文档库 最新最全的文档下载
当前位置:文档库 › GPS卫星定位基本原理-完整版

GPS卫星定位基本原理-完整版

GPS测量基本原理

1> 概述 测量学中有测距交会确定点位的方法。与其相似,无线电导航定位系统、卫星激光测距定位系统,其定位原理也是利用测距交会的原理定位。 就无线电导航定位来说,设想在地面上有三个无线电发射台,其坐标为已知,用户接收机在某一时刻采用无线电测距的方法分别测得了接收机至三个发射台的距离d1,d2,d3。只需以三个发射台为球心,以d1,d2,d3为半径作出三个定位球面,即可交会出用户接收机的空间位置。如果只有两个无线电发射台的话,则可根据用户接收机的概略位置交会出接收机的平面位置。这种无线电导航定位系统是迄今为止仍在使用的飞机船舶的的中导航定位方法。 近代卫星大地测量中的卫星激光测距定位也是应用了测距交会定位的原理和方法。虽然用于测距的卫星(表面安装有激光反射镜)是在不停的运动中,但总可以利用固定于地面上三个已知点上的卫星激光测距仪同时测定某一时刻至卫星的距离d1,d2,d3,应用测距交会的原理便可确定该时刻卫星的空间位置。如此,可以确定三可以上卫星的空间位置。如果第四个地面点上(坐标未知)也有一台卫星测距仪同时参与了测定改点到三颗卫星的空间距离,则利用所测定的三个空间距离可交会出该地面点的空间位置。 将无线电信号发射台从地面搬到卫星上,组成一颗卫星导航定位系统,应用无线电测距交会的原理,便可利用三个以上地面已知点(控制站)交会处卫星的位置,反之利用三颗以上的卫星的已知空间位置又可交会出地面未知点(用户接收机)的位置。这便是GPS卫星定位的基本原理。 GPS卫星发射测距信号和导航电文,导航电文中含有卫星的位置信息。用户用GPS接收机在某一时刻同时接收三个以上的GPS卫星信号,测量出测站点(接收机天线中心)P至三颗以上GPS卫星的距离并解算出该时刻GPS卫星的空间位置坐标,据此利用距离交会法解算出测站P的位置坐标,如下图所示,设在时刻t i在在测站P用GPS接收机同时测出P点至三颗GPS卫星的距离ρ1,ρ2,ρ3,通过GPS电文解释出该时刻三颗GPS卫星的三维坐标分别为(Xi,Yi,Zi),j=1,2,3。用距离交会的方法求解出P点的三维坐标(X,Y,Z)的观测方程为

北斗gps卫星定位系统定位原理

网址:https://www.wendangku.net/doc/a818101574.html, 北斗gps卫星定位系统定位原理 北斗卫星定位系统哪家好?北斗卫星定位系统的原理是什么?八杰科技为您解答。 定位原理 35颗卫星在离地面2万多千米的高空上,以固定的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。 由于卫星的位置精确可知,在接收机对卫星观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。 事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成

网址:https://www.wendangku.net/doc/a818101574.html, 若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。 卫星定位实施的是“到达时间差”(时延)的概念:利用每一颗卫星的精确位置和连续发送的星上原子钟生成的导航信息获得从卫星至接收机的到达时间差。 卫星在空中连续发送带有时间和位置信息的无线电信号,供接收机接收。由于传输的距离因素,接收机接收到信号的时刻要比卫星发送信号的时刻延迟,通常称之为时延,因此,也可以通过时延来确定距离。卫星和接收机同时产生同样的伪随机码,一旦两个码实现时间同步,接收机便能测定时延;将时延乘上光速,便能得到距离。 每颗卫星上的计算机和导航信息发生器非常精确地了解其轨道位置和系统时间,而全球监测站网保持连续跟踪。 卫星导航原理 踪卫星的轨道位置和系统时间。位于地面的主控站与其运控段一起,至少每天一次对每颗卫星注入校正数据。注入数据包括:星座中每颗卫星的轨道位置测定和星上时钟的校正。这些校正数据是在复杂模型的基础上算出的,可在几个星期内保持有效。 卫星导航系统时间是由每颗卫星上原子钟的铯和铷原子频标保持的。这些星钟一般来讲精确到世界协调时(UTC)的几纳秒以内,UTC是由美国海军观象台的“主钟”保持的,每台主钟的稳定性为若干个10^-13秒。卫星早期采用两部铯频标和两部铷频标,后来逐步改变为更多地采用铷频标。通常,在任一指定时间内,每颗卫星上只有一台频标在工作。 卫星导航原理:卫星至用户间的距离测量是基于卫星信号的发射时间与到达接收机的时间之差,称为伪距。为了计算用户的三维位置和接收机时钟偏差,伪距测量要求至少接收来自4颗卫星的信号。

全球四大卫星定位系统

全球四大卫星定位系统 一.GPS系统(美国) 二.北斗系统(中国) 三.GLONASS系统(俄罗斯) 四.伽利略卫星导航系统(欧盟) GPS系统(美国) GPS系统是美国从上世纪70年代开始研制,历时20年,耗资近200亿美元,于1994年全面建成的新一代卫星导航与定位系统。GPS利用导航卫星进行测时和测距,具有在海、陆、空全方位实时三维导航与定位能力。它是继阿波罗登月计划、航天飞机后的美国第三大航天工程。如今,GPS已经成为当今世界上最实用,也是应用最广泛的全球精密导航、指挥和调度系统。 GPS系统概述GPS系统由空间部分、地面测控部分和用户设备三部分组成。 (1)空间部分GPS系统的空间部分由空间GPS卫星星座组成。 (2)控制部分控制部分包括地球上所有监测与控制卫星的设施。 (3)用户部分GPS用户部分包括GPS接收机和用户团体。 主要功能: 导航 测量 授时

标准:全球定位系统(GPS)测量规范GB/T 18314-2001 Specifications for global positioning system (GPS) surveys 种类: GPS卫星接收机种类很多,根据型号分为测地型、全站型、定时型、手持型、集成型;根据用途分为车载式、船载式、机载式、星载式、弹载式。 北斗卫星导航系统 中国北斗卫星导航系统(BeiDou Navigation Satellite System, 统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。 段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户 度0.2米/秒,授时精度10纳秒。 系统构成 北斗卫星导航系统空间段由5颗静止轨道卫星和30颗非静止轨 道卫星组成,中国计划2012年左右,“北斗”系统将覆盖亚太地区,

第二章 GPS卫星定位系统

第二章 GPS卫星定位系统 第一节GPS系统的组成 GPS系统主要由空间星座部分、地面监控部分和用户设备三大部分组成,(图2—1)。 图2—1 GPS系统的组成 1 空间星座部分 GPS空间部分是由24颗GPS工作卫星所组成,21颗工作卫星和3颗在轨备用卫星共同组成了GPS卫星星座。如图2-2所示,这24颗卫星分布在6个倾角为55?的轨道上绕地球运行,各个轨道平面之间相距60?,轨道平均高度20200km 。卫星的运行周期,即绕地球一周的时间约为12恒星时(11小时58分)。这样,对于地面观测者来说,每天将提前4分钟见到同一颗GPS卫星。位于地平线以上的卫星颗数随着时间和地点的不同而不同,最少可见到4颗,最多可以见到11颗。满足了在用GPS信号导航定位时,为了解算测站的三维坐标,必须观测4颗GPS卫星的基本要求。每颗GPS工作卫星都发出用于导航定位的信号。GPS用户正是利用这些信号来进行导航定位工作的。 GPS卫星的编号是:按发射先后次序编号(01-24);按PRN(卫星信号所采用的伪随机噪声码)的不同编号;国际编号(第一部分为该星发射年代,第二部分表示该年中发射卫星的序号,字母A表示发射的有效负荷);接轨道位置顺序编号等。在导航定位测量中,一般采用PRN编号。 图2—2 GPS卫星空间星座 GPS卫星空间星座的分布保障了在地球上任何地点、任何时刻至少有4颗卫星被同时观测,加之卫星信号的传播和接收不受天气的影响,因此,GPS是一种全球性、全天候的连续实时定位系统。

在GPS 系统中,CPS 卫星星座的功能如下: (1).用L 波段的两个无线载波(19cm 和24cm 波)向广大用户连续不断地发送导航定位信号。包括提供精密时间标准、粗略导航定位伪距C /A 码、精密测距P 码和反映卫星当前空间位置和卫星工作状态的导航电文。 (2).在卫星飞越注入站上空时,接收由地面注入站用S 波段(10cm 波段)发送到卫星的导航电文和其它有关信息,并适时发送给广大用户。 (3).接收地面主控站通过注入站发送到卫星的调度命令,适时地调整卫星的姿态,改正卫星运行轨道偏差,启用备用卫星。 GPS 卫星的主体呈圆柱形,直径约为1.5m ,重约774kg ,两侧设有两块双叶太阳能板,能自动对日定向,以保证卫星正常供电(图2—3)。 图2—3 GPS 卫星体系图 每颗卫星配置有4台高精度原子钟(2台铷钟和2台铯钟),这是卫星的核心设备。它将发射标准频率信号,为GPS 定位提供高精度的时间标准。 2 卫星监控部分 GPS 的控制部分由分布在全球的若干个跟踪站所组成的监控系统所构成,根据其作用的不同,这些跟踪站又被分为主控站、监控站和注入站,其分布如图2—4所示。 图2—4 GPS 地面监控站分布 2.1 主控站 主控站有一个,设在美国本土科罗拉多(Colorado )· 斯平士(Colorado Springs)的联合空间执行中心CSOC 。它的作用是: 老师指导

北斗卫星导航系统定位原理及应用

xxxx导航系统定位原理及其应用 北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。 北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日, 2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥?双保险?作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。北斗一号系统的基本功能包括: 定位、通信(短消息)和授时。北斗二代系统的功能与GPS相同,即定位与授时。 其工作原理如下: ?北斗一号?卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标

全球四大卫星导航系统

全球四大卫星导航系统 美国GPS系统 目前世界使用最多的全球卫星导航定位系统是美国的GPS系统。它是世界上第一个成熟、可供全民使用的全球卫星定位导航系统。该系统由28颗中高轨道卫星组成,其中4颗为备用星,均匀分布在距离地面约20000千米的6个倾斜轨道上。 俄罗斯格洛纳斯系统 格洛纳斯是前苏联国防部于20世纪80年代初开始建设的全球卫星导航系统,从某种意义上来说是冷战的产物。该系统耗资30多亿美元,于1995年投入使用,现在由俄罗斯联邦航天局管理。格洛纳斯是继GPS之后第2个军民两用的全球卫星导航系统。 欧洲伽利略系统 伽利略系统是欧空局与欧盟在1999年合作启动的,该系统民用信号精度最高可达1米。 计划中的伽利略系统由30颗卫星组成。2005年12月28日,首颗实验卫星Glove-A发射成功,第2颗实验卫星Glove-B在2007年4月27日由俄罗斯联盟号运载火箭于哈萨克斯坦的拜科努尔基地发射升空。 中国北斗系统 北斗全球卫星定位导航系统由5颗静止轨道卫星和30颗非静止轨道卫星组成,提供开放服务和授权服务两种模式。根据系统建设总体规划,2020年左右,建成覆盖全球的北斗卫星导航系统。 2011年4月10日,我国成功发射第八颗北斗导航卫星,标志着北斗区域卫星导航系统的基本系统建设完成,我国自主卫星导航系统建设进入新的发展阶段。从当初的“最高机密”,到今日向民用市场推广,北斗计划已经走过了20多年。曾经的主力科学家已经成了白发苍苍的院士,北斗系统的理论创始人也已经故去。4月10日4时47分,我国在西昌卫星发射中心用“长征三号甲”运载火箭,成功将第八颗北斗导航卫星送入太空预定转移轨道。这是一颗倾斜地球同步轨道卫星。这颗卫星将与2010年发射的5颗导航卫星共同组成“3+3”基本系统(即3颗GEO卫星加上3颗IGSO卫星),经一段时间在轨验证和系统联调后,将具备向我国大部分地区提供初始服务条件。今明两年,我国还将陆续发射多颗组网导航卫星,完成北斗区域卫星导航系统建设,满足测绘、渔业、交通运输、气象、电信、水利等行业,以及大众用户的应用需求。 中国卫星导航系统管理办公室负责人冉承其介绍,目前,北斗卫星导航系统正按照“三步走”发展战略稳步推进第一步,2003年建成北斗导航试验系统。系统由三颗地球同步静止轨道卫星和地面系统组成,可为我国及周边地区的中、低动态用户提供定位、短报文通信和授时服务,已应用于水利、渔业、交通、救援等国民经济领域,经济和社会效益显著。第二步,2012年左右,将建成由10余颗卫星组成的北斗区域卫星导航系统,具备覆盖亚太地区的服务能力,采用无源定位体制,具有定位、导航、授时以及短报文通信功能。第三步,2020年左右,建成由30余颗卫星组成,覆盖全球的北斗全球卫星导航系统,系统性能达到同期国际先进水平。 北斗卫星导航系统除了能够提供高精度、高可靠的定位、导航和授时服务,还保留了北斗卫星导航试验系统的短报文通信、差分服务和完好性服务特色,是我国经济社会发展不可或缺的重大空间信息基础设施。

第五章 GPS卫星定位基本原理

5.1 概述 测距交会确定点:无线电导航定位系统卫星激光测距定位系统 无线电导航定位:三已知点三维定位,两个已知点平面定位. 卫星大地测量中的卫星激光测距定位。利用地面上三个已知点上的卫星激光测距仪同时测定某一时刻至卫星的空间距离,从而来确定卫星的空间位置。 卫星定位的基本原理: 依据测距的原理:伪距法定位,载波相位测量定位,以及差分GPS定位。 根据待定点的状态分为:静态定位(绝对定位)和动态定位(至少有一台接收机处于运动状态)和相对定位。 利用测距码或载波相位均可进行静态定位,实际为减少误差,可利用载波相位观测值的各种线性组合(即差分)作为观测值,获得两点之间高精度的GPS基线向量(即坐标差)。 5.2伪距测量 伪距测量:由卫星发射的测距码信号到达GPS接收机的传播时间乘以光速所得出的量测距离。由于卫星钟、接收机钟的误差以及无线电信号经过电离层和对流层中的延迟,实际测出距离ρ'与卫星到接收机的几何距离ρ有一定差值,因此

一般称量测出的距离为伪距。C/A 码伪距,P 码伪距。伪距法定位测量定位精度不高(P 码定位误差约为10m ,C/A 码定位误差为20-30m ),但因其具有定位速度快,是GPS 定位系统中进行导航定位的基本方法。作为载波相位测量中解决整波数不确定(模糊度)的辅助资料。 5.2.1 伪距测量 伪距测量的基本原理: 为什么采用码相关技术来确定伪距? GPS 卫星发射的测距码是按照一定规律排列的,在一个周期内,每个码对应某一特定的时间。应该说识别出每个码的形状特征,即用每个码的某一标志即可推算出时延值τ进行伪距测量。但实际上每个码在产生过程中都带有随机误差,并且信号经过长距离传送后也会产生变形。所以根据码的某一标志来推算时延值τ就会产生很大的误差。因此采用码相关技术,在自相关系数MAX R =')(τ的情况下来确定信号的传播时间τ。由于测距码和信号在产生的过程中不可避免地带有误差,而且测距码在传播过程中还有变形,因而自相关系数往往不可能达到“1”,只能在自相关系数为最大的情况下确定伪距,此时基本对齐。 dt t t a t a T R T )()(1)(τττ'-?+-='?

GPS卫星定位系统发展现状及构成部分介绍

GPS卫星定位系统发展现状及构成部分介绍 GLOBAL PosiTIoning System,简称GPS,即全球卫星定位系统,近年来得到了越来越广泛的应用,已经产生了可观的GPS产品需求。并且随着科技水平的提高、应用方向的不断开拓,GPS将会不容置疑的迅速渗透到人们的日常生活中来。 我们经常提到的GPS定位系统由美国军方所设计、控制。除此之外,我国的北斗双星定位系统正在默默地为我国的现代化建设做贡献;俄罗斯的GLONASS系统也曾有过辉煌的历史;欧盟组织设计的伽利略卫星定位系统兼容目前广泛应用的GPS系统,在几年后将会给全球定位系统增添更加光彩的一页。 GPS系统由三大部分组成:空间部分、控制部分和用户部分。 空间部分是GPS人造卫星的总称。人造卫星的平均高度约20200Km,运行轨道是一个椭圆,地球位于该椭圆的一个焦点上;运行周期约12小时。在6个倾角约55的轨道面上不平均地分布着近30颗导航卫星,部分为备用卫星,美国军方可通过地面控制部分调整工作卫星的数目。在GPS系统中,GPS卫星是动态的已知点,用户端所有的导航定位信息都是依据这个动态已知点发送的星历计算得到的。GPS星历,实际上是一系列描述GPS 卫星运动及轨道的实时状态参数。民用GPS模块所接收到的广播星历是由GPS卫星以扩频通信方式通过导航电文直接向用户播发的用于实时数据处理的预报星历,在不同的载波上以不同的速率广播民用的伪随机码C/A码星历和军用的P码星历。 对于整个GPS系统来说,实际上地面控制部分是整个系统的核心。所有的GPS卫星所播发的用于导航定位的星历,都是由分布在地面的5个监控站提供的。地面系统负责监测GPS信号、收集数据、计算并注入导航电文,状态诊断、轨道修正等。正是有了地面监控系统的海量数据处理,才使得GPS系统精确运转。 我们常说的GPS定位模块称为用户部分,它像收音机一样接收、解调卫星的广播C/A码信号,中以频率为1575.42MHz。GPS模块并不播发信号,属于被动定位。通过运算与每个卫星的伪距离,采用距离交会法求出接收机的得出经度、纬度、高度和时间修正量这四个参数,特点是点位速度快,但误差大。初次定位的模块至少需要4颗卫星参与计算,称

四大卫星定位系统

全球四大卫星定位系统 一、美国的全球卫星定位系统GPS: 1、简介: GPS 是英文Global Positioning System(全球定位系统)的缩写,而其中文简称为“球位系”。GPS是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。GPS系统由28颗地球同步卫星组成(4颗为备用星),均匀地分布在距离地球20000公里高空的6个轨道面上。这些卫星与地面支撑系统组成网络,每隔1—3秒向全球用户播报一次其位置(经纬度)、速度、高度和时间信息,能使地球上任何地方的用户在任何时候都能利用GPS接收机同时收到至少4颗卫星的位置信息,应用差分定位原理计算确定自己的位置,精度约为10米。 2、特点: ⑴全球、全天候工作。 ⑵定位精度高。单机定位精度优于10m,采用差分定位,精度可达厘米级和毫米级。 ⑶功能多,应用广。 ⑷高效率、操作简便、应用广泛。 二、俄罗斯GLONASS卫星导航系统: 1、简介: GLONASS星座由27颗工作星和3颗备份星组成,所以GLONASS星座共由30颗卫星组成。27颗星均匀地分布在3个近圆形的轨道平面上,这三个轨道平面两两相隔120度,每

个轨道面有8颗卫星,同平面内的卫星之间相隔45度,轨道高度2.36万公里,运行周期11小时15分,轨道倾角64.8度。 格洛纳斯卫星发射 2、特点: ⑴抗干扰能力强。 ⑵GLONASS系统采用了军民合用、不加密的开放政策。 ⑶GLONASS系统采用频分多址(FDMA)方式,根据载波频率来区分不同卫星(GPS是码分多址(CDMA),根据调制码来区分卫星)。 3、GLONASS与GPS不同之处: 一是卫星发射频率不同。GPS的卫星信号采用码分多址体制,每颗卫星的信号频率和调制方式相同,不同卫星的信号靠不同的伪码区分。而GLONASS采用频分多址体制,卫星靠频率不同来区分,每组频率的伪随机码相同。由于卫星发射的载波频率不同,GLONASS 可以防止整个卫星导航系统同时被敌方干扰,因而,具有更强的抗干扰能力。 二是坐标系不同。GPS使用世界大地坐标系(WGS-84),而GLONASS使用前苏联地心坐标系(PE-90)。 三是时间标准不同。GPS系统时与世界协调时相关联,而GLONASS则与莫斯科标准时相关联。 格洛纳斯- 将与GPS相当据全球按全网2007年5月24日报道,俄罗斯联邦航天局副主任尤里·诺森科(YuryNosenko)23日称,Glonass全球定位系统将在2011年达到美国全球定位系统(GPS) 的精度水平。这是他在在莫斯科举办的一次Glonass顶级设计专家新闻发布会议上宣布的,2011年之前将Glonass系统民用精度提高至一米。会上,负责建造Glonass卫星的公司总裁称,2007年底之前,将发射六颗Glonass-M卫星入轨。另有六颗将在2008年加入系统,首批两颗改进型Glonass-K卫星将于2009年发射。 4、主要问题: 1.目前GLONASS工作不稳定,卫星工作寿命短,在轨卫星只12颗; 2.GLONASS用户设备发展缓慢,生产厂家少,设备体积大而笨重;

全球四大导航系统

全球四大卫星定位系统 目前,世界上只有少数几个国家能够自主研制生产卫星导航系统。当前全球有四大卫星定位系统,分别是美国的全球卫星导航定位系统GPS、俄罗斯的格罗纳斯GLONASS系统、欧洲在建的"伽利略"系统、和中国的北斗卫星导航系统。 一、美国GPS长期垄断 美国国防部从1973年开始实施的GPS系统,这是世界上第一个全球卫星导航系统,在相当长的一段时间内垄断了全球军用和民用卫星导航市场。GPS全球定位系统计划自1973年至今,先后共发射了41颗卫星,总共耗资190亿美元。GPS原来是专门用于为洲际导弹导航的秘密军事系统,在1991年的海湾战争中首次得到实战应用。随后,在科索沃战争、阿富汗战争和伊拉克战争中大显身手。从克林顿时代起,该系统开始应用在了民用方面。现运行的GPS系统由24颗工作卫星和4颗备用卫星组成。美国利用GPS获得了巨大的经济利益,多年来在出售信号接收设备方面赚取了巨额利润。以1986年为例,当时一台一般精度的GPS定位仪价格5万美元,高精度的则达到10万美元。现在价格虽然有所下降,但也可推算出20年来GPS"收获颇丰"。以GPS为代表的卫星导航定位应用产业,已成为八大无线产业之一。据美国国家公共管理研究院进行的调查评估表明,GPS的全球销售额将以每年38%的速度增长,2005年全球GPS市场已达到310亿美元。长期以来,美国对本国军方提供的是精确定位信号,对其他用户提供的则是加了干扰的低精度信号--也就是说,地球上任何一个目标的准确位置,只有美国人掌握,其他国家只知道个"大概"。在海湾战争时,美国还曾置欧盟各国利益不顾,一度关闭对欧洲GPS服务。 2003年3月20日,伊拉克战争爆发。大批轰炸机、战斗机猛扑向伊拉克首都巴格达,用炸弹准确地将一座建筑彻底摧毁,行动代号:"斩首行动";4月,一架B-1B"枪骑兵"轰炸机临时接到任务,用炸弹摧毁了另一座建筑。他们的目标都是一个人:萨达姆侯赛因,他们所使用的炸弹都是一种:联合攻击炸弹(JDAM),这些炸弹之所以都能够精确的打击目标,是因为他们都是通过卫星定位来实现定位,提供这种定位服务的正是由24颗美国卫星组成的全球定位系统--GPS。 由于GPS技术所具有的全天候、高精度和自动测量的特点,作为先进的测量手段和新的生产力,已经融入了国民经济建设、国防建设和社会发展的各个应用领域。 随着冷战结束和全球经济的蓬勃发展,美国政府宣布,在保证美国国家安全不受威胁的前提下,取消SA政策,GPS民用信号精度在全球范围内得到改善,利用C/A码进行单点定位的精度由100米提高到10米,这将进一步推动GPS技术的应用,提高生产力、作业效率、科学水平以及人们的生活质量,刺激GPS市场的增长。 二、俄罗斯GLONASS(格洛纳斯)系统 "格洛纳斯GLONASS"是俄语中"全球卫星导航系统GLOBAL NAVIGATION SATELLITE SYSTE"的缩写。作用类似于美国的GPS、欧洲的伽利略卫星定位系统。最早开发于苏联时期,后由俄罗斯继续该计划。俄罗斯1993年开始独自建立本国的全球卫星导航系统。1995年俄罗斯耗资30多亿美元,完成了GLONASS导航卫星星座的组网工作。它也由24颗卫星组成,原理和方案都与GPS类似,不过,其24颗卫星分布在3个轨道平面上,这3个轨道平面两两相隔120°,同平面内的卫星之间相隔45°。每颗卫星都在19100千米高、64.8°倾角的轨道上运行,轨道周期为11小时15分钟。地面控制部分全部都在俄罗斯领土境内。俄罗斯自称,多功能的GLONASS系统定位精度可达1米,速度误差仅为15厘米/秒。如果必要,该

AGPS定位基本原理浅析

AGPS定位基本原理浅析 位置服务已经成为越来越热的一门技术,也将成为以后所有移动设备(智能手机、掌上电脑等)的标配。随着人们对BLS(Based Location Serices,基于位置的服务)需求的飞速增长,无线定位技术也越来越得到重视。AGPS(Assisted GPS,A-GPS,网络辅助GPS)定位技术结合了GPS定位和蜂窝基站定位的优势,借助蜂窝网络的数据传输功能,可以达到很高的定位精度和很快的定位速度,在移动设备尤其是手机中被越来越广泛的使用。本文以GSM网络辅助GPS定位为例对AGPS的定位原理进行简单介绍。 AGPS定位基本机制 根据定位媒介来分,定位技术基本包含基于GPS的定位和基于蜂窝基站的定位两类(阅读本文前,建议先阅读《GPS定位基本原理浅析》和《GSM蜂窝基站定位基本原理浅析》两篇文章)。GPS定位以其高精度得到更多的关注,但是其弱点也很明显:一是硬件初始化(首次搜索卫星)时间较长,需要几分钟至十几分钟;二是GPS卫星信号穿透力若,容易受到建筑物、树木等的阻挡而影响定位精度。AGPS定位技术通过网络的辅助,成功的解决或缓解了这两个问题。对于辅助网络,有多种可能性,以GSM蜂窝网络为例,一般是通过GPRS网络进行辅助。 如上图所示,直接通过GPS信号从GPS获取定位所需的信息,这是传统GPS定位的基本机制。AGPS 中,通过蜂窝基站的辅助来解决或缓解上文提到的两个问题: 对于第一个问题,首次搜星慢的问题,根据《GPS定位基本原理浅析》一文的介绍,我们知道是因为GPS卫星接收器需要进行全频段搜索以寻找GPS卫星而导致的。在AGPS中,通过从蜂窝网络下载当前地区的可用卫星信息(包含当地区可用的卫星频段、方位、仰角等信息),从而避免了全频段大范围搜索,使首次搜星速度大大提高,时间由原来的几分钟减小到几秒钟。

全球四大卫星导航系统对比

简单对比全球四大卫星导航系统 2011年12月27日,对于中国的高精度测绘定位领域来说是一个不平凡的日子,中国北斗卫星导航系统(CNSS)正式向中国及周边地区提供连续的导航定位和授时服务,这是世界上第三个投入运行的卫星导航系统。 在此之前,美国的全球定位系统(GPS)和俄罗斯的格洛纳斯卫星导航系统(GLONASS)早在上世纪90年代就已经建成并投入运行。与此同时,欧盟也在打造自己的卫星导航系统——“伽利略”计划。 那么,这四大卫星导航系统之间到底有着怎么样的区别和联系呢?下面,就让我们来逐个分析一下,通过四大卫星导航系统的优劣分析,给大家一个较为明显的概念。 四大卫星导航系统各有优势,详情如下: GPS:成熟 GPS,作为大家最为熟悉的定位导航系统,她最大的特点就是技术方面最为成熟。 美国“全球定位系统”(GPS),是目前世界上应用最广泛、也是技术最成熟的导航定位系统。GPS空间部分目前共有30颗、4种型号的导航卫星。1994年3月,由24颗卫

星组成的导航“星座”部署完毕,标志着GPS正式建成。 中国北斗:互动开放 北斗卫星导航系统是中国正在实施的自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统。北斗卫星导航系统由空间段、地面段和用户段三部分组成。目前市面上定位导航仪器公司如国外的天宝、拓普康,国内的华测导航等都已支持北斗卫星导航定位系统。 欧盟伽利略:精准 伽利略定位系统是欧盟一个正在建造中的卫星定位系统,有“欧洲版GPS”之称。伽利略定位系统总共发射30颗卫星,其中27颗卫星为工作卫星,3颗为候补卫星。该系统除了30颗中高度圆轨道卫星外,还有2个地面控制中心。 俄罗斯格洛纳斯:抗干扰能力强 早在美苏冷战时期,美国和苏联就各项技术特别是空间技术方面争锋相对,在美国GPS技术遍布全国的同时,苏联也没闲着,一直忙于研发自己的全球导航定位系统。俄罗斯的这套格洛纳斯系统便是其不断努力的结果。格洛纳斯由24颗卫星组成,也是由军方负责研制和控制的军民两用导航定

全球四大卫星定位系统

全球四大卫星导航系统简介 一、美国的GPS 系统: 美国的GPS系统,由24 颗(3 颗为备用卫星) 在轨卫星组成。 的信号有两种GPS码。码,P C/A 米。一般的接收机利用29.3m 到2.93 民用:

C/A 码的误差是码计算 C/A 代中期为了自身的安全考虑,在信号上加入了90 定位。美国在 米左右。在 SA(SelectiveAvailability),令接收机的误差增大,到100 精度应该能在GPS年2000 5 月2 日,SA取

消,所以,咱们现在的米以内。20 码P C/A 0.293 米是码的十分之一。但是2.93 军用:P 码的误差为米到 AS(Anti-Spoofing) 只能美国军方使用,码上加上的干扰信号。P,是在 二、中国的“北斗”卫星导航定位系统:“北斗”卫

星导航定位系统需要发射35 颗卫星,足足要比GPS多出11 颗。按照规划,“北斗”卫星导航定位系统将有 5 颗静止轨道 卫星和30 颗非静止轨道卫星组成,采用“东方红”-3 号卫星平台。30 颗非静止轨道卫 星又细分为27 颗中轨道(MEO)卫星和3 颗倾斜同步(IGSO) 卫星组成,27 颗MEO卫星平均分布在倾

角55 度的三个平面上, 轨道高度21500 公里。“北斗” 卫星导航定位系统将提供开放服务和授权服务。开放服务在服务区免费提供 纳秒,测速精度50 定位,测速和授时服务,定位精度为10 米,授时精度为 为0.2 米/ 秒。授权服务则是军事用途的马甲,将向授权用户提供更安全与更

高精度的定位,测速,授时服务,外加继承自北斗试验系统的通信服务功 能,精度可以达到重点地区水平10 米,高程10 米,其他大部分地区水平20 的水平是差不多的。秒。这和美国GPS 0.2 米/ 米,高程20 米;测速精度优于 另外,“北斗一号”还可以提供用户的双向通讯功能,

卫星定位系统原理及各国发展的历史

简述:卫星定位系统原理及各国发展的历史 1、子午卫星导航系统(NNSS) 该系统又称多普勒卫星定位系统,它是58年底由美国海军武器实验室开始研制,于6 4年建成的“海军导航卫星系统”(Navy Navigation Satellite System)。这是人类历史上诞生的第一代卫星导航系统。 1957年10月前苏联成功发射了第一颗人造卫星后,美国霍普金斯大学应用物理实验室的吉尔博士和魏分巴哈博士对卫星遥测信号的多普勒频移产生了浓厚的兴趣。经研究他们认为:利用卫星遥测信号的多普勒效应可对卫星精确定轨;而该实验室的克什纳博士和麦克卢尔博士则认为已知卫星轨道,利用卫星信号的多普勒效应可确定观测点的位置。霍普金斯大学应用物理实验室研究人员的工作,为多普勒卫星定位系统的诞生奠定了坚实的基础。而当时美国海军正在寻求一种可以对北极星潜艇中的惯性导航系统进行间断精确修正方法,于是美国军方便积极资助霍普金斯大学应用物理实验室开展进一步的深入研究。1958年12月在克什纳博士的领导下开展了三项研究工作:①研制卫星;②建立地球重力场模型以便卫星的精确定轨和准确预报卫星的空间位置;③研制多普勒接收机。经过众人的努力子午卫星导航系统于1964年1月正式建成并投入军方使用,直至1967年7月该系统才由军方解密供民间使用。此后用户数量迅速增长,最多达9.5万户,而军方用户最多时只有650个,不足总数的1%,可见因生产的需要民间用户远远大于军方。 1.1 子午卫星导航系统的组成 (1)卫星星座:子午卫星星座,由六颗独立轨道的极轨卫星组成。 在设计上要求卫星的轨道的偏心率为零,轨道倾角i =90°;卫星运行周期为T=107 m;卫星高度约为H=1075km;按理论上的设计,六颗卫星应当均匀分布在相互间隔为3 0度轨道平面上。但由于早期卫星入轨精度不高,各卫星周期、倾角、偏心率都存在不同程度的误差,故各卫星轨道进动的大小和方向也都不尽相同,这样经过一段时间后各卫星轨道间的间距就变得疏密不一。因而地面可观测卫星的时间分布就变得更加没有规律,中纬度地区的用户平均1.5小时左右可以观测到一颗卫星,有时在高纬上空可出现多颗卫星造成信号的互相干扰(此时必须将信噪比差的卫星关闭避免干扰);但在低纬度地区最不利时要等待10小时才能观测到卫星。

北斗定位原理

定位原理 35颗卫星在离地面2万多千米的高空上,以固定的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。 由于卫星的位置精确可知,在接收机对卫星观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z 和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。 事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。 卫星定位实施的是“到达时间差”(时延)的概念:利用每一颗卫星的精确位置和连续发送的星上原子钟生成的导航信息获得从卫星至接收机的到达时间差。 卫星在空中连续发送带有时间和位置信息的无线电信号,供接收机接收。由于传输的距离因素,接收机接收到信号的时刻要比卫星发送信号的时刻延迟,通常称之为时延,因此,也可以通过时延来确定距离。卫星和接收机同时产生同样的伪随机码,一旦两个码实现时间同步,接收机便能测定时延;将时延乘上光速,便能得到距离。 每颗卫星上的计算机和导航信息发生器非常精确地了解其轨道位置和系统时间,而全球监测站网保持连续跟踪。 卫星导航原理 踪卫星的轨道位置和系统时间。位于地面的主控站与其运控段一起,至少每天一次对每颗卫星注入校正数据。注入数据包括:星座中每颗卫星的轨道位置测定和星上时钟的校正。这些校正数据是在复杂模型的基础上算出的,可在几个星期内保持有效。 卫星导航系统时间是由每颗卫星上原子钟的铯和铷原子频标保持的。这些星钟一般来讲精确到世界协调时(UTC)的几纳秒以内,UTC是由美国海军观象台的“主钟”保持的,每台主钟的稳定性为若干个10^-13秒。卫星早期采用两部铯频标和两部铷频标,后来逐步改变为更多地采用铷频标。通常,在任一指定时间内,每颗卫星上只有一台频标在工作。 卫星导航原理:卫星至用户间的距离测量是基于卫星信号的发射时间与到达接收机的时间之差,称为伪距。为了计算用户的三维位置和接收机时钟偏差,伪距测量要求至少接收来自4颗卫星的信号。 由于卫星运行轨道、卫星时钟存在误差,大气对流层、电离层对信号的影响,使得民用的定位精度只有数十米量级。为提高定位精度,普遍采用差分定位技术(如DGPS、DGNSS),建立地面基准站(差分台)进行卫星观测,利用已知的基准站精确坐标,与观测值进行比较,从而得出一修正数,并对外发布。接收机收到该修正数后,与自身的观测值进行比较,消去大部分误差,得到一个比较准确的位置。实验表明,利用差分定位技术,定位精度可提高到米级。

简述卫星定位系统的构成和工作原理

简述卫星定位系统的构成和工作原理 摘要:本文在于简述全球卫星定位系统(Global Positioning System)工作的基本原理和该系统的主要构成部分。 关键词:卫星定位;原子钟;vrml;web 1 引言 全球卫星定位系统(Global Positioning System)是由美国国防部于上世纪七十年代开始研制的一代新的卫星导航系统。其初始目的是为美国的海陆空三军提供实时,全天候和全球性的导航服务。在历经20年的不断建设和完善过后,其以能为全世界的目标提供三维坐标,三维速度和时间信息。因为GPS定位有高精度、高效率和低成本的优点,其在各领域得到了广泛的应用。其在国民生产中的地位可想而知。我国已在2003发射了第一颗北斗导航卫星,开始了我国的“北斗”卫星导航系统的建设。 2 卫星定位系统的构成 卫星定位系统由三部分组成:空间部分———GPS卫星;地面控制部分———地面监控系统;用户设备部分———GPS 信号接收机。下面逐一简绍。 2.1 GPS卫星 全球卫星定位系统的空间部分是由24颗工作卫星组成,它位于距地表20200km 的上空, 均匀分布在6个轨道面上(每个轨道面4颗)轨道倾角为55°。此外, 还有4 颗有源备份卫星在轨运行。卫星的分布使得在全球任何地方任何时间都可观测到4颗以上的卫星,并能保持良好定位解算精度的几何图象。这就提供了在时间上连续的全球导航能力。GPS卫星产生两组电码,一组称为C/A码(Coarse/Acquisition Code1.023MHz);一组称为P码(Procise Code10.23MHz),P码因频率较高,不易受干扰, 定位精度高,因此受美国军方管制,并设有密码, 一般民间无法解读,主要为美国军方服务。C/A码人为采取措施而刻意降低精度后,主要开放给民间使用。 2.2 地面监控系统

全球卫星定位系统(Global Positioning System, GPS)与

全球衛星定位系統(Global Positioning System, GPS) 與 地理資訊系統(Geographic Information System, GIS) 的結合與應用 研習班講義 蔡博文 國立台灣大學 地理學系 地理資訊研究中心 八十八年七月

前 言 全球衛星定位系統(Global Positioning System,GPS)是美國國防部於1973年開始發展的一套衛星定位計劃,其發射的衛星數目及軌道配置歷經多次修正,最後訂為發射24顆衛星於距地表約2萬公里高的6個軌道面上運行(Hofmann-Wellenhof,etc,1992)。至1993年此計畫已全部成功的執行完畢,目前每天天空出現4顆以上衛星的時間已達24小時,故我們可以全天候隨時使用這些衛星資料。 衛星定位原理乃是以地面衛星接收儀(recriver)同時接收三顆以上的GPS衛星所發射的電磁波,利用幾何原理計算出接收儀所在的位置,其與傳統定位技術最大的不同點在於傳統定位方法都從一個已知點輾轉推導出欲知地點的相對位置,誤差的累積與傳播嚴重,而衛星定位方法所獲得的是絕對位置的數值座標,可以直接與地理資訊系統技術相結合。 地理資訊系統(Geographic Information System,GIS)是以電腦工具來儲存、處理、分析及展現地理資料的科技,其發展已有二十餘年,相關技術已臻成熟,達到應用階段,惟在資料搜集及輸入部分仍因地理資料的空間(圖形)特性,仍然處於瓶頸階段,這使得地理資訊系統在資料庫的建立及維護上仍需投注相當大的時間、金錢與人力。 以全球衛星定位技術來輔助地理資料收集與輸入的優點在於:一、資料調查收集與輸入建檔一次完成,由於衛星資料經由接收儀接收為數值化資料,因此透過優良的GIS-GPS界面可以在野外將調查的資料直接輸入資料庫中;二、資料誤差小,傳統的資料收集都將資料或記錄或繪製於地圖上,然後再人工輸入電腦,每一過程中將隱藏著簡括化(generalization)誤差及人為失誤,而以衛星定位方法從事資料收集自始至終都是數值化過程,除了衛星定位系統的系統誤差外,幾乎無誤差的累積與傳播;三、節省時間及人力,接收儀接收衛星資料後直接進入電腦,以地理資訊系統功能來加以處理及儲存,可以節省大量人力及時間金錢的花費。 全球衛星定位系統與地理資訊系統的結合 以衛星定位技術來從事地理資料的收集雖然有許多優點,但其過程與傳統方法不盡相同,其過程並非那麼直接,仍有許多技術細節必

GPS卫星定位系统解决与方案

GPS车辆定位管理系统 设计方案 淮北睿讯科技有限公司2014年6月1日

一 CDMA 1X 3G无线车载监控系统应用的意义: 在经济高速发展的今天,生活水平的不断提高,安全的重要性已经成为生活中不可或缺的一部分。随着我国公路运输事业的蓬勃发展,车辆在运营过程中的安全性和高效管理已经也越来越被重视。在网络技术快速发展的今天,随着 3G网络的出现,3G无线车载视频系统为车辆打造一个具有安全的、远程的、即时的、科学的管理体系奠定了坚实基础;打破了传统摄像机不能网络传输的弊端。3G无线车载视频产品主要应用包括长途客运车、城际巴士、旅游大巴车、海上风景游艇等。在中、长途大巴上安装3G无线车载监控系统具有以下重要作用: ?实时查看车辆内状况及行驶路况 对长途客运公司存在的部分司乘人员在旅途中私自搭客,收钱不给票,或给假票等情况,一部车每天只要一两例,公司就要损失几百元,一个月就损失几千元;有了3G远程网络视频系统监督,可以提高收入,严防作弊。 ?有效提升服务,提高安全预防 长途旅行中旅客之间、旅客与司乘人员之间不时会产生一些矛盾和争议,导致公司时常遭到投诉,特别是有的旅客下车时顺手拿走别人的行李和物品等,因为没有有力的证据,解决起来无从下手,公司形象受到很大影响。安装录像系统后,可以随时仪对司乘人员过站载客,私收钱物等贪污公款行为形成有效控制,同时提高服务质量。3G无线视频系统还能同时为乘客提供笔记本电脑接入互联网服务。 ?提高安全,事故取证 长途客车行驶时间长,路况和人员复杂,车匪路霸较多,容易出现安全问题。特别是春运高峰期间偷、抢、拐、骗的案件恶性交通事故很多,司机违规操作、严重超载等情况时有发生。通过网络远程视频监控和录像系统,客运公司和管理部门随时可以通过3G网络远程视频即时的检查司机是否违章和超载,同时录像资料可以犯罪分子的作案证据。 ?GPS卫星定位,全程跟踪 对于长途客车在路上行驶状况,需要即时全面的远程视频查看的同时,GPS即可对车辆实时的卫星定位,进行全程跟踪,控制车辆油路等,有效的管理车队车辆外出行驶,提高公司的管理,而且节约成本,方便快捷。

相关文档
相关文档 最新文档