文档库 最新最全的文档下载
当前位置:文档库 › 计算方法第七章作业答案

计算方法第七章作业答案

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

六年级数学简便计算专项练习题(附答案+计算方法汇总)

六年级数学简便计算专项练习题(附答案+计算方法汇总) 小学阶段(高年级)的简便运算,在一定程度上突破了算式原来的运算顺序,根据运算定律、性质重组运算顺序。如果学生没真正理解运算定律、性质,他只能照葫芦画瓢。在实际解题的过程当中,学生的思路不清晰,常出现这样或那样的错误。因此,培养学生思维的灵活性就显得尤为重要。 下面,为大家整理了8种简便运算的方法,希望同学们在理解的基础上灵活运用,不提倡死记硬背哟! 1.提取公因式 这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。 注意相同因数的提取。 例如: 0.92×1.41+0.92×8.59 =0.92×(1.41+8.59) 2.借来借去法 看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难。 考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。 例如: 9999+999+99+9 =9999+1+999+1+99+1+9+1-4 3.拆分法

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。 例如: 3.2×12.5×25 =8×0.4×12.5×25 =8×12.5×0.4×25 4.加法结合律 注意对加法结合律 (a+b)+c=a+(b+c) 的运用,通过改变加数的位置来获得更简便的运算。 例如: 5.76+13.67+4.24+ 6.33 =(5.76+4.24)+(13.67+6.33) 5.拆分法和乘法分配律结合 这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。 例如: 34×9.9 = 34×(10-0.1) 案例再现:57×101=? 6.利用基准数 在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。 例如: 2072+2052+2062+2042+2083

数值分析第1章习题

一 选择题(55分=25分) (A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解,时,, m-n= -3,所以n=4,即有4位有效数字。当时,, ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式时,应该改为计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于和相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算 B.计算 C.计算 D.计算 解:A会有大数吃掉小数的情况C中两个相近的数相减,D中两个相近的数相减也会增大误差 (D)4.若误差限为,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:即m-n= -5,,m= -2,所以n=3,即有3位有效数字 (A)5.设的近似数为,如果具有3位有效数字,则的相对误差限为()(有效数字与相对误差的关系) A. B. C. D. 解:因为所以,因为有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a的相对误差限为 二 填空题:(75分=35分)

1.设则有2位有效数字,若则a有3位有效数字。(有效数字) 解:,时,,,m-n= -4,所以n=2,即有2位有效数字。当时, ,m-n= -5,所以n=3,即有3位有效数字。 2.设 =2.3149541...,取5位有效数字,则所得的近似值x=2.3150(有效数字)解:一般四舍五入后得到的近似数,从第一位非零数开始直到最末位,有几位就称该近似数有几位有效数字,所以要取5位有效数字有效数字的话,第6位是5,所以要进位,得到近似数为2.3150. 3.设数据的绝对误差分别为0.0005和0.0002,那么的绝对误差约为 0.0007 。(误差的四则运算) 解:因为,, 4.算法的计算代价是由 时间复杂度 和 空间复杂度 来衡量的。(算法的复杂度) 5.设的相对误差为2%,则的相对误差为 2n% 。(函数的相对误差) 解:, 6.设>0,的相对误差为δ,则的绝对误差为 δ 。(函数的绝对误差) 解:,, 7.设,则=2时的条件数为 3/2 。(条件数) 解:, 三 计算题(220分=40分) 1.要使的近似值的相对误差限小于0.1%,要取几位有效数字?(有效数字和相对误差的关系) 解:设取n位有效数字,由定理由于知=4所以要使相对误差限小于0.1%,则,只要取n-1=3即n=4。所以的近似值取4位有效数字,其相对误差限小于0.1%。 2.已测得某场地长的值为,宽d的值为,已知试求面积的绝对误差限和

数值计算方法思考题

数值计算方法思考题 第一章 预篇 1.什么是数值分析?它与数学科学和计算机的关系如何? 2.何谓算法?如何判断数值算法的优劣? 3.列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别。 4.什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系? 5.什么是算法的稳定性?如何判断算法稳定?为什么不稳定算法不能使用? 6.判断如下命题是否正确: (1)一个问题的病态性如何,与求解它的算法有关系。 (2)无论问题是否病态,好的算法都会得到好的近似解。 (3)解对数据的微小变化高度敏感是病态的。 (4)高精度运算可以改善问题的病态性。 (5)用一个稳定的算法计算良态问题一定会得到好的近似值。 (6)用一个收敛的迭代法计算良态问题一定会得到好的近似值。 (7)两个相近数相减必然会使有效数字损失。 (8)计算机上将1000个数量级不同的数相加,不管次序如何结果都是一样的。 7.考虑二次代数方程的求解问题 ax 2 + bx + c = 0. 下面的公式是熟知的 a ac b b x 242-±-=. 与之等价地有 ac b b c x 422--= . 对于 a = 1, b = -100 000 000 , c = 1 应当如何选择算法? 8.指数函数有著名的级数展开 ++++=!3!213 2x x x e x 如果对x < 0用上述的级数近似计算指数函数的值,这样的算法结果是否会好?为什么? 9.考虑数列x i , i = 1,…, n , 它的统计平均值定义为 ∑==n i i x x x 1 1 它的标准差

1 12)(11??????--=∑-n i i x x n σ 数学上它等价于 1 12211???????????? ??--=∑=n i i x n x n σ 作为标准差的两种算法,你如何评价它们的得与失? 第二章 非线性方程求根 1.判断如下命题是否正确: (a) 非线性方程的解通常不是唯一的; (b) Newton 法的收敛阶高于割线法; (c) 任何方法的收敛阶都不可能高于Newton 法; (d) Newton 法总是比割线法更节省计算时间; (e) 如果函数的导数难于计算,则应当考虑选择割线法; (f) Newton 法是有可能不收敛; (g) 考虑简单迭代法x k +1 = g (x k ),其中x * = g (x *)。如果| g '(x *) | <1,则对任意的初 始值,上述迭代都收敛。 2.什么叫做一个迭代法是二阶收敛的?Newton 法收敛时,它的收敛阶是否总是二阶 的? 3.求解单变量非线性方程的单根,下面的3种方法,它们的收敛阶由高到低次序如何? (a) 二分法 (b) Newton 方法 (c) 割线方法 4.求解单变量非线性方程的解,Newton 法和割线方法,它们每步迭代分别需要计算几 次函数值和导数值? 5.求解某个单变量非线性方程,如果计算函数值和计算导数值的代价相当,Newton 法和割线方法它的优劣应如何评价? 第三章 解线性方程组的直接法 1.用高斯消去法为什么要选主元?哪些方程组可以不选主元? 2.高斯消去法与LU 分解有什么关系?用它们解线性方程组Ax = b 有何不同?A 要满足什么条件? 3.乔列斯基分解与LU 分解相比,有什么优点? 4.哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 5.什么样的线性方程组可用追赶法求解并能保证计算稳定? 6.何谓向量范数?给出三种常用的向量范数。 7.何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A = (a i j )的三种范数|| A ||1,|| A ||2,|| A ||∞,|| A ||1与|| A ||2哪个更容易计算?为什么? 8.什么是矩阵的条件数?如何判断线性方程组是病态的? 9.满足下面哪个条件可判定矩阵接近奇异? (1)矩阵行列式的值很小。 (2)矩阵的范数小。

数值分析第8章作业

第八章 矩阵特征值问题计算 3.用幂法计算下列矩阵的主特征值及对应的特征向量 12732343()341;()463213331a A b A --???? ????=-=-???? ????--???? 当特征值有3位小数稳定代终止。 解:套用幂法公式 010,,,1,2,.... max()k k k k k v u v Au u k v -≠== = 取0(1,1,1)0T u =≠,将A 1代入上式,计算结果见下表 则1A 的主特征值19.605572λ≈,特征向量1(10.6050.394369)T x ≈- 将2A 代入幂法公式,取0(1,1,1)T u =,计算结果见下表 则2A 主住特征值18.869699λ≈,特征向量1(0.604228,1,0.160881)T x ≈- 4.用反幂法求矩阵 621231111A ?? ??=?? ???? 的最接近于6的特征向量。 解:本题按带原点平移的反幂法计算。平移向量p=6,则将

021231115B A pI ?? ??=-=-?? ??-?? 进行三分解:PB=LU ,其中 1 002310101511 001,10,02 221004 2701005 5P L U ? ??? ????-??? ??? ??????===-???????????? ?? ?? ??? ??? 然后1(1,1,1)T Uv =,解得 1 111,max()v v u v = 1,,,2,3,.... max()k k k k k k k v Ly PU Uv y U k v -=== = 计算结果如下:

(完整word版)计算方法习题集及答案.doc

习题一 1. 什么叫数值方法?数值方法的基本思想及其优劣的评价标准如何? 数值方法是利用计算机求解数学问题近似解的方法 x max x i , x ( x 1 , x 2 , x n ) T R n 及 A n R n n . 2. 试证明 max a ij , A ( a ij ) 1 i n 1 i n 1 j 证明: ( 1)令 x r max x i 1 i n n p 1/ p n x i p 1/ p n x r p 1/ p 1/ p x lim( x i lim x r [ ( ] lim x r [ lim x r ) ) ( ) ] x r n p i 1 p i 1 x r p i 1 x r p 即 x x r n p 1/ p n p 1/ p 又 lim( lim( x r x i ) x r ) p i 1 p i 1 即 x x r x x r ⑵ 设 x (x 1,... x n ) 0 ,不妨设 A 0 , n n n n 令 max a ij Ax max a ij x j max a ij x j max x i max a ij x 1 i n j 1 1 i n j 1 1 i n j 1 1 i n 1 i n j 1 即对任意非零 x R n ,有 Ax x 下面证明存在向量 x 0 0 ,使得 Ax 0 , x 0 n ( x 1,... x n )T 。其中 x j 设 j a i 0 j ,取向量 x 0 sign(a i 0 j )( j 1,2,..., n) 。 1 n n 显然 x 0 1 且 Ax 0 任意分量为 a i 0 j x j a i 0 j , i 1 i 1 n n 故有 Ax 0 max a ij x j a i 0 j 即证。 i i 1 j 1 3. 古代数学家祖冲之曾以 355 作为圆周率的近似值,问此近似值具有多少位有效数字? 113 解: x 325 &0.314159292 101 133 x x 355 0.266 10 6 0.5 101 7 该近似值具有 7 为有效数字。

李庆扬-数值分析第五版第7章习题答案(0824)汇编

第7章复习与思考题

求f (X )= 0的零点就等价于求(x )的不动点,选择一个初始近似值X 0,将它代入X =「(X ) 的右端,可求得 X 1 h%X °),如此反复迭代有 X k 1 二(X k ), k =0,1,2,..., (X)称为迭代函数,如果对任何 X 。? [a,b],由x k 卜h%x k ),k =0,1,2,...得到的序列 〈X k 1有极限 则称迭代方程收敛,且X* =?(x*)为?(X )的不动点 故称 X k q 二(X k ), k =0,1,2,...为不动点迭代法。 5?什么是迭代法的收敛阶?如何衡量迭代法收敛的快慢?如何确定 X k 1 二「(X k )(k =0,1,2,...)的收敛阶 P219 设迭代过程X k 1'h%X k )收敛于 (X)的根X*,如果当k > 时,迭代误差 e k = x k - x *满足渐近关系式 —t C,C =const 式 0 e/ 则称该迭代过程是 p 阶收敛的,特别点,当 p=1时称为线性收敛,P>1时称为超线性收敛, p=2时称为平方收敛。 以收敛阶的大小衡量收敛速度的快慢。 6?什么是求解f(x)=0的牛顿法?它是否总是收敛的?若 f(X*) =0,X*是单根,f 是光 滑,证明牛顿法是局部二阶收敛的。 牛顿法: 当| f (X k )卜J 时收敛。 7?什么是弦截法?试从收敛阶及每步迭代计算量与牛顿法比较其差别。 在牛顿法的基础上使用 2点的的斜率代替一点的倒数求法。就是弦截法。 收敛阶弦截法1.618小于牛顿法2 计算量弦截法 <牛顿法(减少了倒数的计算量) 8?什么是解方程的抛物线法?在求多项式全部零点中是否优于牛顿法? P229 X - m X k 1 =X k f (X k ) f (X k )

计算方法作业参考答案(不断更新)

: 第一次作业 1.下列各数都是经过四舍五入得到的近似数,指出他们有几位有效数字,并写出绝对误差限。 9800107480.566.385031.01021.1*65*5*4*3*2*1=?=====x x x x x x 解: 1* 11011021.01021.1?==x ,有5位有效数字,绝对误差限为4-5-1105.0105.0?=?; 1-* 2 1031.0031.0?==x ,有2位有效数字,绝对误差限为3-2-1-105.0105.0?=?; 3* 3103856.06.385?==x ;有4位有效数字,绝对误差限为-14-3105.0105.0?=?; 2* 41056480.0480.56?==x ;有5位有效数字,绝对误差限为3-5-2105.0105.0?=?; ; 65* 5 107.0107?=?=x ;有1位有效数字,绝对误差限为51-6105.0105.0?=?; 4* 6 109800.09800?==x ;有4位有效数字,绝对误差限为5.0105.04-4=?。 2.要使20的近似值的相对误差限小于%1.0,要取几位有效数字 解:由于110447213595.047213595.420??=?=,设要取n 位有效数字,则根据 定理,有()()%1.01081 1021111

计算方法-刘师少版课后习题答案

1.1 设3.14, 3.1415, 3.1416分别作为π的近似值时所具有的有效数字位数 解 近似值x =3.14=0.314×101,即m =1,它的绝对误差是 -0.001 592 6…,有 31105.06592001.0-*?≤=- x x . 即n =3,故x =3.14有3位有效数字. x =3.14准确到小数点后第2位. 又近似值x =3.1416,它的绝对误差是0.0000074…,有 5-1*10?50≤00000740=-.. x x 即m =1,n =5,x =3.1416有5位有效数字. 而近似值x =3.1415,它的绝对误差是0.0000926…,有 4-1*10?50≤00009260=-.. x x 即m =1,n =4,x =3.1415有4位有效数字. 这就是说某数有s 位数,若末位数字是四舍五入得到的,那么该数有s 位有效数字 1.2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限: 2.0004 -0.00200 9000 9000.00 解 (1)∵ 2.0004=0.20004×101, m=1 绝对误差限:4105.0000049.020004.0-*?≤≤-=-x x x m -n =-4,m =1则n =5,故x =2.0004有5位有效数字 1x =2,相对误差限000025.010******** 1)1(1 =??=??=---n r x ε (2)∵ -0.00200= -0.2×10-2, m =-2 5105.00000049.0)00200.0(-*?≤≤--=-x x x m -n =-5, m =-2则n =3,故x =-0.00200有3位有效数字 1x =2,相对误差限3 110221 -??=r ε=0.0025 (3) ∵ 9000=0.9000×104, m =4, 0105.049.09000?<≤-=-*x x x m -n =0, m =4则n =4,故x =9000有4位有效数字 4 110921-??=r ε=0.000056 (4) ∵9000.00=0.900000×104, m =4, 2105.00049.000.9000-*?<≤-=-x x x m -n =-2, m =4则n =6,故x =9000.00有6位有效数字 相对误差限为6 110921-??=r ε=0.000 00056 由(3)与(4)可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 1.3 ln2=0.69314718…,精确到310-的近似值是多少? 解 精确到310-=0.001,即绝对误差限是ε=0.0005, 故至少要保留小数点后三位才可以.ln2≈0.693 2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过 31021-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 7287.1312lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f +=,则32)(x x f -=',由于

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

(完整版)数值分析第7章答案

第七章非线性方程求根 一、重点内容提要 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为 函数()f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在 (a,b)内仅有一个根.令00,a a b b ==,计算0001 ()2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若 00()()0 f a f x <,则令 10,10 a a b x ==,得新的有根区间 11[,]a b .0011[,][,]a b a b ?,11001()2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得 出新的有根区间22[,] a b ,如此反复进行,可得一有根区间套 1100...[,][,]...[,] n n n n a b a b a b --????

《数值分析》杨大地-标准答案(第八章)

数值分析第8章 数值积分与数值微分 8.1 填空题 (1)n+1个点的插值型数值积分公式∫f(x)dx b a ≈∑A j n j=0f(x j )的代数精度至少是 n ,最高不超过 2n+1 。【注:第1空,见定理8.1】 (2)梯形公式有 1 次代数精度,Simpson 公司有 3 次代数精度。【注:分别见定理8.1,8.3】 (3)求积公式∫f(x)dx h 0≈h 2[f (0)+f (h )]+ah 2[f ′(0)?f ′(h)]中的参数a= 1/12 时,才能保证该求积公式的代数精度达到最高,最高代数精度为 3 。 解:令f(x)=1,x,x 2带入有, { h 2[1+1]+ah 2[0?0]=h h 2[0+h ]+ah 2[1?1]=12 (h 2)h 2[0+h 2]+ah 2[0?2h ]=13 (h 3) //注:x 的导数=1 解之得,a=1/12,此时求积公式至少具有2次代数精度。 ∴ 积分公式为:∫f(x)dx h 0≈h 2[f (0)+f (h )]+h 2 12[f ′(0)?f ′(h)] 令 f(x)= x 3带入求积公式有:h 2 [0 +h 3]+ h 212 [0?3h 2]=14 (h 4),与f(x)= x 4的定积分计算值1 4 (h 4)相等, 所以,此求积公式至少具有3次代数精度。 令f(x)= x 4带入求积公式有,h 2[0+h 4]+h 2 12[0?4h 3]=1 6(h 5),与f(x)= x 5的定积分计算值1 5(h 5)不相等,所以,此求积公式的最高代数精度为3次代数精度。 8.2 确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度。 解题思路:按照P149 中8.3式进行求解,根据求积公式中未知量n 的数量决定代入多少f(x),当积分公式代入求积节点x n 的计算结果与定积分的计算结果一致,继续代入求积节点X n+1,,若计算结果与对应的定积分计算结果不一致时,求积公式拥有最高n 次的代数精度。 (1)∫f(x)dx 2h 0≈A 0f (0)+A 1f (h )+A 2f(2h) 解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 0、A 1、A 2共3个未知量,故需3个相异求积节点f(x)】 {A 0+A 1+A 2=2h A 1h +A 22h =1 2(2h )2A 1h 2+A 2(2h )2=1 3(2h )3 求解得A 0=13h ,A 1=43h ,A 2=1 3h , ∴求积公式为:∫f(x)dx 2h 0≈13hf (0)+43hf (h )+1 3 hf(2h) ∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0, //注:参见P149定理8.1 ∴该求积公式至少具有2次代数精度。 令f(x)= x 3,代入求积公式有:4 3hh 3+1 3h (2h )3=4h 4 ∵函数f(x) = x 3的定积分结果为:∫x 3dx 2h 0=1 4(2h )4=4h 4 ,与求积公式计算值相等, ∴该求积公式具有3次代数精度。

计算方法练习题与答案

练习题与答案练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–作为x的近似值一定具有6位有效数字,且其误差限 4 10 2 1 - ? 。 () 2.对两个不同数的近似数,误差越小,有效数位越多。 ( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。 ( ) 4.用 2 1 2 x - 近似表示cos x产生舍入误差。 ( )

和作为π的近似值有效数字位数相同。 ( ) 二、填空题 1.为了使计算 ()()23 34912111y x x x =+ -+ ---的乘除法次数尽量少,应将该表 达式改写为 ; 2.* x =–是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3.误差的来源是 ; 4.截断误差为 ; 5.设计算法应遵循的原则 是 。 三、选择题 1.* x =–作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是 在时间t 内的实际距离,则s t s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。

数值计算方法第七章习题 2013

计算方法 第七章 习题 复习与思考题 1.设f ∈C [a , b ],写出三种常用范数2 1 f f 及∞ f 。 2.f , g ∈C [a , b ],它们的内积是什么?如何判断函数族{? 0, ? 1, …, ? n }∈C [a , b ]在[a ,b ]上线性无关? 3.什么是函数f ∈C [a , b ]在区[a , b ]上的n 次最佳一致逼近多项式? 4.什么是f 在[a , b ] 上的n 次最佳平方逼近多项式?什么是数据{}m i f 0的最小二乘曲 线拟合? 5.什么是[ a , b ]上带权ρ (x )的正交多项式?什么是[ -1, 1 ]上的勒让德多项式?它有什 么重要性质? 6.什么是切比雪夫多项式?它有什么重要性质? 7.用切比雪夫多项式零点做插值得到的插值多项式与拉格朗日插值有何不同? 8.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n 较大时为什么不直接求解法方程? 9.哪种类型函数用三角插值比用多项式插值或分段多项式插值更合适? 10.判断下列命题是否正确? (1)任何f (x ) ∈C [a , b ]都能找到n 次多项式P n (x ) ∈ H n ,使| f (x ) - P n (x ) | ≤ ε ( ε 为任给的误差限)。 (2)n n H x P ∈)(* 是f (x )在[ a , b ]上的最佳一致逼近多项式,则)()(lim * x f x P n n =∞ →对 ],[b a x ∈?成立。 (3)f (x ) ∈C [a , b ]在[a , b ]上的最佳平方逼近多项式P n (x ) ∈ H n 则)()(lim x f x P n n =∞ →。 (4))(P ~ x n 是首项系数为1的勒让德多项式,Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 ? ? --1 1 21 1 2d )(d )](P ~ [x x Q x x n n 。 (5))(T ~ x n 是[-1 , 1]上首项系数为1的切比雪夫多项式。Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 .)(max )(~ max 1 11 1x Q x T n x n x ≤≤-≤≤-≤ (6)当数据量很大时用最小二乘拟合比用插值好。

成本会计第七章 分步成本法

《成本会计》第七章分步成本法 一、分步成本法的含义 分步成本法是按照产品的生产步骤归集生产费用,计算各步骤半成品和最后完工产品成本的一种方法,简称分步法。它主要适用于大量大批的多步骤生产的企业或车间。如纺织、冶金、化工制品、肉类加工、造纸等制造企业。 二、分步法的特点 分步法是按照产品的生产步骤归集生产费用,计算产品成本的一种方法。分步法的特点主要表现在以下几个方面: 1.成本计算对象 在分步法下,成本计算对象是各个生产步骤的各种产品,因此,在进行成本计算时,需为每个生产步骤的每种产品设置产品成本计算单,用来归集生产费用,计算产品成本。对于生产过程中发生的费用,凡是直接计入费用,应直接记入各成本计算单中;间接计入费用则应先按生产步骤归集,然后按一定标准在该步骤的各种产品之间进行分配。必须注意,产品成本计算的分步与实际的生产步骤不一定完全一致,也就是分步法的步骤与产品的生产车间有时相同,有时并不完全相同。产品成本计算的分步是根据简化成本计算工作和管理上的要求来确定的,一般来说,分步计算成本也就是分车间计算成本,但根据成本管理的需要,有时可将几个车间合并为一个步骤,有时一个车间又分为几个步骤。因此,分步计算成本不一定就是分车间计算成本。 2.成本计算期 在采用分步法计算产品成本的企业里,成本计算期是定期的,即成本计算工作在每月末定期进行,因此,成本计算期与产品生产周期不一致,而与会计核算期一致。 3.生产费用在完工产品与在产品之间的分配 在大量大批多步骤生产的企业里,其产品往往跨月陆续完工,月末经常有一定数量的在产品,因此,归集在各生产步骤产品成本计算单中的生产费用,大多要采用适当的分配方法,在完工产品与月末在产品之间进行分配,计算出完工产品成本和月末在产品成本。如采用约当产量比例法,在产品又按先进先出法计价,在这种方法下,是假设生产的产品按投入生产的时间先后顺序完工,那么月初在产品应先于本月投产产品完工,在产品生产周期小于一个月的情况下,月初在产品将在本月全部完工,这样,月初在产品成本应全部计入本月完工产品成本,而本月发生的生产费用只需在本月完工产品与月末在产品之间进行分配。

计算方法第2章习题 - 参考答案

2.1 证明方程043 =-+x x 在区间[1,2]内有且仅有一个根。如果用二分法求它具有五 位有效数字的根,试问需对分多少次?(不必求根) 14 ,10log 4,10210211021212||2451*1 1=≥>?=?=<=---++K k a b k n m k k ε 2.2 用二分法求方程0134=+-x x 在[0.3, 0.4]内的一个根, 精度要求2102 1-?=ε。 k a b x f(x) 0 0.300 0.350 0.325 0.036 1 0.325 0.350 0.337 0.000 2 0.337 0.350 0.344 -0.017 3 0.337 0.34 4 0.341 -0.008 4 0.337 0.341 0.339 -0.004 x=0.339 2.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求 210-=ε 2.3-1 x=0.645 2.3-2 x=1.78 2.3-3 x=1.13 2.3-4 x=0.918 2.4 考虑方程032=-x e x ,将其改写为3 x e x ±=,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附近的两个根(取精度要求3 10-=ε) (1) 910840.0,0.13 *0===x x e x x , k x g(x) 0 0.951890 0.929265 1 0.929265 0.918812 2 0.918812 0.914022 3 0.914022 0.911836 4 0.911836 0.910840 5 0.910840 0.910386 (2) 459075.0,5.03 -*0-=-==x x e x x , k x g(x) 0 -0.449641 -0.461106

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

郑州大学研究生课程数值分析复习---第八章 常微分方程数值解法

郑州大学研究生课程(2012-2013学年第一学期)数值分析 Numerical Analysis 习题课 第八章常微分方程数值解法

待求解的问题:一阶常微分方程的初值问题/* Initial-Value Problem */: ?????=∈=0 )(] ,[),(y a y b a x y x f dx dy 解的存在唯一性(“常微分方程”理论):只要f (x , y ) 在[a , b ] ×R 1 上连续,且关于y 满足Lipschitz 条件,即存在与x , y 无关的常数L 使 对任意定义在[a , b ] 上的y 1(x ) 和y 2(x ) 都成立,则上述IVP 存在唯一解。 1212|(,)(,)||| f x y f x y L y y ?≤?一、要点回顾

§8.2 欧拉(Euler)法 通常取(常数),则Euler 法的计算格式 h h x x i i i ==?+1?? ?=+=+) (),(001x y y y x hf y y i i i i i =0,1,…,n ( 8.2 )

§8.2 欧拉(Euler)法(1) 用差商近似导数 )) (,()()()()(1n n n n n n x y x hf x y x y h x y x y +=′+≈+?? ?=+=+) (),(01a y y y x hf y y n n n n 差分方程初值问题向前Euler 方法h x y x y x y n n n ) ()()(1?≈ ′+)) (,() ()(1n n n n x y x f h x y x y ≈?+))(,()(n n n x y x f x y =′

相关文档
相关文档 最新文档