文档库 最新最全的文档下载
当前位置:文档库 › 过程系统模型的求解方法

过程系统模型的求解方法

过程系统模型的求解方法
过程系统模型的求解方法

1.4 过程系统模型的求解方法

过程系统的模型建立后,给定系统的一组决策变量(或设计变量),通过求解过程系统的模型,就能得出全部物流的状态变量的值。根据描述过程系统的模型不同,求解方法可以归纳为三类:

①序贯模块法(Sequential Modular Method) ;

②联立方程法(Equation Based Method) ;

③联立模块法(Simulancous Modular Method)。

(1)序贯模块法

序贯模块法是开发最早、应用最广的过程系统模拟方法。目前绝大多数的过程系统模拟软件都属于这一类。这种方法的基本思想是:首先建立描述过程单元的数学模块(子程序),然后根据描述过程系统流程的结构模型,确定模块的计算顺序,序贯地对各单元模块进行计算,从而完成过程系统的模拟计算。

序贯模块法的优点是与实际过程的直观联系强;模拟系统软件的建立、维护和扩充都很方便,易于通用化;计算出错时易于诊断出错位置。其主要缺点是计算效率较低,尤其是解决设计和优化问题时计算效率更低,如图2-9所示。虽然如此,序贯模块法仍不失为一种优秀的方法。

(2)联立方程法

联立方程法又称为面向方程法,其基本思想是:将描述整个过程系统的数学方程式联立求解,从而得出模拟计算结果。联立方程法可以根据问题的要求灵活地确定设计变量(决策变量)。此外,联立方程法就好像把图2-9中的循环圈1~4合并成为一个循环圈(如图2-10所示)。这种合并意味着其中所有的方程同时计算和同步收敛。因此,联立方程法解算过程系统模型快速有效,对设计、优化问题灵活方便,效率较高。联立方程法一直被认为是求解过程系统的理想方法,但在实践上存在一些问题。主要在于:形成通用软件比较困难;不能利用现有大量丰富的单元模块;缺乏实际流程的直观联系;计算失败之后难于诊断错误所在;对初值的要求比较苛刻;计算技术难度较大等。但是由于其具有显著优势,这种方法一直备受人们的青睐。

图2-9 序贯模块法的迭代循环圈

图2-10 联立方程法的迭代循环圈

图2-11 联立模块法的迭代循环圈

(3) 联立模块法

联立模块法又被称作双层法,它是集上述两种方法的优点而提出的。

联立模块法的基本思想是:利用严格单元模块模型产生单元的简化模型,然后将所有单元的简化模型构成联立方程组求解。在严格单元模型和流程水平上的简化模型之间进行迭代计算,直到满足收敛条件为止。设计规定可以在流程水平上直接处理。

联立模块法兼有序贯模块法和联立方程法的优点。这种方法既能使用序贯模块法积累的大量模块,又能将最费计算时间的流程收敛和设计约束收敛等迭代循环合并处理(如图2-11所示) ,通过联立求解达到同时收敛。

物性计算 单 算 算

算 流 优 元 计 程 计 算 设

计 计 化 1

2

3

4

过程控制系统习题解答

《过程控制系统》习题解答 1-1 试简述过程控制的发展概况及各个阶段的主要特点。 答:第一个阶段50年代前后:实现了仪表化和局部自动化,其特点: 1、过程检测控制仪表采用基地式仪表和部分单元组合式仪表 2、过程控制系统结构大多数是单输入、单输出系统 3、被控参数主要是温度、压力、流量和液位四种参数 4、控制的目的是保持这些过程参数的稳定,消除或减少主要扰动对生产过程的影响 5、过程控制理论是以频率法和根轨迹法为主体的经典控制理论,主要解决单输入、单输出的定值控制系统的分析和综合问题 第二个阶段60年代来:大量采用气动和电动单元组合仪表,其特点: 1、过程控制仪表开始将各个单元划分为更小的功能,适应比较复杂的模拟和逻辑规律相结合的控制系统 2、计算机系统开始运用于过程控制 3、过程控制系统方面为了特殊的工艺要求,相继开发和应用了各种复杂的过程控制系统(串级控制、比值控制、均匀控制、前馈控制、选择性控制) 4、在过程控制理论方面,现代控制理论的得到了应用 第三个阶段70年代以来:现代过程控制的新阶段——计算机时代,其特点: 1、对全工厂或整个工艺流程的集中控制、应用计算系统进行多参数综合控制 2、自动化技术工具方面有了新发展,以微处理器为核心的智能单元组合仪表和开发和广泛应用 3、在线成分检测与数据处理的测量变送器的应用 4、集散控制系统的广泛应用 第四个阶段80年代以后:飞跃的发展,其特点: 1、现代控制理论的应用大大促进了过程控制的发展 2、过程控制的结构已称为具有高度自动化的集中、远动控制中心 3、过程控制的概念更大的发展,包括先进的管理系统、调度和优化等。 1-2 与其它自动控制相比,过程控制有哪些优点?为什么说过程控制的控制过程多属慢过程? 过程控制的特点是与其它自动控制系统相比较而言的。 一、连续生产过程的自动控制 连续控制指连续生产过程的自动控制,其被控量需定量控制,而且应是连续可调的。若控制动作在时间上是离散的(如采用控制系统等),但是其被控量需定量控制,也归入过程控制。 二、过程控制系统由过程检测、控制仪表组成 过程控制是通过各种检测仪表、控制仪表和电子计算机等自动化技术工具,对整个生产过程进行自动检测、自动监督和自动控制。一个过程控制系统是由被控过程和检测控制仪表两部分组成。 三、被控过程是多种多样的、非电量的 现代工业生产过程中,工业过程日趋复杂,工艺要求各异,产品多种多样;动态特性具有大惯性、大滞后、非线性特性。有些过程的机理(如发酵等)复杂,很难用目前过程辨识方法建立过程的精确数学模型,因此设计能适应各种过程的控制系统并非易事。 四、过程控制的控制过程多属慢过程,而且多半为参量控制 因为大惯性、大滞后等特性,决定了过程控制的控制过程多属慢过程;在一些特殊工业生产过程中,采用一些物理量和化学量来表征其生产过程状况,故需要对过程参数进行自动检测和自动控制,所以过程控制多半为参量控制。

4L模型分析法

4L模型 4L模型(英语名:4-layer Model)是指4层式管理分析模型,是一种管理分析工具,管理者可以用它来分析改善经营管理的方法。该模型收录了企业最常见的管理项目,展示了这些项目在企业管理中的相互作用关系,揭示了提高企业管理水平和运营绩效的具体方法。该模型由我国管理学家利志斌提出。 目录 1.企业管理的系统构成 (1)4L模型简介 (2)项目的分类 (3)隐性管理项目 2.各管理项目的基本规律和作用 (1)基本规律 (2)作用 3.提高管理水平和业绩的方法原则 (1)提升企业整体运营绩效的方法 (2)提高外层管理绩效的方法 (3)提高内层管理项目水平的方法 正文 1.企业管理的系统构成 4L模型图: (1)4L模型简介 4L模型以当前最新管理实践知识为依据,收录了企业文化、流程管理、人力资源管理、

学习型组织等十四个普通企业最常见的管理项目。根据管理项目之间相互作用力的大小,这些管理项目被划分为四层;作用力指的是一个管理项目在提升其他管理项目的管理绩效方面所发挥的作用。最里层是第一层,依次往外为第二层、第三层和第四层。各项目之间的相互作用力由里到外呈递减趋势,第一层管理项目作用力最强。 (2)项目的分类 企业的各个管理项目具体可以分为两大类:显性管理项目和隐性管理项目。显性管理项目是指在企业中设置了专门的职能部门进行管理工作的项目。显性管理项目包括人力资源管理、营销管理、质量管理、财务管理、研发管理、生产管理、采购管理、其他管理等。隐性管理项目则指的是在企业中没有设置相应职能部门的项目。隐性管理项目包括:企业文化、学习型组织管理、流程管理、职业素质、管理技能、战略管理等。虽然隐性管理项目在企业中没有设置专门的职能部门,但它对提高企业整体运营绩效和管理水平起到了决定性的作用。 (3)隐性管理项目 企业中的隐性管理项目具有两个特点:第一,跨部门。隐性管理工作涉及企业每一个部门,并且处理的都是重要事务。隐性管理项目一般不设置专门的职能部门开展、落实管理工作。如果设置专门的职能部门,由于工作涉及其他部门,而专职部门的人员对其他部门的工作不够了解,就不能提出有说服力的建议,并且专职部门没有足够的权威落实工作。第二个特点:除了开始阶段工作量大一些外,日常工作量不大,没必要设置专门职能部门。 在企业中,隐性管理项目可以运用新一代学习型组织的技术设置专门的学习小组来进行管理。设置学习环小组,不会改变原有的组织架构。小组成员是由企业领导、跨部门管理人员和专业技术人员组成,保证了学习环的权威性和专业性。小组成员通过定期的工作交流、总结的方式,提出解决问题的管理意见。小组成员可以兼职,在学习环小组下可以设置全职的机构负责执行落实。 2、管理项目的基本规律和作用 (1)基本规律 4L模型中,管理项目具有以下基本规律:内层(指第一、二、三层)的任意一个管理项目有以下作用:可以对该项目的所有外层管理项目都产生强作用;可以与同层管理项目产生作用;也可以对更里层管理项目产生作用。最外层(第四层)管理项目不仅对其他管理项目的作用力小,相互间的作用力也小。 (2)作用 4L模型中的每个项目都对其他管理项目有着重要影响,下面以几个主要的管理项目为例来进行说明: Ⅰ、企业文化 企业文化处于4L模型的最里层(核心层),可以看出它在企业管理中的重要性。企业文化属于意识的范畴,通过改变员工的思想和行为方式来改变其他管理项目。它包括有愿景、使命、宗旨、理念、重要的方法和原则、行为规范等丰富的内容。企业文化有好坏之分,好的企业文化能带动企业员工更积极、更有效率地工作,促进企业发展。反之,则不利于企业的发展。 Ⅱ、学习型组织管理 学习型组织管理通过持续的改良和创新来提升其他管理项目,它和企业文化一样都是改善企业经营管理的利器。学习型组织管理可以用来优化企业文化,使企业文化向好的方面发展;不良的企业文化却无法用来提升学习型组织管理。

系统建模方法1何谓系统模型系统模型有哪些主要特征2.doc

第四章系统建模方法 1、何谓系统模型?系统模型有哪些主要特征? 2、何谓系统分析?系统分析包括有哪些要素?画简图说明这些要素间的关系。 3、为什么在系统分析中,广泛使用系统模型而不是真实系统进行分析? 4、对系统模型有哪些基本要求?系统建模主要有哪些方法,请分别说明这些建模方法的适用对象和建模思路。 5、什么是投入产出分析?它在经济管理中有什么用处? 6、试举例说明某种产品对另一种产品的直接消耗和间接消耗关系。 7、在编制投入产出表时,如何确定部门的划分? 8、设某地区的经济分为工业、农业和其他生产部门,其投入产出表如下表1所示。(1)试求直接消耗系数表; (2)试求完全消耗系数表; (3)如果计划期农业的最终产品为350亿元,工业为2300亿元,其他部门为450 亿元,请计算出各部门在计划期的总产品分别为多少亿元? 表1 某地区的投入产出表(亿元) 9、设某地区的投入产出表如下表2所示。 (1)试求直接消耗系数表; (2)试求完全消耗系数表; (3)如果计划期(翌年)各部门的最终产品量和构成如表3所示,请计算各部门计划期的总产品分别为多少亿元?各部门应提供多少中间产品? (4)如果在计划期间,制造业产品出口量增加20亿元,问各部门的产量要相应增加多少? (5)如果在计划期间,农业由于自然灾害减少4亿元的最终产品,问各部门的总

产品将如何调整? 表2 某地区的投入产出表(亿元) 表3 计划期各部门的最终产品量和构成(亿元) 10、某钢筋车间制作一批直径相同的钢筋,需要长度为3米的90根,长度为4米的60根。已知所用的下料钢筋长度为10米,问怎样下料最省?请建立解决此问题的数学模型。 11、某卫星测控站每天至少需要下列数量的干部值班: 每班值班的干部在班次开始时上班,连续工作8小时。测控站首长需要确定每个班次应派多少干部值班,才能既满足需要又使每天上班的干部人数最少,请帮助建立解决此问题的数学模型。 11、举例说明系统结构、系统单元以及单元之间的关系,试用集合A、A上关系R、关系矩阵M、关系图G以及系统结构或层次结构进行描述。 12、用数学归纳法证明,对任何正整数n下列恒等式成立

由传递函数转换成状态空间模型(1)

由传递函数转换成状态空间模型——方法多!!! SISO 线性定常系统 高阶微分方程化为状态空间表达式 SISO ()()()()()()m n u b u b u b y a y a y a y m m m n n n n ≥+++=++++--- 1102211 )(2 211110n n n n m m m a s a s a s b s b s b s G +++++++=--- 假设1+=m n 外部描述 ←—实现问题:有了部结构—→模拟系统 部描述 SISO ? ??+=+=du cx y bu Ax x 实现问题解决有多种方法,方法不同时结果不同。 一、 直接分解法 因为 1 0111 11()()()()()()()() 1m m m m n n n n Y s Z s Z s Y s U s Z s U s Z s b s b s b s b s a s a s a ----?=? =?++++++++ ???++++=++++=----) ()()() ()()(11 11110s Z a s a s a s s U s Z b s b s b s b s Y n n n n m m m m 对上式取拉氏反变换,则 ? ??++++=++++=----z a z a z a z u z b z b z b z b y n n n n m m m m 1) 1(1)(1)1(1)(0 按下列规律选择状态变量,即设)1(21,,,-===n n z x z x z x ,于是有

?????? ?+----===-u x a x a x a x x x x x n n n n 12113 221 写成矩阵形式 式中,1-n I 为1-n 阶单位矩阵,把这种标准型中的A 系数阵称之为友阵。只要系统状态方程的系数阵A 和输入阵b 具有上式的形式,c 阵的形式可以任意,则称之为能控标准型。 则输出方程 121110x b x b x b x b y m m n n ++++=-- 写成矩阵形式 ??????? ? ????????=--n n m m x x x x b b b b y 12101 1][ 分析c b A ,,阵的构成与传递函数系数的关系。 在需要对实际系统进行数学模型转换时,不必进行计算就可以方便地写出状态空间模型的A 、b 、c 矩阵的所有元素。 例:已知SISO 系统的传递函数如下,试求系统的能控标准型状态空间模型。 4 2383)()(2 3++++=s s s s s U s Y 解:直接得到系统进行能控标准型的转换,即

主题模型的分析法

?文史研究中主题模型的分析法 王涛南京?大学历史学院 @TSINGHUA,2017年年5?月20?日

2017年年“数字?人?文:数字时代?人?文研究前沿与?方法 ” ?时间:7?月1?日-2?日 ?地点:南京?大学 ?欢迎观摩 ?数字?人?文“暑期学校”:时间7?月10-15?日

提纲 ?何为主题模型?实现的?工具?如何分析?案例例

如何分析 ?MALLET算法导出的?文件doc-topics topic-keys word-topic-counts

主题与?文档之间的关系

?6 recht herr gott hand lass gleich sagen kind geh leben freilich freund gut komm oh wort genug glueck vergessen sache(法律先?上帝朋友遗忘事物)?7 nichts weiss allein ganz liebe koemmt gut lassen lieber immer wahr wissen wenig einmal kommen gesagt welt erst besser glauben(知道爱永远世界信仰) ?17 gemacht weit einmal augen gleich keinen zeit leben ganzen finden macht wuerden muesste zweifel gluecklich gedanken waeren natur glaube hoeren(眼睛时间?活荣誉运?思考) ?27 lassen sehen vielleicht ehre halten wissen wenigstens sagen bitte wider reden kommen moechte himmel nehmen haetten wollten ende verlassen unglueck(看 知道请求读天空离开结束)

模型转换的途径

PIM->PSM 模型转换的途径 mdaSky UML软件工程组织 由MDA 的PIM(平台独立模型)向PSM(平台特定模型)转换的方法目前尚未实现标准化。因此目前市售的工具不得不利用自主方法进行这部分的处理。由PIM 向PSM 的转换方法由于将在2004 年实现标准化,只有这个重要的步骤标准化了,才更加有利于MDA 这项技术的推广。 2004 年将是MDA 大发展的一年,为什么这样说,我们来看看业界一些重要的公司是如何应对MDA 这项技术的。最近,美国Compuware 的OptimalJ 等基于对象技术标准化团体美国OMG (Object Management Group )倡导的模型驱动架构(MDA)的Java 开发工具业已亮相。那么Java 工具阵营的老大哥Borland 公司的JBuilder 是否会支持MDA 那?看看他们是怎么说:“我们也在关注MDA, 但是目前仍在观察其动向。比如说第一点,OptimalJ 等产品与JBuilder,包括价格在内,不属于同一类产品。要是支持MDA 的话,Together 更好一些。JBuilder X 在能够轻松构筑Web 应用的角度上,以比这些工具更低的成本实现了相同的功能。同样,即便1 行代码都不写,也能够自动生成可访问数据库的Web 应用架构,在开发过程中及开发完成后均可轻松变更Web 应用服务器等平台。由PIM 向PSM 的转换方法由于将在2004 年实现标准化,因此到时准备在Together 中配备基于MDA 的模型自动生成功能。”看来Borland 公司也不会轻视MDA 这项技术,准备在Together 产品中支持MDA。 MDA 技术是否会取得较大的成功,让我们拭目以待。 下面简单讲述一下从PIM 到PSM 转化的5 种途径: 1. Marking

软件测试过程模型

软件测试过程模型 发布时间: 2010-7-27 11:02 作者: 未知来源: 51Testing软件测试网采编 字体: 小中大| 上一篇下一篇| 打印| 我要投稿| 每周一问,答贴有奖 目前主流的开发模型主要有:瀑布模型、原型模型、螺旋模型、增量模型、渐进模型、快速软件开发(RAD)以及Rational统一过程(RUP)等,这些模型对于软件开发过程具有很好的指导作用,但是,非常遗憾的是,在这些过程方法中,并没有充分强调测试的价值,也没有给测试以足够的重视,利用这些模型无法更好地指导测试实践。软件测试是与软件开发紧密相关的一系列有计划的系统性的活动,显然软件测试也需要测试模型去指导实践。下面对主要的模型做一些简单的介绍。 V模型 V模型是最具有代表意义的测试模型。在传统的开发模型中,比如瀑布模型,人们通常把测试过程作为在需求分析、概要设计、详细设计和编码全部完成后的一个阶段,尽管有时测试工作会占用整个项目周期的一半的时间,但是有人仍然认为测试只是一个收尾工作,而不是主要过程。V模型的推出就是对此种认识的改进。V模型是软件开发瀑布模型的变种,它反映了测试活动与分析与分析和设计的关系,从左到右,描述了基本的开发过程和测试行为,非常明确地标明了测试过程中存在的不同级别,并且清楚地描述了这些测试阶段和开发过程期间各阶段的对应关系,如模型图中所示,图中的箭头代表了时间方向,左边下降的是开发过程各阶段,与此相对应的是右边上升的部分,即各测试过程的各个阶段。 V模型的软件测试策略既包括低层测试又包括了高层测试,低层测试是为了源代码的正确性,高层测试是为了使整个系统满足用户的需求。 V模型指出,单元和集成测试是验证程序设计,开发人员和测试组应检测程序的执行是否满足软件设计的要求;系统测试应当验证系统设计,检测系统功能、性能的质量特性是否达到系统设计的指标;由测试人员和用户进行软件的确认测试和验收测试,追溯软件需求说明书进行测试,以确定软件的实现是否满

自动控制系统的数学模型

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入 下的闭环传递函数、误差传递函数,能够熟练的掌握; (5)掌握运用梅逊公式求闭环传递函数的方法; (6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函 数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式 的余子式 。 k 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言 2.1 动态微分方程的建立 2.2 线性系统的传递函数 2.3 典型环节及其传递函数 2.4系统的结构图 2.5 信号流图及梅逊公式

由传递函数转换成状态空间模型(1)

X^^n X I a n ^x 2 -a 1 x n U 由传递函数转换成状态空间模型一一方法多!!! SISo 线性定常系统 高阶微分方程化为状态空间表达式 SISO y(n )+a 1y (2)+a2y (2)+…+a n y =b 0u(m )+b 1u (m ^1)+…+b m u (n ^m ) b °s m b,s m b m S n yS2 a 2 s n ^ ■ a n 外部描述 W 实现问题:有了内部结构一-模拟系统 内部描述 X = Ax +bu y =cx + du 实现冋题解决有多种方法,方法不同时结果不同 直接分解法 因为 Y(S) Z(S) _ Z(S) Y(S) U(S) Z(S) U(S) Z(S) n ~~1 ds m b 1s m ' ?… bmQ S S a I S 亠 亠 a n 」s a n :Y(s) =(b °s m +b 1s m '+…+b m^s + b m )Z(s) IU(S) = (s n +a 1 s n ' *八 +a n jS + a n )Z(s) 对上式取拉氏反变换,则 jy = b 0Z (m )+b 1 z (m4 ?) +…+b m'Z + b m Z < (n ) 丄 (n 4) IB ?■I U=Z +a 1 z + +a n 4z+a n z X 2 = X 3 G(S) = SlSo 按下列规律选择状态变量, 即设X 1 二乙X 2 =乙 ,X n Z) ,于是有

X i X; 式中,|心为n -1阶单位矩阵,把这种标准型中的A 系数阵称之为友阵。只 要系统状态方程的系数阵A和输入阵b具有上式的形式,C阵的形式可以任意, 则称之为能控标准型。 则输出方程 y =b°X n b i X n」b mi X2 b m X i 写成矩阵形式 S I X2 y = [ b m b m」b i b0 ]' X n」 -X n 一分析A,b,c阵的构成与传递函数系数的关系。 在需要对实际系统进行数学模型转换时,不必进行计算就可以方便地写出状态空间模型的A、b、C矩阵的所有元素。 例:已知SISo系统的传递函数如下,试求系统的能控标准型状态空间模型 Y(S) _ 3 8s 3 2 U (S) S 3s 2s 4 解:直接得到系统进行能控标准型的转换,即 写成矩阵形式 XnA .Xn J J- a n "x;l - 0 Ir X J「0] X2 —a1 一x3 一r」 "0 1— 4 Ir x J JJ ■xj-x j b0] X2 =[3 0] | n Λ |__a3 X2 X2

企业分析常用的几个模型和方法

企业分析常用的几个模型和方法 1.P EST模型 P EST分析法是一个常用的分析工具,它通过四个方面的因素分析从总体上把握宏观环境,并评价这些因素对企业营销策略目标和策略制定的影响。 P 即 Politics ,政治要素,是指对组织经营活动具有实际与潜在影响的政治力量和有关的法律、法规等因素。当政治制度与体制、政府对组织所经营业务的态度发生变化时,当政府发布了对企业经营具有约束力的法律、法规时,企业的营销策略必须随之做出调整。 E即Economic,经济要素,是指一个国家的经济制度、经济结构、产业布局、资 源状况、经济发展水平以及未来的经济走势等。构成经济环境的关键要素包括GDP的变化发展趋势、利率水平、通货膨胀程度及趋势、失业率、居民可支配收入水平、汇率水平等等 S即Society,社会要素,是指组织所在社会中成员的民族特征、文化传统、价值 观念、宗教信仰、教育水平以及风俗习惯等因素。构成社会环境的要素包括人口规模、年龄结构、种族结构、收入分布、消费结构和水平、人口流动性等。其中人口规模直接影响着一个国家或地区市场的容量,年龄结构则决定消费品的种类及推广方式。 T 即 Technology ,技术要素。技术要素不仅仅包括那些引起革命性变化的发明, 还包括与企业生产有关的新技术、新工艺、新材料的出现和发展趋势以及应用前景。 在过去的半个世纪里,最迅速的变化就发生在技术领域,像微软、惠普、通用电气等高技术公司的崛起改变着世界和人类的生活方式。同样,技术领先的医院、大学等非 盈利性组织,也比没有采用先进技术的同类组织具有更强的竞争力。 2. 波特五力模型 五力模型是由波特( Porter )提出的,它认为行业中存在着决定竞争规模和程度的五种力量,这五种力量综合起来影响着产业的吸引力。它是用来分析企业所在行业 竞争特征的一种有效的工具。在该模型中涉及的五种力量包括:新的竞争对手入侵, 替代品的威胁,买方议价能力,卖方议价能力以及现存竞争者之间的竞争。决定企业盈利能力首要的和根本的因素是产业的吸引力。 竞争战略从一定意义上讲是源于企业对决定产业吸引力的竞争规律的深刻理解。 任何产业,无论是国内的或国际的,无论生产产品的或提供服务的,竞争规律都将体现在这五种竞争的任用力上。因此,波特五力模型是企业制定竞争战略时经常利用的战略分析工具。 这五种竞争作用力综合起来,决定了某产业中的企业获取超出资本成本的平均投资收益率的能力。这五种作用力的综合作用力随产业的不同而不同。随产业的发展而变化。结果表现为

控制系统的数学模型[]

第二章控制系统的数学模型 2-1 什么是系统的数学模型?大致可以分为哪些类型? 答定量地表达系统各变量之间关系的表达式,称工矿企业数学模型。从不同的角度,可以对 数学模型进行大致的分类,例如:用来描述各变量间动态关系的数学模型为动态模型,用来描述各变量间稳态关系有数学模型为静态模型;数学模型中各变量与几何位置无关的称为集中参数模型,反之与几 何位置有关的称为分布参数模型;变量间关系表现为线性的称为线性模型,反之非线性模型;模型参数与时间有关的称为时变模型,与时间无关的称为时不变或定常模型;以系统的输入、输出变量这种外部特征来描述系统特性的数学模型称为输入输出模型,而以系统内部状态变量描述的数学模型称为状态空 间模型;等等。 2-2 系统数学模型的获取有哪几种方法? 答获取系统数学模型的方法主要有机理分析法和实验测试法。 机理分析法是通过对系统内部机理的分析,根据一些基本的物理或化学变化的规律而导出支配系统运动规律的数学模型,这样得到的模型称为机理模型。 实验测试法是通过对实际系统的实验测试,然后根据测试数据,经过一定的数据处理而获得系统的数学 模型,这样得到的模型可称为实测模型或经验模型。 如果将上述两种方法结合起来,即通过机理分析的方法预先得到数学模型的结构或函数形式,然后对其 中的某些参数用实验辨识的方法来确定,这样得到的数学模型可称为混合模型。这是介于 上述两种方法之间的一种比较切合实际的应用较为普遍的方法。 2-3 通过机理分析法建立对象微分方程数学模型的主要步骤有哪些? 答主要步骤有: ⑴根据系统的控制方案和对象的特性,确定对象的输入变量和输出变量。一般来说,对象的输出变量为系统的被控变量,输入变量为作用于对象的操纵变量或干扰变量。 ⑵根据对象的工艺机理,进行合理的假设和简化,突出主要因素,忽略次要 因素。⑶根据对象的工艺机理,从基本的物理、化学等定律出了,列写描述 对象运动规律的原始微分 方程式(或方程式组)。 ⑷消去中间变量,推导出描述对象输入变量与输出变量之间关系的方程式。 ⑸根据要求,对上述方程式进行增量化、线性化和无因次化的处理,最后得 出无因次的、能够 描述对象输入变量与输出变量的增量之间关系的线性微分方程式(对于严重非线性的对象,可进行分段 线性化处理或直接导出非线性微分方程式)。 2-4 试述传递函数的定义。如何由描述对象动态特性的微分方程式得到相应的传递函数?并写出传递函数的一般形式。 答对于线性定常系统、对象或环节的传递函数的定义可以表述为:当初始条 件为零时,系统、对象或环节输出变量的拉氏变换式与输入变量的拉氏变换式之比。 如果已知系统、对象或环节的动态数学模型用下述线性常系数微分方程式来描述: 式中y为输出变量,x为输入变量,表示y(t) 的n阶导数,表示x(t)

系统建模方法

系统建模方法 2.1 系统抽象与数学描述 2.1.1 实际系统的抽象 本质上讲,系统数学模型是从系统概念出发的关于现实世界的一小部分或几个方面的抽象的“映像” 。 为此,系统数学模型的建立需要建立如下抽象:输入、输出、状态变量及其间的函数关系。这种抽象过程称为模型构造。抽象中,必须联系真实系统与建模目标,其中描述变量起着很重要的作用,它可观测,或不可观测。 从外部对系统施加影响或干扰的可观测变量称为输入变量。系统对输入变量的响应结果称为输出变量。 输入、输出变量对的集合,表征着真实系统的“输入-输出”性状(关系)。 综上述,真实系统可视为产生一定性状数据的信息源,而模型则是产生与真实系统相同性状数据的一些规则、指令的集合,抽象在其中则起着媒介作用。系统数学建模就是将真实系统抽象成相应的数学表达式(一些规则、指令的集合)。

灰箱 白箱3( t)、p(t)---输入输出变量对 真实系统建模的抽象过程

2.1.2系统模型的一般描述及描述级(水平) 2.1.2.1系统模型的一般描述: 一个系统的数学模型可以用如下七元组集合来描述: S 二T,X,\Q,Y, ; 其中: T:时间基,描述系统变化的时间坐标,T为整数则称为离散时间系统,为实数则称为连续时间系统; X:输入集,代表外部环境对系统的作用。 11 :输入段集,描述某个时间间隔内的输入模式,是X,T的一个 子集。 Q :内部状态集,描述系统内部状态量,是系统内部结构建模的核心。「?:状态转移函数,定义系统内部状态是如何变化的,是一个映射。 Y :输出集,系统通过它作用于环境。 :输出函数,是一个映射,给出了一个输出段集。 2.1.2.2系统模型描述级(水平): 按照系统论的观点,实际系统可在某种级(水平)上被分解,因此系统的数学模型可以有不同的描述级(水平): ⑴性状描述级 性状描述级或称为行为描述级(行为水平)。在此级上描述系统是将系统堪称黑箱,并施加输入信号,同时测得输出响应,结果是得出一个输入-输出对:(3, P)及其关系R s={(3, P):Q, 3, p}。

产品转换模型的概念和基本方法的介绍

用品牌或产品“黏性”来细分市场――转换模型与应用实 例 容提要:对于企业而言,新产品的开发和推广具有很大的风险性,如何降低和规避风险是每个积极开发新产品的企业必须面对的问题,企业在新产品上市前进行市场测试是降低风险的一种有效手段。然而,测试环境虽然能在一定程度上模拟竞争环境,但并不等同于实际的竞争环境,随之产生的问题是,测试结果往往高估了购买可能性,引入转换模型,并应用“黏性”这一概念将测试者进行细分,可以对新产品潜在的市场规模作出更贴近实际情况的评估,同时通过对照分析了解新产品受欢迎或不受欢迎的真正原因,从而对新产品作出更为准确的诊断分析。 关键词:转换模型黏性黏度突变理论蝴蝶突变多元回归 Abstract:There is a huge risk in developing new product for enterprises. Its always an important problem on how to reduce and avoid the risk. An effective way is to do market test before the new products are brought to markets. However, the

environment of market test is not equal to that of competition even it can imitate that in some ways. So, the result of market test would often be overestimated. A more realistic evaluation on potential market scale could be made by introducing conversion model and the notion of "commitment". In the same time, by finding out the true reasons that the products are welcomed or not, a more precise diagnosis analysis on new product could be given by contrast analysis. 一、背景简介 自从美国市场营销学教授温德尔.史密斯于1956年首先提出市场细分理论以来,这一理论已被广泛用来指导企业的市场营销活动。为企业寻找目标市场,对产品进行精确市场定位,加强市场竞争地位方面起到重要作用,在为企业带来良好经济效益的同时,也更好地满足了消费者的需求。 目前,有为数众多的市场细分变量被用来作为消费者市场细分的依据,这些细分变量可以单独使用,也可以结合使用,这样一来便形成了变量集合。多变量细分又可分为分层细分和整合细分,应用chaid软件以树形图方式展现的结果是分层细分的典型代表,我们所熟悉的聚类分析则属于整合细分方法。整合细分的优点在于可以从多个并行角度描述顾

管理学常见模型和分析方法

管理学常见模型和分析方法 一.五力模型 主要讲的是公司竞争的5个方面,是分析公司面临的竞争压力的很好的模型,借助这种模式思考帮助公司定位,以及制定公司战略。 A.首先竞争压力来自行业对手。行业对手之间的竞争压力相当普遍,市场占有率的竞争,价格的竞争等等。来自市场对手的竞争一般会有很强的策略性和针对性。通过分析自身优缺点和竞争者的优缺点,制定公司战略。 B.市场新生力量。对于已经存在的对手来说,市场还有新的可能出现。而且有的新事物其生长力之强。往往有摧枯拉朽之神奇。这也是企业发展的一种潜在竞争压力。 C.替代商品。企业核心竞争力这个概念里就提到过:企业的核心竞争力就有两点:一是不可复制性,二是不可替代性。这两点都是阐述保持核心竞争力要应对的市场变化。比如科技发展或者技术革新造就的新商品或者成本的下降都是引起冲击和变革的原因。 D.供应商还价能力。现在生产是多环节的镶嵌,所以后一级的厂家对于前一级的提供商存在一个博弈关系。不同于行业的竞争这个也是一种竞争的体现。 E.消费者的还价能力。类似的商品卖出去,还面临着一个和消费者价格的博弈关系。很少有人会把这个考虑到一种企业竞争压力,但是价格和利润确实是一个企业关注的最重要的点。 五力模型下的三大竞争策略。通过综合考虑竞争,有三个竞争策略:1是成本优势,成本优势转化成竞争优势是很明显的。2差异化,差异化是塑造产品核心竞争力和塑造产品品牌的一种很好的方式。3缝隙市场,在诸多竞争对手之间总还有保留有余地的发展空间。这是新力量和小企业生长的温床。

二.SWOT分析 所谓SWOT分析,即基于外部竞争环境和竞争条件下的态势分析,就是将与研究对象密切相关的各种主要部优势、劣势和外部的机会和威胁等,通过调查列举出来,并依照矩阵形式排列,然后用系统分析的思想,把各种因素相互匹配起来加以分析,从中得出一系列相应的结论,而结论通常带有一定的决策性。运用这种方法,可以对研究对象所处的情景进行全面、系统、准确的研究,从而根据研究结果制定相应的发展战略、计划以及对策等。 S (strengths)是优势、W (weaknesses)是劣势,O (opportunities)是机会、T (threats)是威胁。按照企业竞争战略的完整概念,战略应是一个企业“能够做的”(即组织的强项和弱项)和“可能做的”(即环境的机会和威胁)之间的有机组合。 三.GROW模型 Grow模型可以在生活很多不同的地方运用,它的主旨意为理清现状,减少某些事情的干扰,使执行人从心找到对应的办法。GROW其目标,是使得员工认识也认同现目标的自己有什么能做的,或者怎么做。 GROW的意思是成长,帮助员工成长;G(Goal setting):代表确认员工业绩目标;R(Reality Check):是现状,要搞清楚目前的现状、客观事实是什么,寻找动因;O(Options):代表寻找解决方案;W(Way Forward):What? When? Who? Will? What should be done? When by whom and does the will exist to do it?代表制定行动计划和评审时间。 GROW代表辅导的一个程序,你要向员工述你的谈话目的,不要让员工觉得云里雾里,所以G要清楚向员工述谈话的目的。第二步R描述发现的问题,要求员工分析原因,避免盲目下结论,设身处地地倾听。第三个O是解决方案,最重要的是要询问员工对问题的看法以及解决方案;通过提问鼓励创造性思考“还有没有更好的做法。最后,W与员工一起商讨行动计划,制定下一次的时间,感谢员工并表达你对他的信心。

(完整版)八年级上专题讲义: 旋转模型与方法

专题讲义旋转模型与方法 模型特点: 【引例】已知:如图1, 在△ABC和△ADE中,AB = AC,AD = AE,且∠CAB = ∠EAD=α,(1)求证:CE = BD;求CE 与BD的夹角。 (2)当点C、E、D在一条直线时, 上述结论是否成立? (3)如图,上述结论是否成立?若成立请说明理由? 模型应用:构造旋转模型解决“对补型”,寻找“等线段,共端点” 【例1】如图,在四边形ABCD中,∠B+∠D=180°,AB=AD,∠BAD=60°,求证:AC=BC+CD. 【例2】如图,等腰Rt△ABC中,D为AB的中点,E为AC上 一点,F为BC上的点,且ED⊥DF。 (1)求证:DE = DF; (2)若E为AC延长线上一点,F为CB延长线上的点, 且ED⊥DF。则(1)的结论是否还成立?若成立,请证 明;若不成立,请说明理由. E C D B A 1() E C D B A E D C B A 图二 图一图三 F E D C B A M F E D C B A

【例3】如图, 已知△ABC 中,∠B=300,现将△ABC 绕点A 顺时针旋转角度α至△ADE ,直 线BC 与直线DE 交于点F ,连结AF 1)若α=600(如图1),则∠AFB= ;若α=900(如图2),则∠AFB= , 2)若00<α<1200(如图3),则∠AFB= (用α表示) 3)若1200<α<1800(如图4),则∠AFB 与α的数量关系是 ,并给予证明. 〖练〗如图,任意△ABC ,分别以AB 、AC 为腰,以A 为顶角的顶点向△ABC 的两侧作等腰△ABM ,等腰△ACN ,且∠ANC=∠ABM ,MC 与NB 的延长线交于点O. (1)如图1,若∠ANC=∠ABM=30°,则∠O= ; (2)如图2,若∠ANC=∠ABM=45°,则∠O= ; (3)如图3,若∠ANC=∠ABM=α)900(?<α

过程系统模型的求解方法

1.4 过程系统模型的求解方法 过程系统的模型建立后,给定系统的一组决策变量(或设计变量),通过求解过程系统的模型,就能得出全部物流的状态变量的值。根据描述过程系统的模型不同,求解方法可以归纳为三类: ①序贯模块法(Sequential Modular Method) ; ②联立方程法(Equation Based Method) ; ③联立模块法(Simulancous Modular Method)。 (1)序贯模块法 序贯模块法是开发最早、应用最广的过程系统模拟方法。目前绝大多数的过程系统模拟软件都属于这一类。这种方法的基本思想是:首先建立描述过程单元的数学模块(子程序),然后根据描述过程系统流程的结构模型,确定模块的计算顺序,序贯地对各单元模块进行计算,从而完成过程系统的模拟计算。 序贯模块法的优点是与实际过程的直观联系强;模拟系统软件的建立、维护和扩充都很方便,易于通用化;计算出错时易于诊断出错位置。其主要缺点是计算效率较低,尤其是解决设计和优化问题时计算效率更低,如图2-9所示。虽然如此,序贯模块法仍不失为一种优秀的方法。 (2)联立方程法 联立方程法又称为面向方程法,其基本思想是:将描述整个过程系统的数学方程式联立求解,从而得出模拟计算结果。联立方程法可以根据问题的要求灵活地确定设计变量(决策变量)。此外,联立方程法就好像把图2-9中的循环圈1~4合并成为一个循环圈(如图2-10所示)。这种合并意味着其中所有的方程同时计算和同步收敛。因此,联立方程法解算过程系统模型快速有效,对设计、优化问题灵活方便,效率较高。联立方程法一直被认为是求解过程系统的理想方法,但在实践上存在一些问题。主要在于:形成通用软件比较困难;不能利用现有大量丰富的单元模块;缺乏实际流程的直观联系;计算失败之后难于诊断错误所在;对初值的要求比较苛刻;计算技术难度较大等。但是由于其具有显著优势,这种方法一直备受人们的青睐。 图2-9 序贯模块法的迭代循环圈

软件过程模型的优缺点和适用范围

软件过程模型 1、4种模型的对比 瀑布模型: 优点:文档驱动 缺点:阶段划分固定,大量文档;开发成果最后出增加风险;不适应用户的变化适用范围:需求准确无重大变化的软件项目开发 快速原型模型: 优点:关注了客户的需求,降低了开发风险 缺点:可能导致系统设计差,难维护;不宜用原型产生最终产品,最终产品还是要考虑质 量和可维护性 适用范围:需求复杂,难以确定、动态变化的系统 增量模型: 优点:分批提交产品;减少新软件对用户的冲击;可维护性增加,需求变更只需要更改构 件 缺点:构件逐渐加入,不能破坏已经构造的系统,要求软件具备开放式结构;需 求变化时,适应性大于瀑布和快速原型,但容易退化为边做边盖,失去整体控制性;有无法集成的风险; 适用范围:风险较大用户需求较稳得大型软件系统 螺旋模型: 优点:1)设计上的灵活性,可以在项目的各个阶段进行变更。 2)以小的分段来构建大型系统,使成本计算变得简单容易。 3)客户始终参与每个阶段的开发,保证了项目不偏离正确方向以及项目的可控性。 4)随着项目推进,客户始终掌握项目的最新信息,从而他或她能够和管理层有效地交互。 5)客户认可这种公司内部的开发方式带来的良好的沟通和高质量的产品。 缺点:建设周期长,和当前技术水平差距大,无法满足需求; 适用范围:庞大复杂并具有高风险的系统,特别适合内部开发的大规模软件项目 2、喷泉模型 特点:无明显边界、阶段内迭代 优点:各阶段无明显界限,开发人员同步进行,提高项目开发效率缺点: 重叠的项目不利于项目管理,审核难度加大 适用:面向对象的软件过程 3、重用构件模型 4、RUP 通用的过程框架 4个阶段 9个核心工作流 前6个为核心过程,后3个是核心支撑

系统建模方法

系统建模方法 2.1系统抽象与数学描述 2.1.1 实际系统的抽象 本质上讲,系统数学模型是从系统概念出发的关于现实世界的一小部分或几个方面的抽象的“映像”。 为此,系统数学模型的建立需要建立如下抽象:输入、输出、状态变量及其间的函数关系。这种抽象过程称为模型构造。抽象中,必须联系真实系统与建模目标,其中描述变量起着很重要的作用,它可观测,或不可观测。 从外部对系统施加影响或干扰的可观测变量称为输入变量。 系统对输入变量的响应结果称为输出变量。 输入、输出变量对的集合,表征着真实系统的“输入-输出”性状(关系)。 综上述,真实系统可视为产生一定性状数据的信息源,而模型则是产生与真实系统相同性状数据的一些规则、指令的集合,抽象在其中则起着媒介作用。系统数学建模就是将真实系统抽象成相应的数学表达式(一些规则、指令的集合)。

(可观测) 输出变量 (可观测) 输入变量 黑箱 灰箱 白箱 ωt ) ω(t )、ρ(t )---输入输出变量对 真实系统建模的抽象过程

2.1.2 系统模型的一般描述及描述级(水平) 2.1.2.1 系统模型的一般描述: 一个系统的数学模型可以用如下七元组集合来描述: 2.1.2.2 系统模型描述级(水平): 按照系统论的观点,实际系统可在某种级(水平)上被分解,因此系统的数学模型可以有不同的描述级(水平): ⑴ 性状描述级 性状描述级或称为行为描述级(行为水平)。在此级上描述系统是将系统堪称黑箱,并施加输入信号,同时测得输出响应,结果是得出一个输入-输出对:(ω,ρ) 及其关系R s ={(ω,ρ):Ω,ω,ρ}。 ()λδ,,,,,,Y Q X T S Ω= 其中: :T 时间基,描述系统变化的时间坐标,T 为整数则称为离散时间系 统,为实数则称为连续时间系统; :X 输入集,代表外部环境对系统的作用。 :Ω输入段集,描述某个时间间隔内的输入模式,是()T X ,的一个 子集。 :Q 内部状态集,描述系统内部状态量,是系统内部结构建模的核心。 :δ状态转移函数,定义系统内部状态是如何变化的,是一个映射。 :Y 输出集,系统通过它作用于环境。 :λ输出函数,是一个映射,给出了一个输出段集。

相关文档