文档库 最新最全的文档下载
当前位置:文档库 › 基于机翼的结构优化设计

基于机翼的结构优化设计

基于机翼的结构优化设计
基于机翼的结构优化设计

基于机翼的结构优化设计

摘要

结构优化设计是一门与数学有重要联系的学科,它可以使设计方案向着改善的方向发展,在这门学科中可以利用数学特性可以使得计算过程简化。这门学科具有相当深厚的工程背景。飞行器结构优化在飞行器减重方面有重大成效,而飞行器减重是飞行器设计中核心问题。本文就一架小型飞机机翼的优化设计为例,简单介绍了结构优化设计中的基本概念以及计算方法。

关键字结构优化设计飞行器机翼

一、结构优化设计的定义与步骤

优化设计是20世纪60年代初发展起来的一门学科,也是一项新技术和新的设计方法。它是将最优化原理和计算机技术应用与设计领域,为工程设计提供一门重要的科学设计方法。利用这种方法,人们就可以从众多的设计方案中寻找出最佳设计方案,从而大大提高设计效率和质量[1]。目前,最优化方法已在工程技术、自动控制、系统工程、经济计划、企业管理等领域获得了广泛的应用。

这学期我学习了“结构优化设计”这门课,在这门课上我学习了许多基本的结构优化设计概念与方法如拉格朗日乘子法、应力比例因子法等等,了解到了作为一项设计不仅要求方案可行、合理,而且应该是某些指标达到最优的理想方案。这半学期的学习对于我的专业知识架构有着极大的影响,对我将来的学习大有裨益。

“设计”一词本身就包含了“优化”的概念,在传统的结构优化设计中,设计者要根据设计要求和实践经验,去创造合适的设计方案,再进行强度、刚度和稳定性的校核计算,已验证可行性[2]。而在结构优化设计中,力学分析的作用不止是安全校核,而是作为一个积极主动的设计手段。这一点应引起我们的重视。

二、飞行器结构优化设计的定义与步骤

航空器的诞生与发展,不仅极大地改变了人类的生活方式,促进了社会经济繁荣,而且成为了国家综合实力的集中体现。设计一架成功的航空器,需要几十

个工业部门的全力配合,需要几十年甚至上百年的工业化积累,所以说飞行器设计技术一定程度上反映了一个国家的工业设计能力,是一个国家工业实力的体现

[3]

现代飞行器设计技术涉及到多个学科领域,包含多个子系统,他们相互交叉

影响,是飞行器设计这门学科变得更加复杂与系统化。针对飞行器的优化设计最基本的问题就是建立能反映工程问题物理本质,又便于操作运算的数学模型,要从组成工程系统大量的变量中确定哪些作为设计变量作为系统的优化设计,应在哪些约束限制条件下达到哪些目标。换句话说,飞机结构设计最主要的要求是所设计的结构在规定的载荷作用下,既能满足结构完整性要求,并有足够的可靠性和寿命,又要具有尽可能小的结构重量或低的成本,但在实际的设计任务中这两方面的要求通常是矛盾的。

三、 飞行器结构优化设计实例

首先需要明确一些结构优化设计中的基本概念与方法。

设计变量:设计参数中可调整的一部分成为设计变量。它是可以描述设计特性的独立变量,其个数代表设计空间的维数。通过性质的不同可分为拓扑变量、外形变量、尺寸变量。

约束条件:要使设计的工程结构能够满足设计者所要求的各项功能,设计者必须对结构的应力、位移、自振频率、临界载荷等性态变量提出一定的要求(或者说限制)。这些对于设计变量的限制就被称为约束条件。其可分为应力约束条件、变性约束条件等等。

目标函数:关于设计变量的函数,可以通过它评判设计方案的优劣。

一架小型通勤飞机的机翼被分为12个盒梁,该机翼的形状如下图所示,各盒梁几何尺寸如下表所示,该问题设计变量为盒梁中板的厚度12t ,(1,2...12)i i t i ,该问题基本假设为

(1) 盒梁凸缘仅承受正应力,腹板仅承受剪应力; (2) 作用在飞机上的风载可以处理成静载荷。

设计约束条件为

1S bi S < i 1,2....

1= 2S si S < 1,2...1i = 其中,1S 是材料的拉伸强度,2S 是材料的剪切强度,S bi 是第i 个梁凸缘的正应力,S si 是第i 个盒段的剪应力。则此问题结构优化设计模型为

12

121

12min ()2()

..1,2...12i i i i i bi si f x s b t h t s t S S S S i ρ=?

=+???

机翼平面形状(左立边201mm ,右立边57.1mm ,左右两边相距618.87mm )

盒梁几何尺寸

经过计算,该优化模型的优化结果列于下表:

参考文献

[1]白新理结构优化设计黄河水利出版社2008年4月

[2]侯密山结构优化设计基础中国石油大学出版社2012年5月

[3]李为吉飞行器结构优化设计国防工业出版社2005年12月

飞行器控制系统设计

课程设计任务书 学生姓名: 李攀 专业班级: 自动化0804 指导教师: 谭思云 工作单位: 自动化学院 题 目: 飞行器控制系统设计 初始条件: 飞行器控制系统的开环传递函数为: ) 2.361(4000)(+= s s K s G 控制系统性能指标为调节时间s 008.0≤,单位斜坡输入的稳态误差000443.0≤,相角裕度大于85度。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1) 设计一个控制器,使系统满足上述性能指标; (2) 画出系统在校正前后的奈奎斯特曲线和波特图; (3) 用Matlab 画出上述每种情况的阶跃响应曲线,并根据曲线分析系统的动态性能指标; (4) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析计算的过程,给出响应曲线,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。 时间安排: (1) 课程设计任务书的布置,讲解 (一天) (2) 根据任务书的要求进行设计构思。(一天) (3) 熟悉MATLAB 中的相关工具(一天) (4) 系统设计与仿真分析。(四天) (5) 撰写说明书。 (两天) (6) 课程设计答辩(一天) 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

摘要 根据被控对象及给定的技术指标要求,设计自动控制系统,既要保证所设计的系统有良好的性能,满足给定技术指标的要求,还有考虑方案的可靠性和经济性。本说明书介绍了在给定的技术指标下,对飞行器控制系统的设计。为了达到给定要求,主要采用了串联之后—超前校正。 在对系统进行校正的时候,采用了基于波特图的串联之后—超前校正,对系统校正前后的性能作了分析和比较,并用MATLAB进行了绘图和仿真。对已校正系统的高频特性有要求时,采用频域法校正较其他方法更为方便。 关键词:飞行器控制系统校正 MATLAB

机翼结构设计方案及强度计算

机翼结构设计方案及强度计算 模型一 设计思路:根据设计要求,机翼全长4m,翼弦长1m,前后两根梁。于是利用abaqus软件的壳单元建立了一个基本的机翼模型。 图1 单只机翼模型 然后参考《实用飞机复合材料结构设计与制造》、《复合材料设计手册》、《复合材料力学》等资料,初步设计机翼采用蒙皮夹心结构,上下表面分别铺3层复合材料,考虑到机翼的工况采用[45/0/-45]铺层方式,每层厚度为0.125mm,具体如图2所示。中间夹心材料采用PMI泡沫,该材料具有突出的比强度和良好的耐蠕变性,可以很好的克服屈曲。夹心材料厚度初步拟定为5mm,进行计算模拟,如果屈曲明显则可加厚。 表1 机翼的材料参数

图2 机翼的蒙皮夹心铺层结构 考虑到梁是主要的承力部件,采用[-45/0/45/90]s铺层方式,每层厚度为0.125mm,具体如图3所示。 图3 梁的铺层结构

利用abaqus模拟计算时将工况环境简化,采用一端固定,在机翼下表面加载Y方向的升力,分布如图5所示。 图4 机翼的固定端约束 图5 机翼的载荷分布

模型一的计算结果: 梁每层复合材料的应力云图 图6 梁每层复合材料的应力云图 梁的计算结果分析: 从计算结果中不难发现,机翼前缘的梁承受的力要比尾部的梁大很多,可以考虑适当加厚。对比各层复合材料的受力情况,0°的复合材料层受力明显,可以适当增加0°的复合材料层数。靠机身段的梁应力集中明显,可以在该部位适当增加梁的厚度,也可考虑用工字梁强化该部位。

机翼每层复合材料的应力云图: 图7 机翼每层复合材料的应力云 图(1-5层) 图7 机翼每层复合材料的应力云图(6-7层)

5-飞机订票系统详细设计说明书

5-飞机订票系统详细设计说明书

文档编号: 版本号:v1.0 详细设计说明书 项目名称飞机订票系统 项目负责人何柳青 本文档编写者何柳青 项目开发者计算机081第二组 2010年12月4日

1.引言 1.1编写目的 本文档将对《飞机订票系统》的程序进行详细解析,是程序员编写代码的基础。本文档的读者是设计人员和程序员。 1.2背景 开发软件名称:飞机票订系统。 (1)项目任务提出者:中国民航及中国国际旅游开发公司。 (2)项目开发者:何柳靑,陆银琳,李欣纯,单国英,阿依古丽 (3)项目与其他软件,系统的关系:该系统采用现代流行WINDOWS操作界面。是标准的WIN32应用程序,可运行在WIN95 \WIN98 \WinMe \WIN2000 \WINXP \WIN7 \WINNT 等系统平台上的多任务应用程序。 1.3参考资料 《软件工程导论》清华大学出版社张海藩编著 《实用软件工程》清华大学出版社郑人杰等编著 《数据库系统概论(第三版)》高等教育出版社萨师煊王珊等编著《实用软件文档写作》清华大学出版社肖刚等编著 《软件工程》第3版人民邮电出版社张海藩等编著 2.程序系统的结构 本程序每个子系统所包含的单元文件名称及其程序层次结构如表所示,对于特别简单的程序模块,其程序层次结构非常简单,在此从略,仅给出较为复杂的程序层次结构。 2.1运行环境 (1) 设备 硬件最低要求:内存512MB,硬盘50MB以上 (2) 支持软件 操作系统:WIN95\WIN98\WinMe\WIN2000\WINXP\WIN7\WINNT等

2.2 系统组织结构 此飞机订票系统共分为两大模块:后台管理员模块和前台票务员模块。后台管理员模块功能为航班信息调整,包括增加新航班、删除航班、修改航班信息;前台票务员模块功能为乘客信息管理,订票管理,航班信息查询。 飞机订票系统 登录验证乘客 信息 管理 航班 信息 查询 航班 信息 管理 后台管理员验证 乘 客 票 务 信 息 修 改 前 台 票 务 员 验 证 乘 客 基 本 信 息 修 改 按 航 班 号 查 询 按 目 的 地 查 询 按 时 间 查 询 增 加 新 航 班 乘 客 订 票 修 改 原 有 航 班 订 票 管 理 改 签 删 除 航 班 退 票 乘 客 基 本 信 息 录 入 图1.飞机订票系统程序层次结构 后台管理员 管 理 员 登 录 航班 信息 管理 身 份 验 证 增加 新航 班 修改 原有 航班 信息 删除 航班 图2.后台管理员模块程序层次图

优化设计在材料中的应用

复合材料结构稳定性约束优化设计 纤维增强复合材料结构, 以高的比强度和比刚度, 在航空航天领 域得到了广泛的应用。许多空天结构的设计, 均利用复合材料结构特殊的屈曲特性, 以达到提高稳定性和降低结构重量的目的, 如机身、航天器的承力筒、直升机地板等。复合材料具有较强的可设计性, 可通过优化铺层参数, 如层数和纤维铺设角, 提高结构的临界屈曲载荷, 在满足稳定性要求的前提下减轻结构重量。有关复合材料结构稳定性优化以及稳定性约束优化的研究不断发展, 如文献[ 1] 研究了层合板临界屈曲载荷的优化方法及灵敏度分析方法, 文献[ 2] 通过引入层合板刚度矩阵求解过程的中间变量,对屈曲载荷进行了优化; 近年来遗传算法也逐渐被应用于该问题, 扩大了研究对象的结构形式范围,提高了优化设计的效率。但是, 多数复合材料稳定性方面的优化工作采用的是确定性的优化设计方法, 即不考虑材料及载荷的不确定性, 得到的优化结果濒临失效边界, 难以满足结构的可靠性要求。纤维增强复合材料, 材料性能离散度大, 工作环境复杂, 各向异性的特点使其对载荷相当敏感。20 世纪90 年代, 设计者们逐渐意识到不确定性因素给复合材料结构带来的影响[ 3], 因此复合材料结构的可靠性优化设计越来越多地受到工程界的重视, 并开展了相关研究。文献[ 4, 5] 基于层合板临界屈曲载荷的解析表达式, 构建极限状态方程, 计算结构的失效概率。但是, 工程实际中的结构通常需要使用有限元等方法进行结构分析, 缺少显式的极限状态函数, 造成可靠度计算困难。对此, 一些学者提出了结构可靠性分析的响应面 法, 使 可靠度计算得以简化,并且一般能够满足工程精度

飞机和推进系统总体设计目录整理

飞机总体设计(李为吉,2005) 第1章绪言 第2章飞机初始总体参数与方案设计 2.1 方案设计的任务和过程 2.2 重量估算 2.3 飞机升阻特性估算 2.4 确定推重比和冀载 2.5 总体布局形式的选择 2.6 飞机气动布局的选择 2.7 隐身性能对飞机气动布局的影响 第3章飞机总体参数详细设计(部件设计) 3.1 设计的任务和步骤 3.2 机翼设计 3.3 机身设计 3.4 尾翼及其操纵面的设计 3.5 推进系统的选择与设计 3.6 起落架设计 3.7 飞机初步设计实例 第4章飞机操纵系统设计与分析 4.1 操纵系统的特性 4.2 现代高速飞机稳定性和操纵性的基本特点与操纵系统设计 4.3 飞机主动控制技术 4.4 电传操纵系统 4.5 综合飞行控制系统 第5章飞机费用与效能分析 5.1 飞机寿命周期费用的概念和分析方法 5.2 研究、发展、试验与鉴定费用和生产费用分析——兰德DAPCA IV模型5.3 使用保障费用 5.4 飞机作战效能分析 5.5 多任务攻击机概念综合设计的基本原理 第6章飞机总体参数优化 6.1 飞机总体参数的多学科设计优化 6.2 面向系统设计的方法 飞机总体设计(林振申,1982) 第1章飞机设计要求 1.1 飞机设计要求的拟定及内容 1.2 飞机设计要求的论证 1.3 飞机设计要求的变化与发展 第2章飞机的性能与分析 2.1 飞机的升力、阻力与推力 2.2 飞机的性能及其分析 第3章飞机型式 3.1 飞机型式的含义

3.2 不同的飞机型式 3.3 飞机型式的分折 3.4 飞机型式选择的原则 第4章飞机主要参数的选定 4.1 翼载荷和推重比 4.2 参数与性能的关系 4.3 飞机总重的确定 第5章部位安排 5.1 部位安排的主要内容 5.2 部位安排的一般原则与方法 5.3 载重装备及设备系统的安排 5.4 构造受力型式的全机总体布置 第6章重心定位 6.1 重心定位的意义 6.2 计算重心的方法 6.3 重心调整 飞机总体设计(西北工业大学讲义) 第1章飞机设计要求 1.1 飞机设计要求的拟定及内容 1.2 飞机设计要求的论证 1.3 飞机设计要求的变化与发展 第2章飞机性能分析 2.1 飞机的升阻特性 2.2 飞机的推力特性 2.3 飞机平飞速度 2.4 飞机升限 2.5 飞机的航程 2.6 盘旋性能 2.7 爬升与加速 2.8 起飞性能 2.9 着陆性能 第3章飞机型式 3.1 飞机型式的含义 3.2 不同的飞机型式 3.3 飞机型式的分析 3.4 飞机型式选择的原则 第4章飞机主要参数的选定 4.1 翼载荷和推重比 4.2 参数与性能的关系 4.3 飞机总重的确定 第5章部位安排 5.1 部位安排的主要内容 5.2 部位安排的一般原则与方法 5.3 载重装备及设备系统的安排

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

某机翼部件巡航状态下的受力分析

目录 1 绪论 (1) 1.1 机翼受力分析的目的和意义 (1) 1.2 机翼受力分析要解决的问题 (1) 1.3 对机翼结构进行传力分析的基本方法 (2) 2气动升力的计算 (2) 2.1 机翼的功用与要求 (2) 2.1.1 机翼的功用 (2) 2.1.2 机翼的设计要求 (2) 2.2机翼的外载特点 (3) 2.2.1机翼的外载有以下三类 (3) 2.2.2机翼的总体受力 (4) 2.3机翼结构的典型元件与典型受力型式 (6) 2.4机翼的外形参数 (9) 2.4.1 翼型的几何参数 (9) 2.4.2 机翼的几何特性 (11) 2.5翼型气动力的基本计算理论 (13) 2.5.1 气动特性公式 (15) 2.6对于具体弹翼的气动力的计算 (19) 3有限元分析 (26) 3.1有限元的发展史 (26) 3.2有限元的概述 (26) 3.3有限元的基本思想与特点 (27) 3.3.1 有限元分析的特点 (27) 3.3.2 有限元分析的基本思想 (28) 3.4有限元法的基本步骤 (28) 3.5对机翼进行具体的分析 (31) 4结论 (37)

参考文献 (38) 致谢 (40) 1 绪论 1.1 机翼受力分析的目的和意义 机翼主要用于产生升力,因此满足空气动力方面的要求是首要的。机翼除保证升力外,还要求阻力尽量小。机翼的气动特性主要取决于其外形参数,这些参数在总体设计时己经确定;结构设计应从强度、刚度、表面光滑度等各方面来保证机翼气动外形要求的实现,所以机翼结构设计的一个问题就是怎么才能保证机翼在飞行过程中的气动外形[1]。对于机翼,在外形、装载和连接情况己定的条件下,重量要求是机翼结构设计的主要要求,具体地说就是要设计出一个既能满足强度、刚度和耐久性要求,又尽可能轻的结构来。当飞机在高速飞行时,很小的变形就可能严重恶化机翼的空气动力性能;刚度不足还会引起颤振和操纵面反效等严重问题。值的注意的是:随着飞行速度的提高,机翼所受载荷增大;然而由于减小阻力等空气动力的需要,此时机翼的相对厚度却越来越小,再加上后掠角的影响,致使机翼结构的扭转刚度、弯曲刚度越来越难保证,这些都将引起机翼在飞行中变形的增加。因此对于高速飞机,为满足机翼的气动要求,刚度问题必须足够重视[2]。然而也正是由于上述原因,此时解决好机翼的最少重量要求与强度、刚度要求之间的矛盾将更为困难[3]。 1.2 机翼受力分析要解决的问题: 机翼受力分析的主要目的是:运用软件,采用有限元分析的办法,通过给机翼加载其在巡航状态下所受的各种力,来分析机翼各部件所受的力以及它们在这些力的作用下的变形,根据结果来修改机翼的结构设计,以达到既能保证机翼在飞行时的气动外形又能合理设计机翼结构的目的。通过机翼的受力分析,我们还能够根据变形结果合理的设计出各个部件的最佳几何尺寸,最终解决机翼最少重量要求与强度、刚度要求之间的矛盾。 机翼结构受力分析主要的研究手段为有限元分析。为了使有限元分析的结果比较准确的接近现实,就必须较好的完成以下两个工作。 (1)较为准确的绘制机翼的三维几何模型,本文采用UG进行绘图。

飞行控制系统设计

(此文档为word格式,下载后您可任意编辑修改!) 一、对最简单的角位移系统的评价 1、某低速飞机本身具有较好的短周期阻尼,采用这种简单的控制规律是可行的。它的传递函数为: open p3_6 系统根轨迹为: nem1=-12.5; den1=[1 12.5]; sys1=tf(nem1,den1); nem2=[-1 -3.1]; den2=[1 2.8 3.24 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k的增大,该系统的一对闭环复极点的震荡阻尼逐渐减小。但由于飞机本身的阻尼较大,所以当k增大致1.34时,系统的震荡阻尼比仍有0.6。k增大到6.2时系统才开始不稳定。 2、现代高速飞机的短周期运动自然阻尼不足,若仍采用上述单回路控制系统则不能胜任自动控制飞机的要求。 open p3_10 系统根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1);

nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k增大,系统阻尼迅速下降。当k=1.06时,处于临界稳定。所以无法选择合适的k值以满足系统动静态性能。为了使系统在选取较大的k值基础上仍有良好的动态阻尼,引入俯仰角速度反馈。 二、具有俯仰角速率反馈的角位移自动驾驶仪参数设计open p3_16 1、系统内回路根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1); nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 按物理概念似乎速率陀螺的作用越强,阻尼效果越显著。但根轨迹分析告诉我们,只有在一定范围内这种概念才是正确的,否则会得到相反的效果。这种现象是由舵回路的惯性造成的。舵回路具有不同时间常数时的内回路根轨迹图: Tδ=0 sys1=-1; nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) Tδ=0.1

飞机部件与系统设计

第一章绪论——飞机部件设计的一般规律及其发展 一飞机的发展历程和飞机研制过程 1 飞机的发展历程(回顾从飞机诞生以来不同时期不同用途飞机的结构特点,决定了各个部件的特点) 2 飞机的研制过程(《现代飞机结构综合设计》P4,可对其进行修改及扩充) 二飞机部件及部件设计的初始条件 1 飞机部件介绍 2 部件设计的初始条件 3 飞机设计过程简介 三飞机部件设计的基本要求和综合设计思想 1 基本要求 2 设计思想的演变 3 飞机综合设计思想 四飞机部件设计方法简介 1 概述 2 结构有限元分析以及在飞机结构设计的应用 3 结构优化设计方法 4 计算机辅助设计 第二章飞机外载荷与设计规范 第三章飞机机身结构分析与设计 一机身的功用及设计要求 1 机身的功用 2 机身的外载特点及内部布置 3 机身的设计要求 二机身的组成元件及其设计 1 机身的组成元件及典型受力型式(介绍机身组件及其功用,然后分析几种受力型式(桁梁式,桁条式,硬壳式)) 2 失稳形式及元件设计与布置 ⑴三种失稳形式(蒙皮,壁板,总体失稳) ⑵蒙皮设计 ⑶长桁和桁梁的设计与布置 ⑷加强框和普通框的设计与布置 ⑸各元件之间的连接设计 三增压座舱的结构设计 现代飞机机身内均有增压座舱 1 座舱的增压载荷 2 民用飞机增压座舱的结构设计 3 军用飞机增压座舱的结构设计 四机身开口区的结构设计 1 开口与口盖的分类及开口区受力分析 2 开口区的结构设计 ⑴小开口的结构加强设计⑵中开口的结构加强设计⑶大开口的结构加强设计 五机身与其他部件的连接设计

1 机翼与机身的对接设计 2 尾翼与机身的对接设计 3 起落架与机身的连接设计 4 机身设计分离面处的连接设计 5 发动机在机身的安装 六机身结构设计须注意的几个问题 每个部件都有各自的结构细节,所谓结构细节,是指飞机结构中对疲劳开裂最敏感的局部区域或元件,设计时应从以下几个方面注意: 1 合理地、有区别地选择有关结构材料 2 结构布局和传力路线的恰当设计 3 消除因偏心传载和强迫装配引起的附加应力 4 降低应力集中 5 连接接头和连接结构的抗疲劳设计 6 对结构进行变形和刚度控制 7 选择合理的工艺方法 第四章机翼结构设计 一机翼的功用与外载特点、设计要求 1 机翼的功用及外载特点 2 机翼结构设计要求 二机翼结构元件设计 1 机翼结构的典型构件及其功用(蒙皮、长桁、翼肋、翼梁、纵墙) 2 各种典型元件的设计 ⑴长桁设计⑵机翼蒙皮与加筋板的设计⑶梁的设计 ⑷翼肋设计⑸机翼连接⑹结构受集中载荷处的局部设计 三机翼结构的受力型式及主要受力构件的布置 1 典型受力型式 ⑴薄蒙皮梁式⑵多梁单块式⑶多墙厚蒙皮式 2 主要受力构件布置 机翼主要受力构件布置是指确定机翼翼面壁板中的蒙皮—长桁(或整体壁板中的筋条)、梁、墙、加强翼肋、普通翼肋以及机翼—机身连接接头等的数量和位置。 ⑴机翼翼盒受力构件布置 ⑵集中载荷作用处加强构件的布置 3 各种承力结构机翼的对接原则 四后掠翼和三角翼的结构和承载特点 1 后掠翼承力形式和根部承载的特点 2 三角翼的结构和承载特点 五机翼整体油箱的结构设计 1 整体油箱结构设计的要求 2 整体油箱结构设计的特点 3 整体油箱的密封形式 六增升装置和副翼的结构设计 1 增升装置的功用和设计要求 2 增升装置的分类及其结构设计 3 副翼的功用及其结构设计

飞行器控制系统设计

学号: 课程设计 题目飞行器控制系统设计 学院自动化学院 专业自动化 班级自动化1002班 姓名 指导教师肖纯 2012 年12 月19 日

课程设计任务书 学生姓名: 专业班级:自动化1003班 指导教师: 肖 纯 工作单位: 自动化学院 题 目: 飞行器控制系统设计 初始条件:飞行器控制系统的开环传递函数为: ) 2.361(4500)(+= s s K s G 要求设计控制系统性能指标为调节时间ts 008.0≤秒,单位斜坡输入的稳态误差000443.0≤,相角裕度大于75度。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写 等具体要求) (1) 设计一个控制器,使系统满足上述性能指标; (2) 画出系统在校正前后的奈奎斯特曲线和波特图; (3) 用Matlab 画出上述每种情况的阶跃响应曲线,并根据曲线分析系统 的动态性能指标; (4) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析 计算的过程,给出响应曲线,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。 时间安排: 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

随着经济的发展,自动控制技术在国民经济中发挥着越来越重要的作用。自动控制就是在没有人的参与下,系统的控制器自动的按照人预订的要求控制设备或过程,使之具有一定的状态和性能。在实际中常常要求在达到制定性能指标的同时能更加节约成本、能具有更加优良的效果。本次飞行器设计中,采用频域校正的方法使系统达到指定的性能指标,同时采用matlab仿真软件更加直观的进行仿真分析和验证。 在此设计中主要采用超前校正的方法来对系统进行性能的改进,通过分析、设计、仿真、写实验报告书的过程,进一步加深了对自动控制原理基本知识的理解和认识,同时通过仿真系统的奈奎斯特图、bode图、单位阶跃响应曲线,进一步理解了系统的性能指标的含义,同时也加深了对matlab仿真的掌握,培养了认识问题、分析问题、解决问题的能力。

结构优化设计在房屋结构设计中的运用

结构优化设计在房屋结构设计中的运用 发表时间:2019-04-04T09:06:49.333Z 来源:《建筑学研究前沿》2018年第34期作者:严明煜 [导读] 建筑行业的发展机遇与挑战共存,并且随着越来越多的建筑企业参与到市场竞争中,使得建筑行业的竞争也越发激烈。因此,如果建筑企业想要在暗流涌动的市场格局中争得一席之地,就必须要改进原有的建筑结构设计,优化设计技术水平。因此,当前对建筑结构设计中优化技术的研究是必不可少的。 严明煜 浙江东南建筑设计有限公司浙江杭州 310000 摘要:建筑行业的发展机遇与挑战共存,并且随着越来越多的建筑企业参与到市场竞争中,使得建筑行业的竞争也越发激烈。因此,如果建筑企业想要在暗流涌动的市场格局中争得一席之地,就必须要改进原有的建筑结构设计,优化设计技术水平。因此,当前对建筑结构设计中优化技术的研究是必不可少的。 关键词:建筑结构设计;优化技术;应用探讨 1建筑结构设计优化的概念、特点以及重要意义 所谓建筑结构设计优化,主要是指建筑在最初的设计之时,除了要保障房屋建筑等的施工安全性以及实用性,还要能够在基本满足人们最基本生活要求的同时,尽量保证房屋结构不仅美观,还要合理、舒适,使得房屋建筑具有安全性、适用性、经济性、科学性、美观等的综合性设计方案。一般建筑结构设计优化方法普遍具有以下几个特点:(1)建筑结构优化设计方法具有多样性和综合性的特点。(2)建筑结构优化设计方法是与艺术等审美标准相融合的设计,直观效果比较强。(3)建筑结构优化設计的安全系数得到了整体的提高。(4)建筑结构优化设计的适用性增强。(5)建筑结构优化设计能够体现当今时代的低碳要素,具有节能性和环保性。(6)建筑结构优化设计的经济化趋向愈来愈明显。(7)建筑结构优化设计在管理中更加简易、方便、快捷。(8)建筑结构优化设计具有科学性(9)建筑结构优化设计具有明显的创新意识、突破了传统的设计形式。建筑结构设计优化方法在房屋结构设计中的应用具有以下重要意义:建筑结构优化设计方法在房屋结构设计的应用中,是以优化房屋的结构、保障房屋建筑的质量及其安全为目的的。根据近年来我国城市建筑的发展趋势以及科学技术的发展情况来看,与传统的房屋设计相比,经过优化设计的建筑所采取的设计理念以及设计技术更为先进和科学,能够充分发挥房屋建筑建材的性能以及其设备的性能的优势,成本支出也更为低廉,从而实现企业利益的最大化。除此之外,建筑结构优化设计方法应用于房屋结构设计中,能够实现房屋建筑内部结构的协调和整合,有效提高房屋建筑的质量以及安全性。现代的建设结构优化设计方案和传统的建设房屋比较,运用设计方法后的建筑可以降低工程的建设投入成本和投资,提高建筑结构的优化方法,可以节省建设材料的使用,充分利用建设材料。 2结构设计优化技术在建筑结构设计中的步骤 2.1结构优化模型 房屋结构整体优化设计方法分以按3个步骤进行。首先,选择设计变量。一般把对设计要求起主要影响作用的参数作为设计变量,如目标控制参数(结构造价C1和损失期望C2)和约束控制参数(结构的可靠度PS);而将那些对设计要求来讲,变化范围不大或是根据结构要求或局部性的设计考虑就能满足设计要求的参数等作为预定参数,这可以大大减少设计、计算和编制程序的工作量;其次,确定目标函数。寻求一组满足预定条件的截面几何尺寸和钢筋截面积以及失效概率,从而使总费用最小;第三,确定约束条件。房屋结构基于可靠度优化设计的约束条件,则包括尺寸约束、结构强度约束、应力约束、变形约束、裂缝宽度约束、构件单元约束、结构体系约束、从正常使用极限状态下的弹性约束到最终极限状态的弹塑性约束、从可靠指标约束到确定性约束条件等。在设计中,要使结构优化设计应用于实际房屋结构工程,则是路房屋结构设计中实际的约束条件与目标约束条件相比较,保证各约束条件都符合现行规范的要求,以实现最优设计。 2.2设定优化设计计算方案 房屋结构基于可靠度的优化设计问题属于比较复杂的多变量、多约束非线性优化问题,一般情况下,在计算过程中,应转化问题求解,即将有约束优化问题转化为无约束问题。可以利用起来的优化设计计算方法有复合形法、拉氏乘子法、Powell法等。 2.3进行程序设计 根据基于可靠度的结构优化模型和选择的优化设计计算方法,编制功能齐全、运算速度快的综合程序。 2.4结果分析 对计算结果进行分析,确定最优设计方案。 在上述步骤的执行过程中,涉及的问题包括多个方面,所以要全方位、多角度地考虑。这主要是因为建设投资这项工程的耗资非常大,涉及到的情况非常多,所以,总法则和考虑必须综合进行,不能片面地追求资金的节约而不顾设计的优化作用。技术与经济之间存在一对矛盾,要能够正确处理,因为它是控制投资中至关重要的环节。因此,在设计中片面强调经济节约是不正确的,应满足技术上的相应要求,使项目达到相应的功能倾向,与此同时,要反对重视技术,轻经济、设计保守浪费的现象。 3建筑结构设计优化在房屋设计中的具体运用 3.1整体和布局的统一性 以湖南省某处建筑设计为例,建筑平面图如图1所示,在建筑设计过程当中,经常会运用到艺术建筑设计理念,在项目的整体性工程设计方面,需要对建筑设计和艺术性设计实施完美的结合。因此,在建设过程中需要充分地考虑到整体建筑项目风格以及对建筑环境的和谐统一。从另外一个角度上来进行分析,建筑的局部美和整体性设计上都需要进行和谐统一,不管是在走线的方式还是建筑给排水管道的铺设上,都需要以整体性和安全性为主要的设计原则,在充分的保证建筑安全性的前提下来进行美观性设计。 3.2建筑结构的优化设计 在建筑结构设计优化工作当中,需要充分考虑到建筑剪力墙的优化设计,在建筑优化设计过程中主要表现在对建筑的安全性能的保障方面。充分结合建筑设计的中心位置以及剪力墙的整体受力形式,尽可能降低剪力墙的设计指标,在降低建筑受力方面,需要重点考虑建

飞行器控制系统课程设计

课程设计任务书 学生姓名:________ 专业班级: _______________ 指导教师:_______ 工作单位: ____________ 题目:飞行器控制系统设计 初始条件: 飞行器控制系统的开环传递函数为: G(s) -^500^ s(s 361.2) 控制系统性能指标为调节时间0.01s,单位斜坡输入的稳态误差 0.000521,相角裕度大于84度。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)设计一个控制器,使系统满足上述性能指标; (2)画出系统在校正前后的奈奎斯特曲线和波特图; (3)用Matlab画出上述每种情况的阶跃响应曲线,并根据曲线分析系统的动态性能指标; (4)对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析 计算的过程,给出响应曲线,并包含Matlab源程序或Simulink仿 真模型,说明书的格式按照教务处标准书写 时间安排:

指导教师签名: 系主任(或责任教师)签名: 目录 1串联滞后—超前校正的原理............ 错误! 未定义书签。 2 飞行器控制系统的设计过程. ................. 错误! 未定义书签。 2.1 飞行器控制系统的性能指标............... 错误! 未定义书签。 2.2 系统校正前的稳定情况................. 错误! 未定义书签。 2.2.1 校正前系统的波特图............. 错误! 未定义书签。 2.2.2 校正前系统的奈奎斯特曲线 (2) 2.2.3 校正前系统的单位阶跃响应曲线......... 错误! 未定义书签。 2.3 飞行器控制系统的串联滞后—超前校正 (4) 2.3.1 确定校正网络的相关参数 (4) 2.3.2 验证已校正系统的性能指标 (6) 2.4 系统校正前后的性能比较 (8) 2.4.1 校正前后的波特图 (8) 2.4.2 校正前后的奈奎斯特曲线 (9) 2.4.3 校正前后的单位阶跃响应曲线 (11) 3 设计总结与心得体会 (12) 参考文献 (13)

飞机系统设计原理复习要点1-2章

飞机系统设计原理复习要点 第一章飞机飞行操纵系统 绪论 1 操纵系统的功能是什么? 答:飞机飞行操纵系统是用来传递驾驶员的操纵指令的.通过操纵系统使飞机各操纵面按操纵指令的规律偏转,从而实现对飞机各种飞行姿态稳定的控制.(P1) 2 飞机飞行操纵系统按操纵指令如何划分?各有什么特点? 答:(1) 分为人工飞行操纵系统(MFCS)和自动飞行控制系统(AFCS). (2) 操纵指令由驾驶员发出的属于前者. (3) 操纵信号不是驾驶员的操纵信号,而是飞机本身的飞行参数信号,属于后 者. 3 飞行操纵系统发展了几代?各是什么? 答:(1) 第一代:简单机械操纵系统 (2) 第二代:不可逆助力操纵系统. (3) 第三代:控制增稳系统 (4) 第四代:电传操纵系统. 1.1 飞机操纵系统的设计要求和基本原理 1 如何保证驾驶员正常操纵飞机? (1)驾驶员的操纵动作必须符合人的本能反应和习惯 (2)驾驶员通过驾驶杆或驾驶盘可同时操纵副翼和升降舵,两舵面的偏转应 保证互不干扰 (3)驾驶员的操纵杆力和杆位移要恰当 (4)纵向,横向或航向的操纵杆力要匹配. (5)操纵系统的启动力应在合适的范围内. (6)限制操纵系统的操纵延迟 (7)具有既合适又足够的驾驶杆利和位移,以保证舵面的最大偏转角和完成 飞机作各种机动的要求, (8)操纵系统元件和其他相邻结构之间要保持一定的间隙,以保证操纵系统 在任何飞行状态下不被卡死. 2 飞机的操纵系统由哪两部分组成?各指什么? (1)由中央操纵系统和传动系统两部分组成 (2)驾驶员直接操纵的部分称中央操纵系统,从中央操纵系统至舵面之间的 部分称传动系统 3 中央操纵系统有哪些组成形式? (1)中央操纵系统由手操纵和脚操纵两部分组成 (2)常规的手操纵机构有驾驶杆式和驾驶盘式两种.部分采用电传操纵的现 代高机动歼击机使用敏感驾驶手柄. (3)脚操纵机构有平放式和立放式两种,前者多与驾驶杆式手操纵机构组合, 后者多与驾驶盘式手操纵机构组合 4 传动系统有哪些组成形式? (1)由拉杆摇臂组成的硬式传动系统

结构优化设计的几点应用

结构优化设计的几点应用 摘要:提出结构优化设计的概念,重点分析和推导了钢筋混凝土受弯构件造价最省的条件,可以为设计人员判断受弯构件的截面是否优化提供参考。 关键词:结构优化设计;钢筋混凝土受弯构件;造价 1. 引言 一般结构设计的流程按图一进行,结构选型、布置和截面等是设计师根据设计要求和实践经验,参考类似的工程设计确定的。设计中大量的工作都是对初步选定的设计方案进行校核,现行设计规范的表述模式一般是不等式,如,因此满足不等式的结构方案必定是无限多种的。在满足设计规范和使用要求的前提下,另外确定一个特定指标使其达到极大或极小(如造价最省、工期最短、自重最轻、梁高最小等),就是结构优化设计。

优化设计用数学的方法描述就是目标函数的极值问题。一个结构的设计方案是由若干个变量来描述的,这些变量可以是构件的截面尺寸,也可以是结构的形状布置,还可以是材料的力学或物理参数。结构设计的所有变量计为[X],结构设计必须满足建筑功能和设计规范的要求,也就

是所有的变量必须满足一定的约束条件: H(X)=0 G(X)≥0 设定的优化目标必定是[X]的函数F(X),F(X)→min(或max)所求的一组解[X0]就是最优化设计的解。 [X]的维数决定了优化设计的过程离开计算机是无法实现的,遗憾的是现阶段的结构设计软件除少数钢结构软件有构件截面的自动优选外,一般都没有引入优化设计的概念。因此现阶段可以操作的优化设计依然是电脑与人脑的结合,即所谓的概念设计,根据一定的经验指标判断计算结果是否已达优化,也就是如图二所示,在一般设计的流程中加入最优化的判断。 2. 结构优化设计的分类: 根据结构设计的流程,优化设计可以分为宏观优化和微观优化,宏观优化包括结构选型和结构布置的优化,微观优化主要是指杆件截面的优化。 结构选型的优化包括基础方案和上部结构的优化,结构选型的优劣直接决定了结构设计的质量,更多的依靠设计人的经验和能力,当复杂的问题超出经验的范围时,对不同的结构方案进行试算不失为一种可行的方法,这时忽略一些微观的因素,相当于大大降低了自变量[X]的维数,少量的计算比较就可以找到比较优化的结构选型。比如框架-筒体的超高层建筑,外框架可采用钢筋混凝土、钢管混凝土、型钢混凝土,可以加斜撑,也可以做加强层,在不能准确判断采用哪种方案的时候,逐一试算,比较钢材和混凝土的用量或其他目标函数,可以在较短的时间内

飞行器结构优化设计课程总结

《飞行器结构优化设计》 ——课程总结 专业航天工程 学号GS0915207 姓名

《飞行器结构优化设计》课程总结报告 通过这门课程的学习,大致了解无论是飞行器、船舶还是桥梁等工程项目的传统结构设计流程:首先是根据技术参数、经验和一些简单的分析方法进行初始的结构设计,然后用较为精确的分析方法对初始设计进行核验,根据核验结果,逐步调整设计参数,直到得到满意的设计方案。但是这种传统设计方法的产品性能优劣主要就取决于设计人员的水平,而且设计周期长,并要耗费大量的人力和物力。随着高速、大容量电子计算机的广泛使用和一些精度高的力学分析数值方法的建立和应用,使得复杂的结构分析过程变得更加高效、精确。 本课程重点就在于介绍结构优化的各种分析方法。这些分析方法都是以计算机为工具,将非线性数学规划的理论和力学分析方法相结合,使用于受各种条件限制的承载结构设计情况。 优化问题的数学意义是在不等式约束条件下,求使目标函数为最小或最大值的一组设计变量值,在实际工程应用中,优化问题所包含的函数通常是非线性的和隐式的。建立在数学规划基础上的优化算法,是依据当前设计方案所对应的函数值与导数值等信息,按照某种规则在多维设计变量空间中进行搜索,一步一步逼近优化解。随着计算机的发展和数学计算方法不断进步,结构分析。优化的方法也是随之水涨船高。 一、有限元素法 这是基于在结构力学、材料力学和弹性力学基础上的一种分析方法。研究杆、梁,经简化薄板组成的结构的应力、变形等问题。其方法是首先通过力学分析将结构离散化成单一元素,然后对单一元素进行分析,算出各单元刚度矩阵后,进行整体分析,根据方程组K·u=P求解。这种方法求解的问题受限于结构的规模、形式和效率。 二、敏度分析 结构敏度是指结构性状函数,如位移、应力、振动频率等对设计变量的导数。近似函数的构成,以及许多有效的结构优化算法,皆要利用这些参数的一阶导数,以至二阶导数信息。 结构敏度分析的基础是结构分析,对于复杂的结构,精确的结构分析工作是

飞机订票系统设计报告

算法与数据结构程序设计题目:飞机订票系统 学院:计算机科学与过程学院 专业:信息安全 姓名: 学号: 指导教师:王瑞霞 2011年9 月9 日

目录 引言 (1) 1.系统概述 (1) 2.课程设计的目的 (2) 3.需求分析 (3) 4.详细设计 (4) 5.所遇到的问题和分析解决 (10) 6.系统特色及关键技术 (10) 7.结论 (10)

引言: 当今时代是飞速发展的信息时代,科技的日新月异的发展必然会给人们的生活带来一定的变化。就数据处理方面来说,单纯的手工操作不仅工作量大、出错率高、更面临着修改难,时间成本过高的问题,寻求一种更为细致安全,高效率的数据管理方式成为人们日益探讨和追求的问题。而现代计算机的出现使者些成为了现实。从上世纪七十年代问世至今,计算机已经不是单纯的数据计算机器,它已经被广泛地应用于信息系统的环境。尤其对于复杂的信息管理,计算机往往表现出极高的效率和安全性。 本文论述的飞机订票系统是为公司的管理者提供的一种集录入、删除、查询修改、排序、统计等于一体的便捷的飞机订票系统。该系统主要使得顾客订票能够更方便快捷。为此,本系统能够给他们带来一些较为方便快捷的导航帮助。 本系统论述了飞机订票系统的开发目标、实现过程,并着重介绍了系统设计、所遇到问题的分析和解决、系统特色及关键技术等方面。 本文共分为6章: 1.系统概述 2.课程设计的目的 3.需求分析 4.详细设计 5.所遇到的问题和分析解决 6.系统特色及关键技术 7.结论(心得体会) 1.系统概述 数据结构是计算机存储、组织数据的方式,是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。 关于数据结构在计算机学界至今还没有标准的定义: Sartaj Sahni 在他的《数据结构、算法与应用》一书中称:“数据结构是数据对象,以及存在于该对象的实例和组成实例的元素之间的各种联系。这些联系可以通过定义相关的函数来给出。”他将数据对象定义为“一个数据对象是实例或值的集合”。 Clifford A.Shaffer 在《数据结构与算法分析》一书中的定义是:“数据结构是ADT(抽象数据类型Abstract Data Type)的物理实现。” Lobert L.Kruse 在《数据结构与程序设计》一书中,将一个数据结构的设计过程分成抽象层、数据结构层和实现层。其中,抽象层是指抽象数据类型层,它讨论数据的逻辑结构及其运算,数据结构层和实现层讨论一个数据结构的表示和在计算机内的存储细节以及运算的实现。 而本人的理解,数据结构通俗来讲就是将数据元素依据某种逻辑联系组织起来通过特定的算法将理论运用到生活中解决一些现实问题应用。在这次课程设计中,正是基于这样一种理念,在经过需求分析将实际情况综合起来之后设计并开发出了这样一个飞机订票系统。 本系统的主要功能是通过接收顾客的输入建立航班信息、顾客信息、订票情

飞机起落架结构及其系统设计

本科毕业论文题目:飞机起落架结构及其故障分析 专业:航空机电工程 姓名: 指导教师:职称: 完成日期: 2013 年 3 月 5 日

飞机起落架结构及其故障分析 摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。为适应飞机起飞、着陆滑跑和地面滑行的需要, 起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机 轮上装有刹车或自动刹车装置。同时起落架又具有空气动力学原理和 功能,因此人们便设计出了可收放的起落架,当飞机在空中飞行时就 将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时 再将起落架放下来。本文重点介绍了飞机的起落架结构及其系统。对起落 架进行了系统的概述,对起落架的组成、起落架的布置形式、起落架的收 放形式、起落架的收放系统、以及起落架的前轮转弯机构进行了系统的论 述。并且给出了可以借鉴的起落架结构及其相关结构的图片。 关键词:起落架工作系统凸轮机构前轮转弯收放形式

目录 1. 引言 (1) 2. 起落架简述 (1) 2.1 减震器 (1) 2.2 收放系统 (1) 2.3 机轮和刹车系统 (2) 2.4 前三点式起落架 (2) 2.5 后三点式起落架 (3) 2.6 自行车式起落架 (5) 2.7 多支柱式起落架 (5) 2.8 构架式起落架 (6) 2.9 支柱式起落架 (6) 2.10 摇臂式起落架 (7) 3 起落架系统 (7) 3.1 概述 (7) 3.2 主起落架及其舱门 (7) 3.2.1 结构 (8) 3.2.2 保险接头 (8) 3.2.3 维护 (8) 3.2.4 主起落架减震支柱 (8) 3.2.5 主起落架阻力杆 (9) 3.2.6 主起落架耳轴连杆 (10) 3.3 前起落架和舱门 (10) 3.4 起落架的收放系统 (10) 3.4.1起落架收放工作原理 (10) 3.4.2 起落架收放过程中的的液压系统 (11) 3.4.3 主起落架收起时的液压系统工作过程 (12) 3.4.4 主起落架放下时的液压系统工作原理 (13) 3.4.5 在液压系统发生故障时应急放起 (14) 3.4.6 起落架收放的工作电路 (15) 3.5 前轮转弯系统 (17) 3.5.1 功用 (17) 3.5.2 组成 (17) 3.5.3 工作原理 (17) 3.6 机轮和刹车系统 (17) 4 歼8飞机主起落架机轮半轴裂纹故障分析 (17) 4.1 主起落架机轮半轴故障概况 (17) 4.2 主起落架机轮半轴失效分析 (18) 4.3 机轮半轴裂纹检测及断口分析 (20) 4.3.1 外场机轮半轴断裂检查 (20) 4.3.2 大修厂机轮半轴裂纹检查 (21) 4.4 主起落架机轮半轴疲劳试验结果 (22) 4.4.1 机轮半轴疲劳试验破坏部位 (22)

相关文档
相关文档 最新文档