文档库 最新最全的文档下载
当前位置:文档库 › 转子偏量计算公式

转子偏量计算公式

转子偏量计算公式
转子偏量计算公式

一、动平衡机常用术语

1. 不平衡量U:转子某平面上不平衡量的量值大小,不涉及不平衡的角度位置。它等于不平衡质量m和转子半径r的乘积。其单位是gmm或者gcm,俗称“重径积”。

2. 不平衡相位:转子某平面上的不平衡质量相对于给定极坐标的角度值。

3. 不平衡度e:转子单位质量的不平衡量,单位是gmm/kg。在静不平衡时相当于转子的质量偏心距,单位为μm。

4. 初始不平衡量:平衡前转子上存在的不平衡量。

5. 许用不平衡量:为保证旋转机械正常工作所允许的转子剩余不平衡量。该指标用不平衡度表示时,称为许用不平衡度(亦称许用不平衡率)。

6. 剩余不平衡量:平衡校正后转子上的剩余不平衡量。

7. 校正半径:校正平面上校正质量的质心到转子轴线的距离,一般用mm表示。

8. 校正平面的干扰(相互影响):在给定转子某一校正面上不平衡量的变化引起另一校正平面上的改变(有时称为平面分离影响)

9. 转子平衡品质:衡量转子平衡优劣程度的指标。

计算公式:G=eperω/1000

式中G-转子平衡品质,单位mm/s。从G0.4-G4000分11级。

eper-转子允许的不平衡率gmm/kg或转子质量偏心距μm。

ω-相应于转子最高工作转速的角速度=2πn/60≈n/10,n为转子的工作转速r/min。

10. 转子单位质量的允许不平衡度(率):

eper=(G×1000)/(n/10) 单位:gmm/kg或μm

11. 最小可达剩余不平衡量(Umar):指平衡机能使转子达到的剩余不平衡量的最小值,是衡量平衡机最高平衡能力的性能指标。单位为gmm。

12. 不平衡量减少率(URR):经过一次平衡修正减少的不平衡量与初始不平衡量之比值。它是衡量平衡机效率的性能指标,以百分数表示:

URR(%)=(U1-U2)/U1=(1-U2/U1)×100

式中:U1-初始不平衡量

U2-一次平衡修正后的剩余不平衡量

13. 校验转子:为校验平衡机性能而设计的刚性转子。其质量、大小、尺寸均有规定,分立式和卧式两种。

立式转子质量为1.1,3.5,11,35,110 kg。

卧式转子质量为0.5,1.6,5,16,50,160,500kg。

二、计算转子允许的剩余不平衡量

1. eper=(G×1000)/(n/10)

式中eper――转子允许的不平衡率gmm/kg或转子质量偏心距μm G―――平衡精度等级,一般为6.3

n-------工件工作转速,单位是rpm

例:某工件工作转速1500r/min,平衡精度等级取6.3

则:eper = (6.3×1000)/(1500/10)=6300/150=42μm=42g.mm/kg

2. 允许残余不平衡量的计算。

m =(eper×M)/r

式中,m-----允许残余不平衡量,单位g

M------工件旋转质量,单位kg

r-----工件半径,单位mm

例:工件质量0.5kg,半径25mm,双面平衡,则该转子的允许不平衡量为:m =(eper×M)/r=42×0.5/25=0.84g

因电机转子是双面校正平衡,故分配到每面的允许不平衡量0.84/2=0.42g 因此,在选择动平衡机之前,应先考虑转子所要求的平衡精度。

挠度计算

1. 挠度建筑的基础、上部结构或构件等在弯矩作用下因挠曲引起的垂直于轴线的线位移。 2. 148梁施工图在计算挠度前,先要形成连续梁。在连续梁与其它梁相交的节点处,若恒载弯矩<0且为峰值点,则认为此节点为梁的一个支座,否则没有支座。此规则对于大多数的情况都是正确的。但对于井字梁的情况,用此方法判断出的结果计算挠度误差较大。 对于这种情况,建议参考SATWE中的挠度计算结果。需注意SATWE中的挠度计算采用了弹性刚度,故需×长期刚度与弹性刚度的比值。另外,SATWE中的弹性挠度是在恒+活的作用下的结果,故还需注意到规范规定的挠度计算采用准永久组合,应对其进行换算。 可以使用放大弹性挠度的方法来求长期挠度吗? 日期:2011-10-21 点击:62在梁上弯矩不变的情况下,挠度与刚度成反比例关系。由于有限元计算变形时考虑构件变形协调,因此对于次梁和井字梁,此方案得到结果要比各跨单独计算挠度更合理一些。特别是井字梁,此方案算得两方向的挠度更为接近。对次梁和井字梁,放大弹性挠度不失为一种求长期挠度的合理解决方案。计算时放大系数可以取EcIc/B,其中B 可取跨中最大弯矩截面的长期刚度,可直接查梁施工图模块中提供的挠度计算书。 3. 均布荷载下的工字钢的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EJ). 式中: Ymax 为梁跨中的最大挠度(cm). q 为均布线荷载(kg/cm). E 为工字钢的弹性模量,对于工程用结构钢,E = 2100000 kg/cm^2. J 为工字钢的截面惯矩,可在型钢表中查得(cm^4). 4. 简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:

简支梁在各种荷载作用下跨中最大挠度计算公式

简支梁在各种荷载作用下跨中最大挠度计算公式 一、均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q为均布线荷载标准值(kn/m). E为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I为钢的截面惯矩,可在型钢表中查得(mm^4). 二、跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 三、跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 四:跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4).

五、悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). 其中: q 为均布线荷载标准值(kn/m). p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!

浮子流量计的工作原理

浮子流量计的工作原理 1、浮子流量计简述 浮子流量计又称转子流量计,是将浮子垂直放在一个竖直的锥管内,流体在锥管内自下而上流过,使浮子在平衡位置上静止下来,按其平衡位置的高度来进行流量的测量。浮子流量计在测量过程中始终保持浮子前后的压降不变,通过改变流通面积来进行流量的测量,故它又被称为面积流量计或变面积流量计或恒压降流量计。 浮子流量计按其制造材料的不同,可分为玻璃管浮子流量计和金属管浮子流量计两大类。玻璃管浮子流量计结构简单,浮子的位置清晰可见,刻度直观,成本低廉,通常只用于常温常压下透明介质的流量测量。这种流量计一般只有就地指示,不能远传流量信号。金属管浮子流量计由于采用金属锥管,流量计工作时无法看到浮子的位置和工作情况,需要用间接的方法给出浮子的位置,因此按其传输信号的不同,又可分为远传型(电远传和气远传)和就地指示型两种。这种流量计常用于高温、高压、不透明及腐蚀性介质的流量测量,由于其具有很高的可靠性,因此常用于工业过程控制领域。 2、工作原理 浮子流量计的流量检测元件是由一只自下而上扩大的垂直锥形管和一个沿着锥管轴线上下移动的浮子所组成。工作原理如图所示,被测流体从下向上经过锥管和浮子形成环形流通面积(以下简称环通面积)时,浮子上下两端产生的压差形成浮子上升的力,当浮子所受上升力大于浸在流体中浮子的重量时,浮子便上升,环通面积随之增大,环通面积处流体流速下降,浮子上下两端压差降低,作用于浮子的上升力也随之减小,直到上升力等于浸在流体中浮子的重量时,浮子便稳

定在某一高度。浮子在锥管中的高度和通过的流量有一一对应的关系。浮子流量计的体积流量公式为 式中,α——浮子流量计的流量系数﹔ Df——零刻度处锥管的内径﹔ h———浮子高度﹔ φ——锥管的锥角﹔ Vf-—浮子的体积,m3; ρf———流体的密度,kg/ m3; ρf——浮子密度,kg/m3; Af--—浮子最大迎流面积,m2 流量qv,与浮子高度h之间为一一对应的近似线性关系。在进行稍大流量测量时,为达到必要的环通面积,减少φ角,势必要增加锥管的长度。因此,早期的金属管浮子流量计口径、长度不一,口径越大,长度也越大,达到500~600mm 长,非常笨重,制造和使用都不方便。现在已有多种方式进行线性化处理,各口径的金属管浮子流量计大都已统一制造成250mm长度的短管型流量计。 对于玻璃管浮子流量计,h-qv的对应关系直接刻度在流量计的锥管上。为使刻度均匀,制造时也将锥管的锥角减小一些,长度增大一些。 3、刻度换算 从上式可知,对于不同的流体,由于密度ρ不同,所以qv与h之间的对应关系也将不同,原来的流量刻度将不再适用。原则上浮子流量计应该用实际流体介质进行标定。但是,对于浮子流量计的制造厂家来说,由于受到标定设备的限制,不可能对所有的浮子流量计都根据用户的要求进行实际流体标定,所以浮子流量计用来测量非标定流体时,应该对浮子流量计的读数进行修正,这就是浮子流量计的刻度换算。这--过程可以由生产厂家按用户要求换算完成后直接刻度在浮子流量计的刻度盘上或玻璃锥管上。对于远传型浮子流量计,其远传信号也进行同样的刻度换算。

挠度计算

简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).

转子流量计的原理及计算【最新版】

转子流量计的原理及计算 1概述 转子流量计(Rotometer),又称浮子流量计(FloatTypeFlowmeter),在工业中得到广泛的应用。它可测量液体、气体和蒸气的流量,宜测中小管径(DN4~250)的流量。压力损失小且恒定,测量范围比较宽,量程比1:10,工作可靠且刻度线性,使用维修方便,对仪表前后直管段长度要求不高。其测量精确度为±2%左右,受被测液体的密度、粘度、纯净度以及温度、压力的影响,也受安装垂直度的影响。玻璃管浮子流量计结构简单,成本低,易制成防腐蚀性仪表,但其强度低。金属管浮子流量计可输出标准信号,耐高压,能实现流量的指示、积算、记录、控制和报警等多种功能。 1.1 原理及结构 1.1.1 冲量定理及应用 设一物体的质量为m,作用其上的力为F,实际上流体的速度v,物体变化路程为L。那么根据冲量定理可推出 (1)

1.1.2 测量原理及结构 如果将阻挡体置于直立且具有锥度(上大下小)的管道中,就形成转子式的流量计,它的工作原理如图1所示。 当流量增加时,转子接受流体自下而上的冲力将增加,因而被冲向上方,一到达上面,由于流通截面增加,流速减小,冲力也随之减小。当冲力和差压对转子截面构成的作用力以及粘滞摩擦力等的合力与转子本身在流体中重量相等时,转子即处于一平衡状态,不再上升或下降,这个位置就表示新的流量值。 1.2 计算公式 设转子的显示重量为Wf(N),流体对转子的作用力为F(N),锥形管与转子间环形截面为Sa(m2),转子处最大截面积为Sf(m2),转子体积Vf(m3),转子密度为ρf(Kg/m3),转子长度为L(m),流体介质的密

转子流量计工作原理

转子流量计工作原理集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

转子流量计工作原理 转子流量计又称浮子流量计,是变面积式流量计的一种,它是由一个锥形管和一个置于锥形管内可以上下自由移动的转子(也称浮子)构成。转子流量计本体可以用两端法兰、螺纹或软管与测量管道连接,垂直安装在测量管道上。当流体自下而上流入锥管时,被转子截流,这样在转子上、下游之间产生压力差,转子在压力差的作用下上升,这时作用在转子上的力有三个:流体对转子的动压力(向上)、转子在流体中的浮力(向上)和转子自身的重力(向下)。 流量计垂直安装时,转子重心与锥管管轴会相重合,作用在转子上的三个力都平行于管轴。当这三个力达到平衡时,转子就平稳地浮在锥管内某一位置上。此时,重力=动压力+浮力。对于给定的转子流量计,转子大小和形状己经确定,因此它在流体中的浮力和自身重力都是已知的常量,唯有流体对浮子的动压力是随来流流速的大小而变化的。因此当来流流速变大或变小时,转子将作向上或向下的移动,相应位置的流动截面积也发生变化,直到流速变成平衡时对应的速度,转子就在新的位置上稳定。对于一台给定的转子流量计,转子在锥管中的位置与流体流经锥管的流量的大小成一一对应关系。这就是转子流童计的计量原理。 转子稳定时公式: ()t f V g P A ρρ-=?? (1-1) 其中:t ρ为转子的密度;f ρ为流体的密度;V 为转子的体积;P ?为转子前后的压差(P ?是一常数);A 为转子的最大截面积。 图1 转子流量计测量原理 其具体工作过程为:流量增加→浮子节流作用产生的压差力也增加→浮子上升→浮子与锥形管壁间的环形流通面积增大→流过此环隙的流速降低→压差力随之下降,直到

挠度计算公式

挠度计算公式 挠度计划公式简支梁在百般荷载作用下跨中最大挠度计划公 式: 均布荷载下的最大挠度在梁的跨中,其计划公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载准绳值(kn/m). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个齐集荷载下的最大挠度在梁的跨中,其计划公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个齐集荷载准绳值之和(kn). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距安排两个十分的齐集荷载下的最大挠度在梁的跨中,其计划公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个齐集荷载准绳值之和(kn). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距安排三个十分的齐集荷载下的最大挠度,其计划公式:

Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个齐集荷载准绳值之和(kn). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受齐集荷载作用时,自由端最大挠度分别为的,其计划公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载准绳值(kn/m). ;p 为各个齐集荷载准绳值之和(kn). 你可以凭据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 实行反算,看能餍足的上部荷载要求!

转子流量计原理介绍

转子流量计的原理介绍 简介 转子流量计又称浮子流量计,通过量测设在直流管道内的转动部件的(位置 )来推算流量的装置。它可以测量液体、气体、蒸汽的流量,宜测中小管径4-250mm 的流量。压力损失小,且恒定,测量范围比较宽,量程比1:10,工作可靠且刻度线性,使用维修方便,对仪表前后直管段的长度要求不高,其测量精度±2%左右,受被测的液体的密度、粘度、纯净度以及温度、压力的影响,也受安装垂直度的影响。 工作原理: 转子流量计由两个部件组成,转子流量计一件是从下向上逐渐扩大的锥形管;转子流量计另一件是置于锥形管中且可以沿管的中心线上下自由移动的转子。转子流量计当测量流体的流量时,被测流体从锥形管下端流入,流体的流动冲击着转子,并对它产生一个作用力(这个力的大小随流量大小而变化);当流量足够大时,所产生的作用力将转子托起,并使之升高。同时,被测流体流经转子与锥形管壁间的环形断面,这时作用在转子上的力有三个:流体对转子的动压力、转子在流体中的浮力和转子自身的重力。流量计垂直安装时,转子重心与锥管管轴会相重合,作用在转子上的三个力都沿平行于管轴的方向。当这三个力达到平衡时,转子就平稳地浮在锥管内某一位置上。对于给定的转子流量计,转子大小和形状己经确定,因此它在流体中的浮力和自身重力都是已知是常量,唯有流体对浮子的动压力是随来流流速的大小而变化的。因此当来流流速变大或变小时,转子将作向上或向下的移动,相应位置的流动截面积也发生变化,直到流速变成平衡时对应的速度,转子就在新的位置上稳定。对于一台给定的转子流量计,转子在锥管中的位置与流体流经锥管的流量的大小成一一对应关系。 为了使转子在在锥形管的中心线上下移动时不碰到管壁,通常采用两种方法:一种是在转子中心装有一根导向芯棒,以保持转子在锥形管的中心线作上下运动,另一种是在转子圆盘边缘开有一道道斜槽,当流体自下而上流过转子时,一面绕过转子,同时又穿过斜槽产生一反推力,使转子绕中心线不停地旋转,就可保持转子在工作时不致碰到管壁。转子流量计的转子材料可用不锈钢、铝、青铜等制

挠度计算公式

挠度计算公式 默认分类 2009-08-20 12:46 阅读2447 评论1 字号:大中小 简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

扰度计算公式(全)

扰度计算公式(全) -CAL-FENGHAI.-(YICAI)-Company One1

简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = ^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = ^3/(384EI).

式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求! 机械零件和构件的一种截面几何参量,旧称截面模量。它用以计算零件、构 件的抗弯强度和抗扭强度(见强度),或者用以计算在给定的弯矩或扭矩条件 下截面上的最大应力。根据材料力学,在承受弯矩Μ的梁截面上和承受扭矩T 的杆截面上,最大的弯曲应力σ和最大的扭转应力τ出现于离弯曲中性轴线和扭转中性点垂直距离最远的面或点上。σ和τ的数值为√(C+W)√(RD↑2) 式中Jxx和J0分别为围绕中性轴线XX和中性点O的截面惯性矩;Jxx/y和J0/y分别为弯曲和扭转的截面模量(见图和附表)。一般截面系数的符号为W,单位为毫米3 。根据公式可知,截面的抗弯和抗扭强度与相应的截面系数成正比。

结构力学简支梁跨中挠度计算公式

简支梁跨中最大挠度计算公式 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

转子流量计的原理及计算

转子流量计的原理及计算 1 概述 转子流量计(Rotometer),又称浮子流量计(FloatTypeFlowmeter),在工业中得到广泛的应用。它可测量液体、气体和蒸气的流量,宜测中小管径(DN4~250)的流量。压力损失小且恒定,测量范围比较宽,量程比1:10,工作可靠且刻度线性,使用维修方便,对仪表前后直管段长度要求不高。其测量精确度为±2%左右,受被测液体的密度、粘度、纯净度以及温度、压力的影响,也受安装垂直度的影响。玻璃管浮子流量计结构简单,成本低,易制成防腐蚀性仪表,但其强度低。金属管浮子流量计可输出标准信号,耐高压,能实现流量的指示、积算、记录、控制和报警等多种功能。 1.1 原理及结构 1.1.1 冲量定理及应用 设一物体的质量为m,作用其上的力为F,实际上流体的速度v,物体变化路程为L。那么根据冲量定理可推出 (1) 1.1.2 测量原理及结构 如果将阻挡体置于直立且具有锥度(上大下小)的管道中,就形成转子式的流量计,它的工作原理如图1所示。

当流量增加时,转子接受流体自下而上的冲力将增加,因而被冲向上方,一到达上面,由于流通截面增加,流速减小,冲力也随之减小。当冲力和差压对转子截面构成的作用力以及粘滞摩擦力等的合力与转子本身在流体中重量相等时,转子即处于一平衡状态,不再上升或下降,这个位置就表示新的流量值。 1.2 计算公式 设转子的显示重量为W f(N),流体对转子的作用力为F(N),锥形管与转子间环形截面为Sa(m2),转子处最大截面积为S f (m2),转子体积V f(m3),转子密度为ρf(Kg/m3),转子长度为L(m),流体介质的密度为ρ(Kg/m3),重力加速度为g(m/s2),则 因为m=ρV f=ρS f L代入(1)式中,整理后得 考虑到实际情况的因素,加一校正系数k变为:

转子流量计

转子流量计 在工业生产中经常遇到小流量的测量,因其流体的流速低,这就要求测量仪表具有较高的灵敏度,才能保证一定的精度。节流装置对管径小于50mm、低雷诺数的流体的测量精度是不高的。而转子流量计则特别适宜于测量管径50mm以下管道的流量。测量的流量可小到每小时几升。 转子流量计与前面所讲的差压式流量计在工作原理上是不相同的,差压式流量计,是在节流面积(如孔板面积)不变的条件下,以差压变化来反映流量的大小,而转子流量计,却是以压降不变,利用节流面积的变化来测量流量的大小,即转子流量计采用的是恒压降、变节流面积的流量测量法。

上图是转子流量计的原理图,它基本上由两个部分组成,一个是由下往上逐渐扩大的圆锥形管;另一个是放在锥形管内随被测介质流 量大小而作上下浮动的转子(又称浮子)。 工作时,被测流体(气体或液体)由锥形管下部进人,沿着锥形管向上运动,流过转子与锥形管之间的环隙,再从锥形管上部流出。当流体流过锥形管时,位于锥形管中的转子受到一个向上的力,使转子浮起。当这个力正好等于浸没在流体里的转子重力(即等于转子 重量减去流体对转子的浮力)时,则作用在转子上的上下两个力达到 平衡,此时转子就停浮在一定的高度上。 假如被测流体的流量突然由小变大时,作用在转子上的力就加大。因为转子在流体中的重力是不变的,即作用在转子上的向下力是不变的,所以转子就上升。由于转子在锥形管中位置的升高,造成转子与锥形管间环隙增大,即流通面积增大。随着环隙的增大,流过此环隙的流体流速变慢,因而,流体作用在转子上的力也就变小。 当流体作用在转子上的力再次等于转子在流体中的重力时,转子又稳定在一个新的高度上。这样,转子在锥形管中的平衡位置的高低与被测介质的流量大小相对应。因此,根据这个高度,就可测得流体流过转子流量计的流量值。这就是转子流量计测量流量的基本原理。

转子流量计的校正

实验十五 转子流量计的校正 转子流量计是使用较广泛的一种流量测量仪器,其上标有流量刻度值,但在使用前,一般需进行校正。 一.实验目的 (1) 了解转子流量计流量测定的工作原理。 (2) 获得转子流量计的校正实验刻度值。 (3) 明确流量计校正的重要性和掌握校正方法。 二.实验原理 转子流量计的流体通道为一垂直的锥角约为4。的微锥形玻璃管内置一转子(也称浮子)。当被测流体以一定流量自下而上流过锥形管时,在转子的上、下端面形成一个压差,该压差产生了升力,当升力达到一定值时,便能将转子向上浮起。但随着转子的上浮,转子与锥形管之间的环隙通道面积增大,环隙中流速减小,转子两端的压差也随之减小。 因此,当转子浮升至某一高度,转子所受的升力恰好等于其重力时,转子便平衡悬浮在此高度上。转子的这一平衡悬浮高度,随转子的两端面的压差,也即流量的大小而变化,它可由转子的受力平衡导出,参见图15-1,转子上,下端的压差按伯努利定律由两部分组成。一部分由位差引起的,该部分压差造成的升力即为通常所说的浮力F 1,其值等于同体积流体的重量。另一部分由动能差引起,其值为F 2 f A u u F )(221202-=ρ (1) 根据物料衡算关系 01 01u A A u = (2) 式中:A f ——转子最大截面积。 A 0——转子平衡时相应于0—0处的环隙面积。 A i——玻璃管截面积。 V f ——转子体积 ρf ——转子密度 f A A A u F ])(1[221 0202-=ρ (3) 这样转子的受力平衡条件为 g V f f ρ=+g V f ρf A A A u ])(1[221 020-ρ (4)

转子流量计基本知识指南

金属转子流量计的应用 金属转子流量计的应用说明如下: 1、新装管道在仪表安装前应将新管道冲洗干净,如果被测介质含有颗粒杂质或气泡,则应在仪表上游安装过滤装置或设置排气口,安装时流体必须从下向上流动,若流体从上向下流动,则仪表不能工作。如被测介质是脉动流,则应在下游设置适当尺寸缓冲装置,如稳压罐等以消除脉动。 2、仪表开箱检查无误后取出填充物,仪表应垂直安装在无震动的管道上;如需水平安装,订货时应另加说明。仪表中心线与铅垂线的夹角不应超过5°。安装时仪表的直管段长度应大于5倍仪表口径,以消除涡流影响。 3、一次仪表按规定安装好后,应先关闭仪表上、下游截止阀;再检查一次仪表同二次仪表接线,无误后,开启二次仪表电源则瞬时流量应显示为零。如要正常使用,则应先开启上游阀呈全开后,用流量计下游调节阀由小到大缓慢调节流量,则瞬时流量应有变化。停止工作时,则应先关闭上游阀门、然后关闭下游调节阀。为了便于检查仪表零点和拆装维修与调试,应在仪表上、下游安装截止阀和旁通阀。 金属管浮子流量计的运用方法 金属管浮子流量计是工业自动化过程控制中常用的一种变面积流量测量仪表。它具有体积小,检测范围大,使用方便等特点。它可用来测量液体、气体以及蒸汽的流量,特别适宜低流速小流量的介质流量测量。 1、用户运用时,若被測流体的密度与水不同时,或被測气体的参数和工作状态与制造厂家规定不同时应对金属管浮子流量计示值读数进行换算;指示器的两盖必须密封,防止灰尘进入,影响正常工作。 2、安装PTFE衬里的仪表时,法兰螺母不要随意不对称拧得过紧,以免引起PTEF衬里变形; 3、带有液晶显示的仪表,要尽量避免阳光直射显示器,以免降低液晶使用寿命;带有锂电池供电的仪表,要尽量避免阳光直射、高温环境(≥65℃)以免降低锂电池的容量和寿命;必须保证仪表的清洁,特别是仪表中孔板、椎管的表面和浮子必须保持清洁,因而仪表使用一段时间后应取下清洗。 4、用于小口径和低流速介质流量测量;工作可靠,维护量小,寿命长;对于直管段要求不高;较宽的流量比10:1;双行大液晶显示,可选现场瞬时/累计流量显示,可带背光单轴灵敏指示;非接触磁耦合传动;若仪表运转不稳,指针跳动的主要原因除流量本身脉冲外,还要考虑介质有两相流的可能性(即液相和气相同时存在),只要采取措施消除两相流的存在,即可保证仪表稳定运转。 转子流量计最容易忽视的问题 流量计是用于测量液体或气体的线性、非线性、质量或体积流量的仪器。良好的流量计选择的基础是对特定应用要求的清晰理解。因此,要花时间全面评估工艺流体及整体安装的性质。选择流量计时,应考虑特定厂区人员的熟悉程度、他们校准和维修的经验、备件的供货能力和平均失效间隔时间等无形因素。因此,应多加注意转子流量计容易出现的问题: 1、气体介质由于受到温度压力影响较大,建议采用温压补偿的方式来获得真实的流量。 2、由于长期使用及管道震动等多因素引起浮子流量计传感磁钢、指针、配重、旋转磁钢等活动部件松动,造成误差较大。解决方法:可先用手推指针的方式来验证。首先将指针按在RP位置,看输出是否为4mA,流量显示是否为0%,再依次按照刻度进行验证。若发

转子流量计工作原理

转子流量计又称浮子流量计,是变面积式流量计的一种,它是由一个锥形管和一个置于锥形管内可以上下自由移动的转子(也称浮子)构成。转子流量计本体可以用两端法兰、螺纹或软管与测量管道连接,垂直安装在测量管道上。当流体自下而上流入锥管时,被转子截流,这样在转子上、下游之间产生压力差,转子在压力差的作用下上升,这时作用在转子上的力有三个:流体对转子的动压力(向上)、转子在流体中的浮力(向上)和转子自身的重力(向下)。 流量计垂直安装时,转子重心与锥管管轴会相重合,作用在转子上的三个力都平行于管轴。当这三个力达到平衡时,转子就平稳地浮在锥管内某一位置上。此时,重力=动压力+浮力。对于给定的转子流量计,转子大小和形状己经确定,因此它在流体中的浮力和自身重力都是已知的常量,唯有流体对浮子的动压力是随来流流速的大小而变化的。因此当来流流速变大或变小时,转子将作向上或向下的移动,相应位置的流动截面积也发生变化,直到流速变成平衡时对应的速度,转子就在新的位置上稳定。对于一台给定的转子流量计,转子在锥管中的位置与流体流经锥管的流量的大小成一一对应关系。这就是转子流童计的计量原理。 转子稳定时公式: V(t f )g P A (1-1)其中:t 为转子的密度; f 为流体的密度;V 为转子的体积;P 为转子前后的压差(P是一常数);A为转子的最大截面积。 图 1 转子流量计测量原理 其具体工作过程为:流量增加一浮子节流作用产生的压差力也增加一浮子上升一浮子与锥形管壁间的环形流通面积增大一流过此环隙的流速降低-压差力随之下降,直到其恢复为原来的压差数值为止一转子就平衡在比原来高的位置上了。因此,浮子的停浮高度与流量大小成对应关系。 已知稳定时公式(1-1),再由流量方程式

转子流量计的工作原理

转子流量计的工作原理 发布者:上海元宙流体技术发布时间:2008年12月30日 Audo look6.0下载流量计又称浮子流量计,是变面积式流量计的一种,其是由一个锥形管和一个置于锥形管内可以上下自由移动的转子(也称浮子)构成。转子流量计本体可以用两端法兰、螺纹或软管与测量管道连接,垂直安装在测量管道上。当流体自下而上流入锥管时,被转子截流,这样在转子上、下游之间产生压力差,转子在压力差的作用下上升,这时作用在转子上的力有三个:流体对转子的动压力、转子在流体中的浮力和转子自身的重力。 流量计垂直安装时,转子重心与锥管管轴会相重合,作用在转子上的三个力都沿平行于管轴。当这三个力达到平衡时,转子就平稳地浮在锥管内某一位置上。对于给定的转子流量计,转子大小和形状己经确定,因此它在流体中的浮力和自身重力都是已知是常量,唯有流体对浮子的动压力是随来流流速的大小而变化的。因此当来流流速变大或变小时,转子将作向上或向下的移动,相应位置的流动截面积也发生变化,直到流速变成平衡时对应的速度,转子就在新的位置上稳定。对于一台给定的转子流量计,转子在锥管中的位置与流体流经锥管的流量的大小成一一对应关系。这就是转子流童计的计量原理。

电磁流量计原理 发布者:安徽天康集团股份有限公司发布时间:2008年12月30日 Audo look6.0下载电磁流量计(以下简称EMF)是利用法拉第电磁感应定律制成的一种测量导电液体体积流量的仪表。50年代初EMF实现了工业化应用,近年来世界范围EMF产量约占工业流量仪表台数的5%~6.5%。 70年代以来出现键控低频矩形波激磁方式,逐渐替代早期应用的工频交流激磁方式,仪表性能有了很大提高,得到更为广泛的应用。 2. 原理与机构 EMF的基本原理是法拉第电磁感应定律,即导体在磁场中切割磁力线运动时在其两端产生感应电动势。如图1所示,导电性液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成比例的感应电势,电动势的方向按“弗来明右手规则”,其值如下式 式中 E-----感应电动势,即流量信号,V; k-----系数; B-----磁感应强度,T; D----测量管内径,m; --- 平均流速,m/s。 设液体的体积流量为 ,则 式中 K 为仪表常数,K= 4 KB/πD 。 EMF由流量传感器和转换器两大部分组成。传感器典型结构示意如图2,测量管上下装有激磁线圈,通激磁电流后产生磁场穿过测量管,一对电极装在测量管内壁与液体相接触,引出感应电势,送到转换器。激磁电流则由转换器提供。 3、优点 EMF的测量通道是一段无阻流检测件的光滑直管,因不易阻塞适用于测量含有固体颗粒或纤维的液固二相流体,如纸浆、煤水浆、矿浆、泥浆和污水等。 EMF不产生因检测流量所形成的压力损失,仪表的阻力仅是同一长度管道的沿程阻力,节能效果显著,对于要求低阻力损失的大管径供水管道最为适合。

转子流量计

1简介 在一根由下向上扩大的垂直锥管中 , 圆形横截面的浮子的重力是由液体动力 承受的 , 浮子可以在锥管内自由地上升和下降。在流速和浮力作用下上下运动,与浮子重量平衡后,通过磁耦合传到与刻度盘指示流量。一般分为玻璃和金属转子流量计。金属转子流量计是工业上最常用的,对于小管径腐蚀性介质通常用玻璃材质,由于玻璃材质的本身易碎性,关键的控制点也有用全钛材等贵重金属为材质的转子流量计 转子流量计是基于浮子位置测量的一种变面积流量仪表.采用全金属结 构,Modular概念设计,其压损小,量程比大(10:1),安装维护方便,可广泛用于复杂,恶劣环境及各种介质条件的流量测量与过程控制中 2特点编辑 转子流量计是工业上和实验室最常用的一种流量计。它具有结构简单、直观、压力损失小、维修方便等特点。转子流量计适用于测量通过管道直径D<150mm的小流量,也可以测量腐蚀性介质的流量。使用时流量计必须安装在垂直走向的管段上,流体介质自下而上地通过转子流量计。 3工作原理编辑 转子流量计由两个部件组成,转子流量计一件是从下向上逐渐扩大的锥形管;转子流量计另一件是置于锥形管中且可以沿管的中心线上下自由移动的转子。转子流量计当测量流体的流量时,被测流体从锥形管下端流入,流体的流动冲击着转子,并对它产生一个作用力(这个力的大小随流量大小而变化);当流量足够大时,所产生的作用力将转子托起,并使之升高。同时,被测流体流经转子与锥形管壁间的环形断面,这时作用在转子上的力有三个:流体对转子的动压力、转子在流体中的浮力和转子自身的重力。流量计垂直安装时,转子重心与锥管管轴会相重合,作用在转子上的三个力都沿平行于管轴的方向。当这三个力达到平衡时,转子就平稳地浮在锥管内某一位置上。对于给定的转子流量计,转子大小和形状己经确定,因此它在流体中的浮力和自身重力都是已知是常量,唯有流体对浮子的动压力是随来流流速的大小而变化的。因此当来流流速变大或变小时,转子将作向上或向下的移动,相应位置的流动截面积也发生变化,直到流速变成平衡时对应的速度,转子就在新的位置上稳定。对于一台给定的转子流量计,转子在锥管中的位置与流体流经锥管的流量的大小成一一对应关系。 为了使转子在在锥形管的中心线上下移动时不碰到管壁,通常采用两种方法:一种是在转子中心装有一根导向芯棒,以保持转子在锥形管的中心线作上下运动,另一种是在转子圆盘边缘开有一道道斜槽,当流体自下而上流过转子时,一面绕过转子,同时又穿过斜槽产生一反推力,使转子绕中心线不停地旋转,就可保持转子在工作时不致碰到管壁。转子流量计的转子材料可用不锈钢、铝、青铜等制成。

玻璃强度与挠度计算

摘单片玻璃强度和挠度计算方法研究 作者:lixuecom标签:幕墙设计幕墙施工建筑设计建筑方案2010-04-30 23:04 星期五晴 一、前言 目前国内涉及玻璃强度、挠度计算的标准有JGJ102-96《玻璃幕墙工程技术规范》、JGJ113-97《建筑玻璃应用技术规程》、上海市地方标准DBJ08-56-96《建筑幕墙工程技术规程(玻璃幕墙分册)》。JGJ102-96、DBJ08-56-96(以下简称现行国标)对单片玻璃强度计算均有规定,根据有关试验资料在一定范围内强度计算偏于保守。DBJ08-56-96对单片玻璃的挠度有规定,根据有关试验资料挠度实测值与计算值有相当大偏差。 我们希望通过试验数据对比研究,建立较完善的幕墙玻璃强度和挠度计算理论。 二、试验概况和研究内容 (一)试验概况 1. 试验样品玻璃品种包括浮法、半钢化、钢化玻璃,支承条件以四边支撑为主。试验样品约六十片,玻璃厚度以玻璃幕墙工程常用的6mm、8mm、10mm为主。 2. 试验方法通过对四边支撑的玻璃板块在侧向均布荷载作用下的试验,研究其跨中挠度、最大应力的变化规律。检验过程参照ASTM-E998进行,将玻璃板块安装在测试箱体上。试验过程中采集的数据包括控制点的应变值和跨中挠度值。 (二)研究内容和方法 1. 通过以上较为典型的玻璃板块在侧向荷载作用下的的应力和挠度试验,研究单片玻璃在侧向荷载作用下的应力和挠度变化规律。采取四边支承方式进行玻璃侧向荷载的试验,采集的数据主要包括控制点的应变和跨中挠度。 2. 运用薄板弹性弯曲理论,通过有限元方法计算四边支承玻璃的最大应力和跨中挠度,并与试验数据进行对比,从而建立合理的玻璃应力和挠度计算方法,为玻璃结构性能的理论分析建立合适的计算模型。 3. 由较合理的玻璃有限元计算模型,计算大量的不同厚度、长宽比的玻璃最大应力和跨中挠度,拟合玻璃应力和挠度公式。 通过以上试验和研究,建立单片玻璃较完整的计算方法,弥补现行幕墙玻璃规范中的不足之处、为使用中幕墙玻璃的评估提供理论依据。 三、试验结果分析 (一)单片玻璃强度和挠度研究 1. 试验实测数据与现行规范计算值的对比 现行规范(JGJ102-96、DBJ08-56-96)采用小挠度理论来计算玻璃最大应力和跨中挠度。 试验实测数据与现行规范计算值对比结果显示现行规范计算结果与试验结果误差相当大。现行规范计算应力与实测应力的误差波动范围在-9.80%~142.64%,其中负偏差占4.55%,负偏差平均值为-7.14%;正偏差占95.45%,正偏差平均值为59.06%。上海地方标准计算挠度与实测挠度的误差波动范围在3.57%~167.72%,均为正偏差,误差平均值为74.60%。 2. 大挠度计算方法研究

相关文档