TI DS P TMS320LF2406组成核心控制电路,以智能功率模块构成主电路,具有通用紧凑的系统结构. 1 引言 近年来,交流伺服系统的应用已经十分广泛,特别是在要求高精度、高响应的应用场合,交流永磁同步电机伺服系统具有非常明显的优势。随着微电子技术和功率电子技术的飞速发展,在交流伺服系统中已经采用了各种新颖的器件如数字信号处理器(DSP)、智能功率模块(I PM)等,使伺服控制器从模拟控制转向数字控制,而数字控制在精度、可靠性以及灵活性等方面的优势,也促使交流伺服系统向全数字化、智能化、小型化方向发展。 本文研究了采用TI公司的新一代低功耗、高速DSP芯片TMS320LF2406的全数字交流伺服控制器的软硬件设计和控制方案。TMS320LF2406采用3.3V供电,在性能上有了进一步的增强,不仅具有更强的实时运算能力,并且集成了丰富的电机控制外围电路,特别适用于对控制器体积、性能要求较高的应用。 2 交流永磁同步电机矢量控制 交流永磁同步电机在磁路不饱和,磁滞及涡流的影响忽略不计,定子三相电流产生的空间磁势及永磁转子的磁通分布呈正弦波形状的条件下,若不考虑转子磁场的凸极效应,即L d=Lq=L,可得其在d_q坐标系上的状态方程为[1]: 其中R:绕组等效电阻;L:等效电感;p:微分算子(d/dt);Np:电机磁极对数;ωm:转子机械角速度;ψf:转子永磁效应对应的每对磁极磁通;Tl:折算到电动机轴上的总负载转矩;J:折算到电机轴 上的总转动惯量。 式(1)中系数矩阵含有变量ωm,所以可知永磁同步伺服电机是一种非线性的控制对象,且d轴电流分量id和q轴电流分量iq之间存在耦合作用,为使永磁同步电动机具有和直流电动机一样的控制性能,通常采用id≡0的线性化解耦控制,即在初始定向A相绕组和d轴重合之后, 始终控制电枢电流矢量位于q轴上,和转子磁链矢量正交。然而从状态方程可以看出,d_q坐标系上的状态变量存在着耦合关系,即vd不仅依赖于id,同时和iq也有关系,这给控制器的设计带来了很大的问题,在通常的模拟方式交流伺服控制器中,只能通过增大电流控制器的增益实现电流矢量的快速跟踪,得到近似线性化的解耦控制效果,而对于全数字化交流伺服控制器,如果知道交流永磁同步电机的感应反电势常数、电枢绕组的电感值,则可以通过完全去耦控制实现精确地线性化控制。现假设感应反电势常数、电枢绕组的电感值已知,那

直线电机参数

介绍直线电机参数和选型 1.最大电压( max. voltage ph-ph) ———最大供电线电压,主要与电机绝缘能力有关;《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 2.最大推力(Peak Force) ———电机的峰值推力,短时,秒级,取决于电机电磁结构的安全极限能力;《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 3.最大电流(Peak Current) ———最大工作电流,与最大推力想对应,低于电机的退磁电流; 4.最大连续消耗功率(Max. Continuous Power Loss) ———确定温升条件和散热条件下,电机可连续运行的上限发热损耗,反映电机的热设计水准; 5.最大速度(Maximum speed) ———在确定供电线电压下的最高运行速度,取决于电机的反电势线数,反映电机电磁设计的结果; 6.马达力常数(Motor Force Constant) ———电机的推力电流比,单位N/A或KN/A,反映电机电磁设计的结果,在某种意义上也可以反映电磁设计水平; 7.反向电动势(Back EMF) ———电机反电势(系数),单位Vs/m,反映电机电磁设计的结果,影响电机在确定供电电压下的最高运行速度; 8.马达常数(Motor Constant) ———电机推力与功耗的平方根的比值,单位N/√W,是电机电磁设计和热设计水平的综合体现; 9.磁极节距NN(Magnet Pitch) ————电机次级永磁体的磁极间隔距离,基本不反映电机设计水平,驱动器需据此由反馈系统分辨率解算矢量控制所需的电机电角度; 10.绕组电阻/每相(Resistance per phase)———电机的相电阻,下给出的往往是线电阻,即Ph-Ph,与电机发热关系较大,在意义下可以反映电磁设计水平; 11.绕组电感/每相(Induction per phase) ———电机的相电感,下给出的往往是线电感,即Ph-Ph,与电机反电势有关系,在意义下可以反映电磁设计水平; 12.电气时间常数(Electrical time constant) ———电机电感与电阻的比值,L/R; 13.热阻抗(Thermal Resistance) ———与电机的散热能力有关,反映电机的散热设计水平; 14.马达引力(Motor Attraction Force) ———平板式有铁心结构直线电机,尤其是永磁式电机,次极永磁体对初级铁心的法向吸引力,高于电机额定推力一个数量级,直接决定采用直线电机的直线运动轴的支撑导轨的承载能力和选型。《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 直线电机的选型首选推力速度,然后看连续消耗功率、热阻和散热方式和条件等,再次看供电电压和电流,对快速性有要求还要看电气时间常数。个人意见,最最反映直线电机性能水平的是推力平稳性、电机常数和热阻,不过推力平稳性指标多数厂家未必会直接给出。《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 电机的推力系数以出力电流比来标示,比如N/A,Nm/A《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 反电势系数用电压速度比来标示,比如V/(m/s),V/(rpm)等《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 以电机的机电转换公式可以推导出其间的关系,具体过程如下:《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 直线电机的机械输出功率为Pm=F*v =Cm*I*v,其中Cm为推力系数,I为电流,v为电机运行速度《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》电机电气消耗功率中的电磁转化功率为:Pe=ε*I=Ce*v*I,其中Ce为反电势系数,v为电机运行速度, I为电流《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》

相关文档
相关文档 最新文档