文档库 最新最全的文档下载
当前位置:文档库 › 《神奇的麦比乌斯圈》学案

《神奇的麦比乌斯圈》学案

《神奇的麦比乌斯圈》学案
《神奇的麦比乌斯圈》学案

附页1:

与麦比乌斯有关的故事

1、据说有一个小偷偷了一位很老实农民的东西,并被当场捕获,将小偷送到县衙,县官发现小偷正是自己的儿子。于是在一张纸条的正面写上:小偷应当放掉,而在纸的反面写了:农民应当关押。县官将纸条交给执事官由他去办理。聪明的执事官将纸条扭了个弯,用手指将两端捏在一起。然后向大家宣布:根据县太爷的命令应当放掉农民,应当关押小偷。县官听了大怒,责问执事官。执事官将纸条捏在手上给县官看,从“应当”二字读起,确实没错。仔细观看字迹,也没有涂改,县官不知其中奥秘,只好自认倒霉。

县官知道执事官在纸条上做了手脚,怀恨在心,伺机报复。一日,又拿了一张纸条,要执事官一笔将正反两面涂黑,否则就要将其拘役。执事官不慌不忙地把纸条扭了一下,粘住两端,提笔在纸环上一划,又拆开两端,只见纸条正反面均涂上黑色。县官的毒计又落空了。

现实可能根本不会发生这样的故事,但是这个故事却很好地反映出“莫比乌斯带”的特点。

2、它也经常出现在科幻小说里面,由A.J.Deutsch创作的短篇小说《一个叫麦比乌斯的地铁站》为波士顿地铁站创造了一个新的行驶线路,整个线路按照麦比乌斯方式扭曲,走入这个线路的火车都消失不见。

3、在日本漫画《哆啦A梦》中,哆啦A梦有个道具的外观就是麦比乌斯带;在故事中,只要将这个环套在门把上,则外面的人进来之后,看到的仍然是外面。

4、在日本的艾斯奥特曼第23话《逆转!佐菲登场》中TAC队利用麦比乌斯带的原理,让北斗和南进入异次元空间消灭了亚波人。

5、在电玩游戏 "音速小子 - 滑板流星故事" 中最后一关魔王战就是在麦比乌斯带形状的跑道上进行,如果你不打败魔王就会一直在麦比乌斯带上无限循环的滑下去.....

6、 1988年在日本上映的动画电影机动战士高达逆袭的夏亚以麦比乌斯带作为对命运的隐喻:人类就好比行走在麦比乌斯带上的蚂蚁一般,永远逃不出这个怪圈,不断重复着相同的错误,类同的悲剧也在不断地上演。

一、麦比乌斯环只存在一个面。

二、如果沿着麦比乌斯环的中间剪开,将会形成一个比原来的麦比乌斯环空间大一倍的、把纸带的端头扭转了两次再结合的环(并不是莫比乌斯带,在本文中将之编号为:环0),而不是形成两个麦比乌斯环或两个其它形式的环。

三、如果再沿着环0的中间剪开,将会形成两个与环0空间一样的、具有正反两个面的环,且这两个环是相互套在一起的(在本文中将之编号为:环1和环2),从此以后再沿着环1和环2以及因沿着环1和环2中间剪开所生成的所有环的中间剪开,都将会形成两个与环0空间一样的、具有正反两个面的环,永无止境……且所生成的所有的环都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。

六个特征

麦比乌斯环0和生成的所有的环的六个特征:

一、麦比乌斯环是通过将正反面其中的一端反转180度与另一端对接形成的,也因此它将正反面统一为一个面,但也因此而存在了一个“拧劲”,我们在此不妨称之为“麦比乌斯环拧劲”1。

二、从麦比乌斯环生成为环0需要一个“演变的裂变”过程,此“演变的裂变”过程将“麦比乌斯环拧劲”分解成了因“相通”或“相连”从而分别呈现出“螺旋弧”向下和“螺旋弧”向上两个方向“拧”的四个“拧劲”。这四个“拧劲”中的第一个和第三个的“拧劲”将正面转化为反面,而第二个和第四个的“拧劲”再将反面转化为正面,或者说是,这四个的“拧劲”中的第一个和第三个的“拧劲”将反面转化为正面,而第二个和第四个的“拧劲”再将正面转化为反面,使所生成的环0从而存在了“正反”两个面。三、从麦比乌斯环生成为环0的过程,还使环0具有了因相互转换而最终呈现为同一个方向上的、性质不同的四个“拧劲”。“演变的裂变”过程将麦比乌斯环的“麦比乌斯拧劲”分解成环0中的四个“拧劲”,“麦比乌斯拧劲”的“能”也被生成了环0中的这四个“拧劲”的“能”,但环0中的这四个“拧劲”的“能”是“麦比乌斯拧劲”的“能”2倍,新生成的1倍于“麦比乌斯拧劲”的“能”的方向与原来的“麦比乌斯拧劲”的“能”的方向相反。

四、从麦比乌斯环生成为环0的过程,还使环0的空间比麦比乌斯环的空间增大了一倍。

五、从环0生成环n和环n+1的过程,环0中的四个“拧劲”的“能”不会增加,但从环0的“裂变”中,每“裂变”一次会增加一个环0的空间。六、从环0生成环1和环2以及再“裂变”直至环n和环n+1后,所生成的所有的环n和环n+1都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。

从麦比乌斯环的三个奇妙之处和麦比乌斯环、环0以及生成的所有的环的六个特征,我们得到奇妙的启示:

一、无论将麦比乌斯环放在宇宙时空的任何地方,我们同样也会发现麦比乌斯环之外的空间也只能是存在一个面,因此,宇宙时空的任何空间之处也只存在一个面。如果宇宙时空的任何空间之处只存在一个面,那么我们就可以认为宇宙时空中的任何一点与其它的点都是相通的,即整个宇宙时空是相通的,任何一点都是宇宙的中心,也是宇宙的边缘,宇宙时空中的任何物质也都是一样,也都处于宇宙的中心,也都处于宇宙的边缘。

二:宇宙时空中的任何一个点都可以通过“裂变”的方式无中生有地生成一个对立的阴阳两性。无论生成的这一个对立的阴阳两性是否需要载体呈现出来,通过“裂变”的方式,无中生有地、生成的一个对立的阴阳两性,都需要一个比原来的空间大一倍的空间,来体现这生成的、一个对立的阴阳两性。

三:只要存在“裂变”就会使原来的麦比乌斯环不再以“本来面目”存在,或者说,原来的麦比乌斯环已经不存在了。从无中生有的、生成的、具有一个对立的、阴阳两性的环0“复原”成原来的麦比乌斯环,则需要化解一个对立的阴阳两性的面。

四、从麦比乌斯环生成为环0的过程,还使环0具有了因相互转换而最终呈现为同一个方向上的、性质不同的四个“拧劲”。我们得知,任何一个肯定应该是一个具有同一个方向上的、有缺口的或说成是非绝对的否定之否定之否定之否定的矢量(有一定方向的否定)过程。

五、从环0生成环1和环2以及再“裂变”直至环n和环n+1后,所生成的所有的环n和环n+1都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。这说明宇宙万物之间存在普遍联系的法则,而且任何一点或一个事物都与其他所有的宇宙万物相通相连,是不可分割的、不可遗漏的。

六、宇宙万物从最终起源上来讲是没有任何差异的,均起源于只有一个面的空间或者说没有任何面的状态。因此也可以说宇宙万物都是从无中生有中而来,只不过是在演变的过程中呈现出差异而已。

七、在麦比乌斯环生成为环0的“裂变”过程中,无中生有的增加生成原有“拧劲”中的1倍的新的能量,也就是说在新产生的一对阴阳两性关系体的过程中的“裂变”不遵循“能量守恒原则”;而之后的所有的宇宙万物的再“裂变”只能使宇宙的时空增大,不再生成新的能量,而且在“裂变”中必然遵循“能量守恒原则”。

八、宇宙时空中的任何一个点都可以通过无中生有的方式第一次生成阴阳两性,然后再分别以刚生成的阴阳两性为基础生成第一次的阴阳两性的两个物质,第二次、第三次……直至永无穷尽。

麦比乌斯带的发现

对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家麦比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。

有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。

一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯曲着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圆圈。

麦比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将一端的正面和背面粘在一起,这样就做成了只有一个面的纸圈儿。

圆圈做成后,麦比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。麦比乌斯激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。” 麦比乌斯圈就这样被发现了。

做几个简单的实验,就会发现“麦比乌斯圈”有许多让我们感到惊奇而有趣的结果。弄好一个圈,粘好,绕一圈后可以发现,另一个面的入口被堵住了,原理就是这样啊.

实验一

如果在裁好的一张纸条正中间画一条线,粘成“麦比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。

实验二

如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不是一分为二,而是一大一小的相扣环。

有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。

关于麦比乌斯圈的单侧性,可如下直观地了解,如果给麦比乌斯圈着色,色笔始终沿曲面移动,且不越过它的边界,最后可把麦比乌斯圈两面均涂上颜色,即区分不出何是正面,何是反面。对圆柱面则

不同,在一侧着色不通过边界不可能对另一侧也着色。单侧性又称不可定向性。以曲面上除边缘外的每一点为圆心各画一个小圆,对每个小圆周指定一个方向,称为相伴麦比乌斯圈单侧曲面圆心点的指向,若能使相邻两点相伴的指向相同,则称曲面可定向,否则称为不可定向。麦比乌斯圈是不可定向的。

麦比乌斯圈还有着更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在麦比乌斯圈上获得了解决。比如在普通空间无法实现的“手套易位问题”:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套。不过,倘若你把它搬到麦比乌斯圈上来,那么解决起来就易如反掌了。

“手套移位问题”告诉我们:堵塞在一个扭曲了的面上,左、右手系的物体可以通过扭曲实现转换。让我们展开想象的翅膀,设想我们的空间在宇宙的某个边缘,呈现出麦比乌斯圈式的弯曲。那么,有朝一日,我们的星际宇航员会带着左胸腔的心脏出发,却带着右胸腔的心脏返回地球呢!瞧,麦比乌斯圈是多么的神奇!但是,麦比乌斯圈具有一条非常明显的边界。这似乎是一种美中不足。公元1882年,另一位德国数学家费力克斯·克莱茵(Felix Klein,1849~1925),终于找到了一种自我封闭而没有明显边界的模型,后来以他的名字命名为“克莱因瓶”。这种怪瓶实际上可以看作是由一对麦比乌斯圈,沿边界粘合而成。

定积分的简单应用求体积

定积分的简单应用求体 积 Document number:BGCG-0857-BTDO-0089-2022

定积分的简单应用(二) 复习: (1) 求曲边梯形面积的方法是什么 (2) 定积分的几何意义是什么 (3) 微积分基本定理是什么 引入: 我们前面学习了定积分的简单应用——求面积。求体积问题也是定积分的一个重要应用。下面我们介绍一些简单旋转几何体体积的求法。 1. 简单几何体的体积计算 问题:设由连续曲线()y f x =和直线x a =,x b =及x 轴围成的平面图形(如图甲) 绕x 轴旋转一周所得旋转体的体积为V ,如何求V 分析: 在区间[,]a b 内插入1n -个分点,使0121n n a x x x x x b -=<<<<<=,把曲线()y f x =(a x b ≤≤)分割成n 个垂直于x 轴的“小长条”,如图甲所示。设第i 个“小长条”的宽是1i i i x x x -?=-,1,2,,i n =。这个“小长条”绕x 轴旋转一周就得到一个厚度是i x ?的小圆片,如图乙所示。当i x ?很小时,第i 个小圆片近似于底面半径为()i i y f x =的小圆柱。因此,第i 个小圆台的体积i V 近似为2()i i i V f x x π=? 该几何体的体积V 等于所有小圆柱的体积和:

2221122[()()()]n n V f x x f x x f x x π≈?+?+ +? 这个问题就是积分问题,则有: 22()()b b a a V f x dx f x dx ππ==?? 归纳: 设旋转体是由连续曲线()y f x =和直线x a =,x b =及x 轴围成的曲边梯形绕x 轴旋转而成,则所得到的几何体的体积为2()b a V f x dx π=? 2. 利用定积分求旋转体的体积 (1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数 (2) 分清端点 (3) 确定几何体的构造 (4) 利用定积分进行体积计算 3. 一个以y 轴为中心轴的旋转体的体积 若求绕y 轴旋转得到的旋转体的体积,则积分变量变为y ,其公式为 2()b a V g y dy π=? 类型一:求简单几何体的体积 例1:给定一个边长为a 的正方形,绕其一边旋转一周,得到一个几何体,求它的体积 思路: 由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。 解:以正方形的一个顶点为原点,两边所在的直线为,x y 轴建立如图所示的平面直角 坐标系,如图:BC y a =。则该旋转体即为圆柱的体积为: 22300|a a V a dx a x a πππ=?==?

《定积分》教学设计与反思

《定积分》教学设计与反思 学习目标 1、通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分. 2、通过实例体会用微积分基本定理求定积分的方法. 教学重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 教学难点:了解微积分基本定理的含义. 一、自主学习: 1.定积分的定义:, 2.定积分记号: 思想与步骤 几何意义. 3.用微积分基本定理求定积分 二、新知探究 新知1:微积分基本定理: 背景:我们讲过用定积分定义计算定积分,但如果要计算,其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 探究问题1:变速直线运动中位置函数S(t)与速度函数v(t)之间的联系 设一物体沿直线作变速运动,在时刻t时物体所在位移为S(t),速度为v(t)(), 则物体在时间间隔内经过的位移记为,则 一方面:用速度函数v(t)在时间间隔求积分,可把位移= 另一方面:通过位移函数S(t)在的图像看这段位移还可以表示为 探究问题2: 位移函数S(t)与某一时刻速度函数v(t)之间的关系式为 上述两个方面中所得的位移可表达为 上面的过程给了我们启示 上式给我们的启示:我们找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。 定理如果函数是上的连续函数的任意一个原函数,则

该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法。 例1.计算下列定积分: 新知2:用定积分几何意义求下列各式定积分: 若求 新知3:用定积分求平面图形的面积 1、计算函数在区间的积分 2、计算函数在区间的积分 3、求与在区间围成的图形的面积 通过此题的计算你发现了什么? 教学反思 本课的教学设计,是在新课程标准理念指导下,根据本班学生实际情况进行设计的。从实施情况来看,整堂课学生情绪高涨、兴趣盎然。在教学中,教师一改往日应用题教学的枯燥、抽象之面貌,而是借用学生已有的知识经验和生活实际,有效地理解了微积分的基本定理,具体反思如下: 1、改变定理的表述形式,丰富信息的呈现方式。 根据高中学生的认知特点,我在教学过程中,出示例题、习题时,呈现形式力求多样、新颖,让学生多种感官一起参与,以吸引学生的注意力,培养对数学的兴趣。本课的教学中,我大胆地改变了教材中实例分析顺序,重组和创设了这样一个情境,从而引入速度关于时间的定积分背景,即切合学生的生活实际,又让学生发现了定理的实际意义,理解了定理的本质,激发了学生学习的兴趣。并更好地为下一环节的自主探索、主动发展作好充分的准备。 2、突出数学应用价值,培养学生的应用意识和创新能力 《数学课程标准》中指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念,例题中涉及路程和速度,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。

§1.7定积分的简单应用

定积分的简单应用 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==? =??及,所以两曲线的交点为 (0,0)、(1,1),面积S=1 1 20 xdx x dx = -? ?,所以 ?1 2 0S =(x -x )dx 321 3 023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 2 x y =y x A B C D O

巩固练习 计算由曲线36y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x = 以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =-与曲线2y x =的交点的横坐标, 直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图1. 7一2 阴影部分的 面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 334 82822044 2222140||(4)|23 x x x =+-=. 由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图, 再借助图形直观确定出被积函数以及积分的上、下限. 例3.求曲线], [sin 320π∈=x x y 与直线,,3 20π==x x x 轴所围成的图形面积。

2021-2022版高中物理人教版选修3-2学案:第四章 6 互感和自感

6 互感和自感 目 标导航思维脉图 1.知道互感现象和自感现象都属 于电磁感应现象。(物理观念) 2.知道自感电动势对电流变化的 影响符合楞次定律。(物理观念) 3.知道自感电动势大小受到哪些 因素影响。(科学探究) 4.了解自感现象在生产生活中的 应用和怎样预防其带来的不利影 响。 (科学思维) 必备知识·自主学习 一、互感现象 二、自感现象 1.自感现象:一个线圈中的电流变化时,它所产生的变化的磁场在它本

身激发出感应电动势的现象,产生的电动势叫作自感电动势。 2.通电自感和断电自感: 电路现象 自感电动势 的作用 通电 自感接通电源的瞬间,灯泡A1较慢地亮起来 阻碍电流 的增加 断电自感 断开开关的瞬间,灯泡A逐渐变暗。有时灯泡 A会闪亮一下,然后逐渐变暗 阻碍电流 的减小 3.自感系数: (1)自感电动势的大小:E=L,其中L是线圈的自感系数,简称自感或电感。 (2)单位:亨利,符号:H。常用的还有毫亨(mH)和微亨(μH)。换算关系是:1H=103mH=106μH。 (3)决定线圈自感系数大小的因素:线圈的大小、形状、圈数以及是否 有铁芯等。 三、自感现象中的能量转化 1.自感现象中的磁场能量: (1)线圈中电流从无到有时,磁场从无到有,电源的能量输送给磁场,储 存在磁场中。 (2)线圈中电流减小时,磁场中的能量释放出来转化为电能。 2. 电的“惯性”:

自感电动势有阻碍线圈中电流变化的“惯性”。 (1)自感现象中,感应电动势一定和原电流方向相反。(×) (2)线圈中产生的自感电动势较大时,其自感系数一定较大。(×) (3)对于同一线圈,当电流变化较快时,线圈中的自感电动势也较大。(√) (4)没有发生自感现象时,即使有磁场也不会储存能量。(×) 关键能力·合作学习 知识点一自感现象的产生与规律 1.自感现象的产生:当线圈中的电流变化时,产生的磁场及穿过自身的 磁通量随之变化,依据楞次定律,会在自身产生感应电动势,叫自感电 动势。 2.规律:自感现象也是电磁感应现象,也符合楞次定律,可表述为自感 电动势总要阻碍引起自感的原电流的变化。 (1)当原电流增加时,自感电动势阻碍原电流的增加,方向与原电流方 向相反。 (2)当原电流减小时,自感电动势阻碍原电流的减小,方向与原电流方 向相同。 (3)自感电动势总要阻碍引起自感的原电流的变化,但阻止不住,只是 变化得慢了。 收音机里的“磁性天线”怎样把广播电台的信号从一个线圈传到另一 个线圈?

勾股定理及其逆定理的综合应用教案教学设计导学案

知识点:勾股定理及其逆定理的综合运用 问题情境1:运用勾股定理和逆定理求面积 问题模型:已知一含有直角的四边形的边长,综合运用定理和逆定理求面积 求解模型: 【例题】 【分析】由于∠B 是直角,因此连接AC 将问题转化为直角三角形问题加以解决;求出AC 的长,再在三角形ACD 中用逆定理判定其为直角三角形,再求面积。 【答案】 练习 1.已知:如图,四边形ABCD ,AB=1,BC=43,CD=413,AD=3,且AB ⊥BC 。 求:四边形ABCD 的面积。 在已知直角三角形中运用定理求出对角线长 连对角线将四边形分为两个三角形,其中一个为直角三角形 运用逆定理判定另一三角形为直角三角形 求四边形的面积 D A B C A D C B

【答案】 连接AC ,在Rt △ABC 中用勾股定理求出AC= 4 5 ,在 △ACD 中由AD 、CD 的长结合AC 的长,运用逆定理判定它为直角三角形,求出两直角三角形面积再求和,得四边形的面积为 4 9。 【答案】 3.在△ABC 中,AB =15,AC =13,D 是BC 边上一点,AD =12,BD =9,则△ABC 的面积 为 . 【答案】84 4.如图,已知CD =6m ,AD =8m ,∠ADC =90°,BC =24m ,AB =26m .求图中阴影部分的面 积. 【答案】96cm 2 问题情境2:运用勾股定理和逆定理求四边形的角度 问题模型:已知一含一直角的四边形的边长,综合运用定理和逆定理求角度 求解模型: 在已知直角三角形中运 用定理求出对角线长 连对角线将四边形分为两个三角形,其中一个为直角三角形 运用逆定理判定另一三角形为直角三角形 用特殊角求角度 A C B D (第4题)

初中数学教师资格面试《勾股定理的逆定理》教案

初中数学教师资格面试《勾股定理的逆定理》教案: 课题:勾股定理的逆定理 课型:新授课 课时安排:1课时 教学目的: 一、知识与技能目标 通过对一些典型题目的思考、练习,能正确、熟练的进行勾股定理有关计算,深入对勾股定理的理解。 二、过程与方法目标 通过对一些题目的探讨,以达到掌握知识的目的。 三、情感、态度与价值观目标 感受数学在生活中的应用,感受数学定理的美。 教学重点:勾股定理的应用。 教学难点:勾股定理的灵活应用。

课前准备:圆规、直尺。 教学过程: (一)导入 1、创设情境 据说,几千年前的古埃及人就已经知道,在一根绳子上连续打上等距离的13个结,然后,用钉子将第1个与第13个结钉在一起,拉紧绳子,再在第4个和第8个结处各钉上一个钉子,如图。这样围成的三角形中,最长边所对的角就是直角。知道为什么吗? 这节课我们一起来探讨这个问题,相信同学们会感兴趣的。 2、动手操作 用圆规、直尺作△ABC,使AB=5cm,AC=4cm,BC=3cm,如图,量一量∠C,它是90°吗?

例1:根据下列三角形的三边的值,判断三角形是不是直角三角形。如果是,指出哪条边所对的角是直角?3、抛出问题 为什么用上面的三条线段围成的三角形,就一定是直角三角形呢?它们的三边有怎样的关系? (二)新授 1、小组合作 如果一个三角形的三边长a、b、c满足下面的关系,那么这个三角形是直角三角形吗? 通过讨论和证明可以得到如下定理:勾股定理的逆定理——如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。 2、进一步检验 例2已知:在△ABC中,三条边长分别为,,。求证:△ABC为直角三角形。

定积分的简单应用(6)

§1.7 定积分的简单应用(一) 一:教学目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 解:201y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 1 20 xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图阴影部分的面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 33482822044 2222140||(4)|3323 x x x =+-=. 例3.求曲线],[sin 3 20π ∈=x x y 与直线,,3 20π ==x x x 轴所围成的图形面积。 答案: 2 33 2320 = -=? ππo x xdx S |cos sin = 练习 1、求直线32+=x y 与抛物线2x y =所围成的图形面积。 答案:3 32 33323132 23 1= -+=--? |))x x x dx x x S (-+(= 2、求由抛物线342-+-=x x y 及其在点M (0,-3) 2 x y =y x = A B C D O

2021人教版选修《互感和自感》word学案

2021人教版选修《互感和自感》word学案 学习目标 1.明白什么是互感现象和自感现象。 2.明白自感系数是表示线圈本身特点的物理量,明白它的单位及其大小的决定因素。 3. 通过电磁感应部分知识分析通电、断电自感现象的缘故及磁场的能量转化问题。 4.认识互感和自感是电磁感应现象的特例,感悟专门现象中有它的普遍规律,而普遍规律中包含了专门现象的辩证唯物主义观点。 情境导入: 在法拉第的实验中两个线圈并没有用导线连接,当一个线圈中的电流变化时,在另一个线圈中什么缘故会产生感应电动势呢? 当电路自身的电流发生变化时,会可不能产生感应电动势呢? 问题: 1、什么是互感现象?什么是自感现象?产生的本质相同吗? 2、演示通电自感现象: 画出电路图(如图所示),A1、A2是规格完全一样的灯泡。闭 合电键S,调剂变阻器R,使A1、A2亮度相同,再调剂R1,使两灯 正常发光,然后断开开关S。重新闭合S,观看到什么现象?什么 缘故A1比A2亮得晚一些?试用所学知识(楞次定律)加以分析说 明。 3、演示断电自感现象: 画出电路图(如图所示)接通电路,待灯泡A正常发光。然后断开 电路,观看到什么现象?什么缘故A灯不赶忙熄灭? 4、自感电动势的大小决定于哪些因素呢?请同学们阅读教材内容。然后用自己的语言加以概括. 5、在断电自感的实验中,什么缘故开关断开后,灯泡的发光会连续一段时刻?甚至会比原先更亮?试从能量的角度加以讨论。 自我小结:

自我检测: 1、所示,电路甲、乙中,电阻R和自感线圈L的电阻值都专门小,接通S,使电路达到稳固,灯泡D发光。则() A.在电路甲中,断开S,D将逐步变暗 B.在电路甲中,断开S,D将先变得更亮,然后慢慢变暗 C.在电路乙中,断开S,D将慢慢变暗 D.在电路乙中,断开S,D将变得更亮,然后慢慢变暗 2、如图所示,自感线圈的自感系数专门大,电阻为零。电键K 原先是合上的,在K断开后,分析: (1)若R1>R2,灯泡的亮度如何样变化? (2)若R1<R2,灯泡的亮度如何样变化? 3、如图所示电路,线圈L电阻不计,则() A、S闭合瞬时,A板带正电,B板带负电 B、S保持闭合,A板带正电,B板带负电 C、S断开瞬时,B板带正电,A板带负电 D、由于线圈电阻不计,电容被短路,上述三种情形电容器两板都不带电

勾股定理的逆定理说课稿 人教版(精美教案)

《勾股定理的逆定理》说课稿 一、教材分析 (一)、本节课在教材中的地位作用 “勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。 (二)、教学目标:根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。 知识技能: 、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。 、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形 过程与方法: 、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程 、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用 、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。 情感态度: 、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系 、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神 (三)、学情分析 尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。 重点:勾股定理逆定理的应用 难点:勾股定理逆定理的证明 关键:辅助线的添法探索 二、教学过程 本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。 (一)、复习回顾: 复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。 (二)、创设问题情境 一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机

定积分教学设计

定积分的简单应用 一、教学目标 1、 知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、 过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、 情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 二、 教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题,正确计算。 三、教学过程 (一)创设问题情境: 复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 引入:.计算 dx x ? --2 2 2 4 2.计算 ?-22 sin π πdx x 思考:用定积分表示阴影部分面积 选择X 为积分变量,曲边梯形面积为 (二)研究开发新结论 1计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成图形的面积S. 2计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成的图形的面积S. 总结解题步骤:1找到图形----画图得到曲边形. 2曲边形面积解法----转化为曲边梯形,做出辅助线. dx x f dx x f s b a b a ??-=)()(21

3定积分表示曲边梯形面积----确定积分区间、被积函数. 4计算定积分. (三)巩固应用结论 例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积. 分析:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得 到。 解:2 01y x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、 (1,1),面积 S=1 20 x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象; 2.求交点; 3.用定积分表示所求的面积; 4.微积分基本定理求定积分。 巩固练习 计算由曲线36y x x =-和2y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y =x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =- 与曲线y =的横坐标,直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线y = 的草图,所求面积为图1. 7一2 阴影部分的面积. 解方程组4 y y x ?=?? =-?? 得直线4y x =-与曲线y =8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 28 4 4 [(4)]x dx = +--? ? ? -1

自感现象与日光灯学案

1.5自感现象与日光灯 编写人:高有富审核人:审批人: 班组姓名组评:师评: 【学习目标】 1、理解自感现象和自感电动势。阅读教材P29—P30 2、知道自感系数是表示线圈本身特征的物理量,知道它的单位。阅读教材P30 3、知道影响自感系数的因素。 4、了解日光灯的基本结构和原理。阅读教材P27 5、了解互感现象。阅读教材P27 【学习指导】, 1.自感现象:由于导体本身电流发生而产生的电磁感应现象叫自感现象. 2.自感电动势的方向:根据楞次定律判定. 自感电动势总要阻碍导体中电流的,当导体中的电流增大时,自感电动势与原电流方向;当导体中的电流减小时,自感电动势与原电流方向. 3.自感现象的应用——日光灯原理 (1)日光灯的电路图:主要由灯管、和启动器组成. (2)启动器的作用:自动开关的作用 (3)镇流器有两个作用:起动时,通过启动器的通断,在镇流器中产生,从而激发日光灯管内的气体导电.正常工作时,镇流器的线圈产生自感电动势,阻碍电流的变化,这时镇流器就起着的作用,保证日光灯的正常工作.★★★★ 【预习检测】★1.下列关于自感现象的说法中,正确的是() A.自感现象是由于导体本身的电流发生变化而产生的电磁感应现象 B.线圈中自感电动势的方向总与引起自感的原电流的方向相反 C.线圈中自感电动势的大小与穿过线圈的磁通量变化的快慢有关 D.加铁芯后线圈的自感系数比没有铁芯时要大 ★★2.如图所示,L为一个自感系数大的自感线圈,开关闭合 后,小灯能正常发光,那么闭合开关和断开开关的瞬间,能观察到 的现象分别是() A.小灯逐渐变亮,小灯立即熄灭 B.小灯立即亮,小灯立即熄灭 C.小灯逐渐变亮,小灯比原来更亮一下再慢慢熄灭 D.小灯立即亮,小灯比原来更亮一下再慢慢熄灭 ★★3.关于自感现象,下列说法中正确的是( ) (A)感应电流不一定和原电流方向相反 (B)线圈中产生的自感电动势较大的其自感系数一定较大 (C)对于同一线圈,当电流变化较快时,线圈中的自感系数也较大

初中数学_勾股定理的逆定理教学设计学情分析教材分析课后反思

《勾股定理的逆定理》教学设计 课题 勾股定理的逆定理 课型 新授课 课时 1 学习目标 1.了解逆命题、逆定理的概念;探索并掌握勾股定理的逆定理,会用勾股定理的逆定理判断直角三角形。 2.经历“探索-发现-猜想-证明”的探究过程,体会用“构造法”证明数学命题的方法,发展推理能力。 3.通过对勾股定理的逆定理的探索,培养学生的交流、合作的意识和严谨的学习态度。 学习过程 环节与内容 师生互动 设计意图 (一) 创设情境,引入新课 古埃及人制作直角 问题:据说古埃及人用下图的方 法画直角:把一根长蝇打上等距 离的13个结,然后以3个结,4 个结、5个结的长度为边长,用 木桩钉成一个三角形,其中一个 角便是直角。 教师将准备好的绳结给学生,让学生实际的操作感受 通过古埃及人制作直角的方法,提出让学生动手操作,进而使学生产生好奇心:“这样就能确定直角吗”,激发学生的求知欲,点燃其学习的激情,充分调动学生的学习积极性 (二)普度求是 ?探究活动1: 1.小试牛刀: (1)动手画一画:以3,4,5为边作 △ABC 。(回忆用“SSS ”作三角形的方法) 5 4 3 (2)大胆猜一猜:得到的△ABC 是个 什么三角形?怎样验证你的猜 想? 2. 合作探究: (1)画一画:分别以①2.5,6,6.5; ②4,5,6;③6,8,10为三角形的三边 长,作三角形。 ① 以2.5,6,6.5为边作△ABC 。 学生实际动手画图,量角,验证 教师以平等身份参与到学生活动中来,对其实践活动予以指 学生在三组线段为边画出三角形,猜测验证出其形状 学生进一步以小组为单位,按给出的三组数作出三角形(1)这 让学生如实再现情境,在自己充分操作、认知的情况下进行猜想与归纳,体验数学思考的魅力和知识创造的乐趣,使学生真正成为主动学习者。 同时回忆作图方法为后面的多组验证做好铺垫。

勾股定理的逆定理的应用 公开课获奖教案

第2课时 勾股定理的逆定理的应用 1.进一步理解勾股定理的逆定理;(重点) 2.灵活运用勾股定理及逆定理解决实际问题.(难点) 一、情境导入 某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗? 二、合作探究 探究点:勾股定理的逆定理的应用 【类型一】 运用勾股定理的逆定理求角度 如图,已知点P 是等边△ABC 内 一点,P A =3,PB =4,PC =5,求∠APB 的度数. 解析:将△BPC 绕点B 逆时针旋转60°得△BEA ,连接EP ,判断△APE 为直角三角形,且∠APE =90°,即可得到∠APB 的度数. 解:∵△ABC 为等边三角形,∴BA =BC .可将△BPC 绕点B 逆时针旋转60°得△BEA ,连EP ,∴BE =BP =4,AE =PC =5,∠PBE =60°,∴△BPE 为等边三角形,∴PE =PB =4,∠BPE =60°.在△AEP 中,AE =5,AP =3,PE =4,∴AE 2=PE 2+P A 2,∴△APE 为直角三角形,且∠APE =90°,∴∠APB =90°+60°=150°. 方法总结:本题考查了等边三角形的判 定与性质以及勾股定理的逆定理.解决问题 的关键是根据题意构造△APE 为直角三角形. 【类型二】 运用勾股定理的逆定理求边长 在△ABC 中,D 为BC 边上的点, AB =13,AD =12,CD =9,AC =15,求BD 的长. 解析:根据勾股定理的逆定理可判断出△ACD 为直角三角形,即∠ADC =∠ADB =90°.在Rt △ABD 中利用勾股定理可得出BD 的长度. 解:∵在△ADC 中,AD =12,CD =9,AC =15,∴AC 2=AD 2+CD 2,∴△ADC 是直角三角形,∠ADC =∠ADB =90°,∴△ADB 是直角三角形.在Rt △ADB 中,∵AD =12,AB =13,∴BD =AB 2-AD 2=5,∴BD 的长为5. 方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中. 【类型三】 勾股定理逆定理的实际应用 如图,是一农民建房时挖地基的 平面图,按标准应为长方形,他在挖完后测量了一下,发现AB =DC =8m ,AD =BC =6m ,AC =9m ,请你运用所学知识帮他检验一下挖的是否合格? 解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是

高中数学选修2-2优质学案:§1.5 定积分的概念

[学习目标] 1.了解定积分的概念.2.理解定积分的几何意义.3.通过求曲边梯形面积的过程和解决有关汽车行驶路程问题的过程,了解“以直代曲”“以不变代变”的思想.4.能用定积分的定义求简单的定积分. 知识点一曲边梯形的面积和汽车行驶的路程 1.曲边梯形的面积 (1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线________所围成的图形称为曲边梯形(如图①所示). (2)求曲边梯形面积的方法 把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些________,对每个__________“以直代曲”,即用__________的面积近似代替__________的面积,得到每个小曲边梯形面积的________,对这些近似值______,就得到曲边梯形面积的________(如图②所示). (3)求曲边梯形面积的步骤:①________,②________,③________,④________. 2.求变速直线运动的(位移)路程 如果物体做变速直线运动,速度函数v=v(t),那么也可以采用________,________,________,________的方法,求出它在a≤t≤b内所作的位移s. 思考(1)如何计算下列两图形的面积?

(2)求曲边梯形面积时,对曲边梯形进行“以直代曲”,怎样才能尽量减小求得的曲边梯形面积的误差? 知识点二 定积分的概念 如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

定积分的简单应用

定积分的简单应用 海口实验中学陈晓玲 一、教材分析 “定积分的简单应用”是人教A版《普通高中课程标准实验教科书数学》选修2-2第一章1.7的内容。从题目中可以看出,这一节教学的要求就是让学生在充分认识导数与积分的概念,计算,几何意义的基础上,掌握用积分手段解决实际问题的基本思想和方法,在学习过程中了解导数与积分的工具性作用,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大生命力。在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础。 二、教学目标(以教材为背景,根据课标要求,设计了本节课的教学目标) 1、知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 三、教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题。 四、教学用具:多媒体 五、教学设计

教学环节教学设计师生 互动 设计意图 一、 创设情境 引出新课1、生活实例: 实例1:国家大剧院的主题构造 类似半球的构造,如何计算建造时中间玻璃段的使用面积? 边缘的玻璃形状属于曲边梯形,要计算使用面积可以通过计算 曲边梯形的面积实现。 实例2:一辆做变速直线运动的汽车,我们如何计算它行驶的 路程? 2、复习回顾: 如何计算曲边梯形的面积? 3、引入课题: 定积分的简单应用 学生:观 察。 教师:启 发,引导 学生:思 考,回 忆。 学生:疑 惑,思 考,感 受。 教师:启 发,引 导。 学生:复 习,回忆 老师:引 入课题 数学源于生活,又服 务于生活。 通过对国家大剧院的 观察,创设问题情境,体 验数学在现实生活中的 无处不在,激发学生的学 习热情,引导他们积极主 动的参与到学习中来。 启发学生把物理问题 与数学知识联系起来,训 练学生对学科间的思维 转换和综合思维能力。 学生感受定积分的工 具性作用与应用价值。 在生活实例的启发 下,引导学生把所学知识 与实际问题联系起来,回 忆如何计算曲边梯形面 积。 这是这节课的知识基 础。 引入本节课的课题。 哎呀,里程表坏了,你 能帮我算算我走了多 少路程吗? x y o y f(x) = a b A ?=b a dx x f A) (

高中第一章四第五六节电磁感应规律应用导学案粤教选修

第一章 电磁感应(四)电磁感应规律的应用(2)(第五、六节) 【自主学习】 学习目标 1.能综合应用楞次定律和法拉第电磁感应定律解决电磁感应中的图象问题. 2.掌握电磁感应中动力学问题的分析方法. 3.能解决电磁感应中的动力学与能量结合的综合问题. 4.会分析自感现象及日光灯工作原理。 一、 自主学习 1.感应电流的方向一般是利用楞次定律或右手定则进行判断;闭合电路中产生的感应电动势E =n ΔΦ Δt 或E =BLv. 2.垂直于匀强磁场放置、长为L 的直导线通过电流I 时,它所受的安培力F =BIL ,安培力方向的判断用左手定则. 3.牛顿第二定律:F =ma ,它揭示了力与运动的关系. 当加速度a 与速度v 方向相同时,速度增大,反之速度减小.当加速度a 为零时,物体做匀速直线运动. 4.电磁感应现象中产生的电能是通过克服安培力做功转化而来的. 二、 要点透析 要点一 电磁感应中的图象问题 1.对于图象问题,搞清物理量之间的函数关系、变化范围、初始条件、斜率的物理意义等,往往是解题的关键. 2.解决图象问题的一般步骤 (1)明确图象的种类,是B -t 图象还是Φ-t 图象,或者E -t 图象、I -t 图象等. (2)分析电磁感应的具体过程. (3)用右手定则或楞次定律确定感应电流的方向. (4)用法拉第电磁感应定律E =n ΔΦ Δt 或E =BLv 求感应电动势的大小. (5)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式. (6)根据函数关系画图象或判断图象,注意分析斜率的意义及变化. 问题一 匀强磁场的磁感应强度B =0.2 T ,磁场宽度l =4 m ,一正方形金属框边长ad =l′=1 m ,每边的电阻r =0.2 Ω,金属框以v =10 m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图所示.求: (1)画出金属框穿过磁场区的过程中,各阶段的等效电路图. (2)画出金属框穿过磁场区的过程中,金属框内感应电流的i -t 图线;(要求写出作图依据) 课 前 先学案

勾股定理的逆定理(一)导学案

图18.2-2 通海中学勾股定理的逆定理(一)导学案 班级: 姓名: 学号: 学习目标 1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。 2.探究勾股定理的逆定理的证明方法。 3.理解原命题、逆命题、逆定理的概念及关系。 重点:掌握勾股定理的逆定理及简单应用。 难点:勾股定理的逆定理的证明。 一.预习新知(阅读教材P73 — 75 , 完成课前预习) 1.三边长度分别为3 cm 、4 cm 、5 cm 的三角形与以3 cm 、4 cm 为直角边的直角三角形之间有什么关系?你是怎样得到的? 2.你能证明以6cm 、8cm 、10cm 为三边长的三角形是直角三角形吗? 3.如图18.2-2,若△ABC 的三边长a 、b 、c 满足222c b a =+,试证明△ABC 是直角三 角形,请简要地写出证明过程. 4.此定理与勾股定理之间有怎样的关系? (1)什么叫互为逆命题 (2)什么叫互为逆定理 (3)任何一个命题都有 _____,但任何一个定理未必都有 __ 5.说出下列命题的逆命题。这些命题的逆命题成立吗? (1) 两直线平行,内错角相等; (2) 如果两个实数相等,那么它们的绝对值相等; (3) 全等三角形的对应角相等; (4) 角的内部到角的两边距离相等的点在角的平分线上。 二.课堂展示 例1:判断由线段a 、b 、c 组成的三角形是不是直角三角形: (1)17,8,15===c b a ; (2)15,14,13===c b a . (3)25,24,7===c b a ; (4)5.2,2,5.1===c b a ; 三.随堂练习

《勾股定理的逆定理》教案

勾股定理的逆定理 (1)教案

图18.2-2 [活动2] 建立模型 1.你能证明以2.5cm 、6cm 、6.5cm 为三边长的三角形是直角三角形吗? 2.如图18.2-2,若△ABC 的三边长a 、b 、c 满足222c b a =+,试证明△是直角三角形,请简要地写出证明过程. [活动3]理论释意 任意三角形的三边长a 、b 、c ,只要满足222c b a =+,一定可以得到此三角形为直角三角形。 1.教材75页练习第1题. 学生结合活动1的体验,独立思考问题1,通过小组交流、讨论,完成问题2.在此基础上,说出问题2的证明思路. 教师提出问题,并适时诱导,指导学生完成问题2的证明.之后,归纳得出勾股定理的逆定理.在此基础上,类比定理与逆定理的关系,介绍逆命题(定理)的概念,并与学生一起完成问题. 在活动2中教师应关注: (1)学生能否联想到了“‘全等’,进而设法构造全等三角形”这一问题获解的关键; (2)学生在问题2中,所表现出来的构造直角三角形的意识; (3)是否真正地理解了AB =A /B / (如图18.2-2);数形结合的意识和由特殊到一般的数学思想方法; 在活动3中 (1)利用几何画板,从理论上改变三角形三边的大小,度量∠BAC 是否为直角.从实践上去检验命题的正确性,加深学生对勾股逆定理的理解; 变“命题+证明=定理”的推理模式为定理的发生、发展、形成的探究过程,把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦. 利用几何画板去验证勾股定理的逆定理,让理论上释意形象生动,可强化学生的记忆,使学生对定理的理解更深刻. [活动4] 拓展应用 1.例1:判断由线段a 、b 、c 组成的三角形是不是直角三角形: (1)17,8,15===c b a ; (2)15,14,13===c b a . 小试牛刀 1.教材76页习题18.2第1题(1)、(3). 2. 在下列长度的四组线段中,不能组成直角三角形的是( ). A.a =5,b =12,c =13 B .25,5===c b a C.a =9,b =40,c =41 D .15,12,11===c b a 在活动4中 学生说出问题(1)的判断思路,部分学生演板问题2,剩下的学生在课堂作业本上完成. 教师板书问题1的详细解答过程,并纠正学生在练习中出现的问题,最后向学生介绍勾股数的概念. 在活动4中教师应重点关注: (1)学生的解题过程是否规范; (2)是不是用两条较小边长的平方和与较大边长的平方进行比较; (3)活动4中的练习可视课堂情形而定,如果时间不允许,可处理部分. 进一步熟悉和掌握勾股定理的逆定理及其运用,理解勾股数的概念,突出本节的教学重 点.

相关文档
相关文档 最新文档