文档库 最新最全的文档下载
当前位置:文档库 › 水蒸气蒸氨塔的设计

水蒸气蒸氨塔的设计

水蒸气蒸氨塔的设计
水蒸气蒸氨塔的设计

ANYANG INSTITUTE OF TECHNOLOGY 本科毕业论文

水蒸气蒸氨塔的设计

The Design of the Ammonia V apor Tower

系(院)名称:化学与环境工程系

专业班级:化学工程与工艺2班

学生姓名:

指导教师姓名:

指导教师职称:工程师

2009 年 3 月

水蒸气蒸氨塔的设计

专业班级:化学工程与工艺(2)班学生姓名:

指导教师:职称:工程师

摘要泡罩塔是最早的板式塔,它已有近二百年的历史。泡罩塔因其操作弹性大、塔板效率高、生产能力大等优点,广泛应用于蒸馏、吸收等领域。在氨的回收工业中,泡罩塔有着举足轻重的地位,由于泡罩塔操作弹性较大,且使蒸氨工艺中氨的回收率有很大的提高,更重要的是塔不仅在回收了产品节约了资源,而且减小了污染。因此在氨回收工艺设计中,泡罩塔的的设计尤其要受到更大的重视。本文以钢铁焦化厂蒸氨系统为研究对象,蒸氨生产主要是将来自鼓风冷凝岗位的剩余氨水在蒸氨塔内进行蒸馏处理,使剩余氨水中的挥发氨蒸出后,送回到煤气中以增加煤气含氨量,进而提高硫酸氨的产量,并将蒸氨废水送至生化污水处理工序进行处理。因此,蒸氨工序生产不正常,不仅硫氨工序的产品有可能不合格,而且会直接导致生化工序的不正常,致使焦化厂总排超标。本文应用化工简化的经验方程,针对蒸氨工序中消耗较高,蒸氨塔使用周期较短的问题,总结生产操作经验和理论分析的基础上,找出了剩余氨水温度及蒸氨的工艺数据

关键字:蒸氨工艺泡罩直接蒸汽

The Design of the Ammonia Vapor Tower

Abstract Bubble tower is one of the first plate of the tower, it has been nearly two hundred years of history. Blister tower because of its flexible operation, tray efficiency, large capacity,are widely used in distillation, absorption and other fields. In ammonia recovery industry, blister tower has a pivotal position, as the bubble tower flexible operation, so that ammonia and ammonia recovery process has greatly improved and, more importantly, the recovery tower, not only in the product conservation of resources and reduce pollution. Ammonia recovery process in the design, the design of bubble-cap tower in particular is greater attention。This paper study the object is the ammoniac distilling system of GangTie JiaoHua corporation, Ammonia distilling is to distill the residual ammonia from the blast section in an ammonia still, which evaporate the volatile ammonia into the saturator to increase the production of vitriol ammonia and send waste water to biochemistry section to decontaminate. Therefore, if it is abnormal in ammonia distilling section, the production of vitriol ammonia will be unqualified and the biochemistry section will be Abnormal, as a result, the total coking plant emission standard. In this paper, the experience of a simplified chemical equation for ammonia process steam consumption of high ammonia tower shorter life cycle issues, summed up the experience of production operations and the basis of theoretical analysis to identify the remaining ammonia and steam temperature process of ammonia data.

Key words Ammonia Process Blister Direct steam Tray

引言

随着社会的发展,化工在人们的生活中占有越来越重要的地位。特别是化工在农业生产中的广泛使用,化工为农业生产提供了各种肥料,杀虫剂,除草剂,提高了农产品的产量,使农业的机械化进程成为了可能。我国是农业大国,农业在我国的国民经济基础。农业不仅仅产出粮食还为工业提供了原料。世界上最多的人口在为我国提供了充足的劳动力的光环下也给予了最大的问题,那就是吃饭问题。所以高速发展农业是必须要给与重视的。怎样提高农业产量是解决问题的重中之重。

氨不仅是非常重要的化工产品,更是生产农业氮肥的原料,由于氨氮有巨大的经济价值,世界各国都十分重视氨的加工回收技术的开发。德国是世界上最早加工煤焦油的国家之间之一,蒸氨技术也处于世界领先地位位居。日本的焦化工业也比较发达,在沥青系碳素纤维的开发方面处于优势地位。此外,美国,前苏联,印度等国的煤焦油加工技术也均由独到之处。

与这些国家相比,我国煤焦油加工工业存在的问题有:煤焦油加工率低,加工深度差,产品品种少,回收水平低,分离提纯水平不高,一些重要的煤焦油产品还得从国外进口,煤焦油加工分散,规模偏小。

分析上述可知主要是加工工艺落后,设备陈旧造成,必须通过过程改进,设备更新才能解决。因此从化学工程的角度来看,最根本的问题在于提高煤焦油分离提纯的程度,特别是提高煤焦油初镏和蒸氨过程的分离效率。

氨的分离具有重要的实际意义。这不仅对我国农业的发展有巨大的推动作用,而且也能极大的带动我国经济的发展,改善我国的劳动人民的生活水平,带来很好的经济效益和社会效益。

我们希望通过蒸氨塔的设计,能够对蒸氨工艺和硫酸铵的合成工艺进一步了解,同时尽自己的努力我为回收氨工业做出应有的贡献。

第一章文献综述

1.1精馏原理及工序流程

1.1.1精馏原理

把液体混合物经过多次部分气化和部分冷凝,使液体分离成相当纯的组分的操作称为精馏,连续精馏塔可以想象是由一个个简单蒸馏釜串联起来,由于原料液中组分的挥发度不同,每经过一个蒸馏釜蒸馏一次,蒸汽中轻组分的含量就提高一次,即yn+1>yn>x(y代表气相组成,x代表液相组成),增加蒸馏釜的个数就可得到足够纯的轻组分,而塔釜中残液中所含轻组分的量会越来越少,接近于零。将这些蒸馏釜叠加起来,在结构上加以简化即成为精馏塔。

1.1.2工艺流程

从界区外送来的15%氨水进入稀氨水槽,经稀氨水泵加压到1.7MPa(a)左右打到热交换器,与塔釜出来的精馏残液换热回收热量后,氨水被加热到140~160℃左右进入蒸氨塔;蒸氨塔下部的再沸器采用>2.2Mpa饱和蒸汽间接加热釜液,保持温度在~203℃左右。塔顶蒸汽温度约43℃进入冷凝器Ⅰ冷凝,在此部分气氨冷凝为液氨,未冷凝气氨进入冷凝器Ⅱ进一步冷凝为液氨,两冷凝器中冷凝的液氨部分直接流入蒸氨塔作为回流,另一部分作为产品流入储氨罐,经高压气体加压后,压到液氨罐区。蒸氨塔底含量很低的残液经热交换器回收热量后,送到界区外。

蒸氨工序是焦化企业化产回收不可或缺的部分,选择合适的蒸氨工艺非常重要。传统的蒸氨工艺多为直接蒸氨工艺,近几年,蒸氨工艺也有了一些新的变化,间接蒸氨工艺陆续被各厂家采用,本文将就直接蒸氨工艺和间接蒸氨工艺进行比较,

本发明提供一种焦化行业剩余氨水的加工工艺,在剩余氨水中加入微量的氢氧化钠后在换热器与废水进行换热,进入经真空泵减压后的蒸氨塔,在负压状态下使剩余氨水中的氨挥发,氨气经冷却后,由真空泵加压输送至下道工序。其特征是在剩余氨水中加入氢氧化钠分解固定铵盐;利用真空泵对蒸氨塔进行减压;蒸氨塔采用填料式;塔底部分废水与循环氨水换热后返回蒸氨塔。本发明对剩余氨水的加工工艺开辟了新的途径,取消了加工剩余氨水过程中蒸汽、煤气等资源

的消耗,极大降低了运行成本。该工艺在低温、低压下运行,对设备及填料的材质要求不高,前期投资较低,具有较好的经济效益。

剩余氨水是焦化厂的主要排放污水,为了防止剩余氨水对环境受纳水体造成污染,氨水需经过废水处理后才能排放。剩余氨水中氨氮浓度较高,在生化处理前对剩余氨水进行蒸氨处理,部分回收氨水中的氨,降低废水中的氨含量。本论文是对直接蒸汽加热法蒸氨工艺的节能研究,针对宝钢化工厂三期蒸氨工序蒸汽能耗高的问题,研究蒸氨节能工艺,为宝钢三期蒸氨工序的节能技术改造提供参考和指导。本论文首先以宝钢三期蒸氨工艺为原型,采用Aspen Plus模拟软件模拟其工艺流程,模拟结果与实际生产情况十分接近,其相对误差控制在5%之内,因此用模拟的方法进行蒸氨系统的节能研究具有较高的可行性。负压蒸氨技术具有较好的节能效果,在50kPa条件下,直接蒸汽单耗为94.3kg/t(氨水),节约直接蒸汽量16%,而且该工艺具备有对蒸氨塔腐蚀程度小,不易造成堵塞等优点。但由于负压蒸氨技术对设备和材质都有较高的要求,若要在我国实现工业化应用还需解决一些关键问题。蒸氨节能工艺可降低直接蒸汽单耗到89kg/t(氨水)水平,节约蒸汽22%。该工艺运用蒸汽喷射闪蒸技术,降低直接蒸汽单耗,回收蒸氨废水中的低品位热量。

1.1.3工艺计算:

工艺计算是工艺设计中不可缺少的,这也是你真功夫的时候,以为自己在实验室做的开发才是技术,工程不是技术,就是画画图,我鄙视有这种想法的人。工程是技术,而且是很关键的技术。现在的工艺计算倾向于使用软件如Aspen,ProⅡ等。我不会这些软件,我主要用Excel和可以积分的计算器,现在正在学Matlab。工艺计算要合理使用一些估算和经验,这些经验值来自于工程实践,书本上是学不到的。

化工设备你要了解动设备、静设备等。因为工艺是通过设备实现的。选择合理的设备对工艺来说十分重要。对于动设备机封的选择很重要,选择何时的机封形式很重要,我想搞设备专家应该同意这种说法。

1.1.4工艺设计心得

我想结合我的体会和对该专业的认识谈谈自己的看法。工艺设计其实涵盖了很多内容,是整个工程设计的龙头。如果你是项目经理,拿到一个项目后,物料衡算,热量衡算,时间平衡等是必须清楚的。尤其的热量衡算(也包括反应热的计算),如果反应热不会计算,那是很可怕的;其次,要懂控制方案,是比值控制、串级控制还是前馈控制等要很清楚;

再者,要懂设备,懂设备选型、材质,加工特点,动设备,静设备;

你还要懂土建,不懂土建的项目经理是不称职的;在强电方面你还要有所了解。

热量计算,现在很多反应的热量很难查到资料。所以大部分要靠估算,那么如何估算呢?这需要你有扎实的基础知识,需要化工热力学和物理化学知识。你至少要知道Beson估算法。热量计算可以说十分重要,它涉及到再沸器、冷凝器和反应器的设计。还有相平衡方面的计算,在精馏计算是有些数据是需要的,尤其是计算相对挥发度。

.2塔体设计

表2-1泡罩直径与塔径关系

Table 2-1 Path blister diameter

relations with Tajikistan

表2-2 标准泡罩规格(JB-1212-73)

Table 2-2 Standard Specifications blister

2.2.1泡罩设计与选型

当气体负荷较低时,三角形齿缝有较大的齿缝开度和较好的鼓泡效果;而长方形及梯形齿缝则因齿缝开度过小,气体呈脉动现象,鼓泡效果不好。当气体负荷较大时,三角形齿缝开度过大,鼓泡效果变坏;而长方形和梯形齿缝的鼓泡效果较好。梯形齿缝的操作弹性较大,说以选择梯形齿缝。

由氨水流量65m3/h.可估算塔径在1.2~3.0米之间,一般认为直径小的泡罩,

能较充分利用塔板鼓泡面积,塔板效率较高,但造价及安装及费用较高,所以由表—1 可选标准泡罩

Dg=100㎜

根据表2-2可选Ⅱ 类 (1Gr18Ni9),则可知所选泡罩有关尺寸: 公称直径 Dg=0.1

齿缝高度 hs=0.028m 齿缝宽度 b=0.005m 泡帽高度 H3=0.075m ⑴ 、气囱底界面直径d 2

d 2=D=0.1m

⑵、气囱直径d 2

d 2=0.6 d 1=0.06m

气囱的截面与塔圈截面的比例大小要根据通过气体量确定,一般在15%~20%之间

⑶、气囱截面积Sv

4

2

2

d S v π=

=0.0028m

⑷、气囱口至泡罩间距H3

H 3=d 2/4=0.015m ⑸、气囱顶端至泡罩垂直筒形面积Sa

Sa=πd 2H 2=0.0028m

⑹、气囱外壁至泡罩内壁环形面积Sb

Sb=

)(4

2

221d d -π

=0.005m

⑺气囱高度H 2

H 2=332

H H -=0.0517m

⑻、齿缝总面积Sb

Sb=nS0=3

232

=

a S *0.005=0.0033m

式中:n ——泡罩齿数,个;

S0——每个齿缝面积,m 2 ⑼、泡罩齿距t

t=b+S 1=0.005+0.0015 =0.0065m

b —齿缝宽度,m S1—泡罩壁厚,m ⑽、泡罩齿数n

n=

29

065

.006.0*14.3==

t d

π

泡罩齿的形状,长短大小应当根据处理塔液的物性和铸造条件选定。蒸氨母液含大量焦油既脏又容易结疤。所以就必须选用大齿,齿缝面积的设计要是气泡细小分散;同时又要做到齿缝气速不要太快,达到齿缝全开,汽,液接触适宜。 ⑾、气泡下面流出的气体平均速度ω

蒸氨塔通过下面流出的气体平均速度ω至是比较高的,一般在30-40m/s 之间。 这里取 ω=35m/s ⑿、气囱地板至泡罩齿尖高度h 4

h 4=c+b-hs=0.10+0.005-0.028=0.077m

b —泡罩下气速厚度,m hs —齿高,;

c —泡罩下性情液层高度。系根据经验选用。基于蒸氨塔存在结疤,一般推荐用0.10—0.15

⒀、出口溢流挡板距泡罩齿根静止距离―液面深度h2

这个值与塔的自由截面气体流速成反比,一般在0~50mm 之间, 蒸氨时一般可取25~30mm 为理想尺寸。这里取

H2=30mm

代表齿尺寸符号如图2―1

图―1代表齿尺寸符号

hs ―齿高; t ―齿距;s1―齿底宽 sb ―齿尖宽;b ―气流厚度

2.2.2溢流管设计

蒸氨塔的溢流管设计考虑到处理物料太脏,都毫无例外地采用外溢管。具体计算要注意溢流堰的宽和高两个因素;进入堰带塔液要维持一定高度。使溢流管保证有很好的液封。 ⑴ 、溢流堰宽L0

根据液体流量而定: VL=

3

2μL0h1

式中μ―流量系数,可取0.6;

g ―重力加速度,m ?s2 整理后可得

L=0.565VL/h12=1m

(2)、溢流管出口堰高度H 4

H 4=VL/μL0=65/(3600*0.1*1)=0.18m

μ―溢流管允许液体流速,m/s.(可取0.1—0.2m/s)这里取μ=0.2m/s (3)、溢流堰高度H5

H5=B-H4=1-0.18=0.82m

式中B----溢流管宽度,m

由于液体流入溢流管中时,带有一定冲力,为使溢流液夹带的气泡顺利逸出此处

可取低限值。

表2-3每个泡帽所占鼓泡面积及鼓泡面积与齿缝面积之比

Table 2-3 percentage cap for each bubble size and bubble size and bubble size ratio of teeth

由表2-3选泡帽中心距P=1.25D 2.2.3塔径计算

(1)计算设计负荷下齿缝全开(开度为100%)时所需的最小总齿缝面积

长方形齿缝 AS=)

597.0910(028.0597

.057

.16)

(57

.1-=

-V L S V

S h V γγγ=0.585

A S ―塔板最小齿缝面积,㎡ V S ―设计气体负荷,㎡/s h S -齿缝高度,m

ΥL,ΥV-液体,气体(操作条件下)重度,kg/m3

(2)计算所需鼓泡面积Ab 则可知

m=3.54

A b =m ×AS=3.54×0.585=2㎡ A b -鼓泡面积,㎡

m-鼓泡面积与齿缝面积之比

(3)估算塔径

按鼓泡面积占塔截面积80%估算

D=

785

.08.0 b

A =1.8m

表2-4泡罩直径与塔径的关系

Table 2-4 Path blister diameter

relations with Tajikistan

有表2-4可知塔径计算符合标准 2.2.4板间距H

塔板间距H 的大小与塔效率及操作弹性有着密切的关系。一般而言,塔板间距小,在一定的汽液负荷和塔径条件下,雾沫夹带量大,板效率低,操作弹性也变小。但塔板间距过大,整个塔体增高,材料消耗和造价就均随之增肌。另外物料的起泡性能及塔板的安装检修要求,均与塔板间距有关系。

在蒸氨装置中,适宜的泡罩塔板间距如表2-6

表2-5推荐的适宜圆泡帽塔板间距

Table 2-5 Recommended for a round bubble

cap tray spacing

由上表可选适宜的板间距H=0.6m 2.2.5理论板的计算n

由于本设计是直接蒸汽加热,可按下面经验式计算:

N=W

KG x KG

W x x x w

w f lg ]

)

(lg[-'

-'

实现蒸氨过程的基础在于汽液两相平衡时, 两相的组成不同。因此, 在分析和计算蒸氮塔时, 汽液平衡数据是最基本的依据。

在蒸氨塔中, 因气液两相含CO2、H2O 、HCN 等组分甚少, 在许多计算中可以忽略不计, 而把蒸氨塔处理的物料看成是NH3一H2O 二元物系。

对于一二元物系的平衡数据, 长期以来均选用柯洛布恰斯基等在《炼焦化 学产品回收设备的计算》〔1〕〔2〕一书之附表提供的数据, 兹将其表题及常用的部分数据示于下表。

表2-6水溶液中和水溶液面上汽相中%含的含量(重量)

Table 2-6 The surface of aqueous solutions and aqueous

solutions containing vapor phase% of the content (weight)

就蒸氨塔而言,若建设过程无热损失,同时温度,压力为恒值,二元混合物汽化潜热相等。这样在塔的高度上,上升气量与下降液量也就恒定(不考虑过程的热力性质),那么可以根据NH3-H2O系统平衡曲线表-6和蒸馏液,氨水的x-y曲线图2求出二元混合物NH3-H2O的平衡线。

图2-2 蒸馏液,氨水的x-y曲线

Figure 2-2 distilled liquid ammonia the x-y curve

通过验算,当浓度以滴度计时,可得K值等于1.3.

液体中含氨的摩尔量较少,所以可以近似求的

xf=0.0033 xW=0.0003

液体流率:

W=65m3/h=0.018m3/s

气体流率:

G=6m3/s

n=12

取塔板效率:η=0.8

实际塔板效率: N=12/0.8=15

2.2.6塔高H

H=N×H1=15×0.6=9m

2.2.7降液管的设计

降液管有圆形及弓形两种形式。圆形降液管面积小,不能充分利用塔板面积,且溢流效果不好,容易因泡沫分离不好造成液泛。因此除液体负荷很小的小塔有用圆形降液管外,一般均用弓形降液管。

确定降液管大小应考虑下述因素:液体在降液管中的流速,泡沫分离要求和停留时间等。下面分别介绍流速和停留时间的确定方法或经验数据。

本设计采用弓形降液管

(1)液体在降液管中的流速W0

常用流速一般为0.08-0.1米/s

这里取

W0 =0.08米/s

(2)降液管面积A d

A d=L/(3600×W0)=65/(3600×

0.08)=0.226㎡

(3)液体在降液管中停留时间τ

τ=A d×H×3600/L=6s

式中-L-液体负荷,m3/h

(4)弓形降液管弦长L1

对于单溢流塔板L1=0.6-0.8D;降液管弦长即是溢流堰长

L1=0.7×1.8=1.3m

(5)降液管的底缘距塔板高度S

降液管底缘距塔板的高度S应小于堰高hW以保证有足够的液封

S=L/(L1×U d×3600)=0.14m

式中 Ud―液体在降液管底缘出口处的流速,一般采用 0.1―0.3米∕s,这里采用低速即取0.1米∕s;

(6)塔板布置

L1/D=0.7由图2-3可得

W d/D=0.145

A d/At=0.09

则 W d=0.145×1.8=0.261(㎡)

A d=0.09×0.785×1.82=0.229(m)

按三角形排列,以比例尺布置泡帽,P=1.25×100=125(㎜),与液流垂直方向布置泡罩排数为7排,共87,布置如下图2-4

图2-3弓形降液管的宽度W d与截面积A d

Figure 2-3 Arched downcomer width Wd

and the cross-sectional area A d

L1/D

图2-4泡帽塔板布置图Figure 2-4 Bubble cap tray layout

第三章流体力学计算

3.1流体力学计算

⑴、气体通过泡罩升气管及环形面积压力降hr

Wr=6/(87×0.016)=4.31(m/s)

由表3-1可查的

K=0.25

hrc=KWr2Υv/Υl=0.003(米液柱)

表3-1升气管回转通路及环隙阻力系数K Table 3-1 Trachea or rotary annular channel and the resistance coefficient K

图3-1齿缝开度

Figure 3-1 Opening teeth

V S-设计气体负荷,m3/s

V max-实际总齿缝面积下齿缝全开时的气体负荷,r-梯形上底与下底之比,

r=0时是三角形齿缝;此图适用于V S/V max>30%

⑵、齿缝压力降hso

由表3-2查得每个泡帽齿缝面积为43.07cm2,则总面积为

AV=87×43.07=3747(cm2)=0.3747(m2)

齿缝开度为100%时气体负荷。

V S/V max×100%=81.5%

由图-5查得齿缝开度φ为85%,则齿缝压力降h SO

h SO=φh=0.85×0.028=0.0238(m液柱)

Ⅰ:h w=25 Ⅱ:h w=50 Ⅲ:h w=75 Ⅳh w=100

年产70万吨焦炭焦化厂蒸氨工段的设计

1 设 计 任 务 书 1.1设计任务 年产70万吨焦碳的焦化厂蒸氨工段的设计。 1.2设计的基础资料 1.2.1 工艺计算主要依据 煤气产率 340Nm 3/t 干煤 氨产率(挥发氨) 0.3% 初冷器后煤气温度 30℃ 剩余氨水中氨含量 3.5g/l 2 概述 剩余氨水是煤焦化工业中焦化废水的主要来源,其中含有大量的挥发氨和固定胺盐,严重影响了生化工段的废水处理结果,因此蒸氨工艺是焦化废水处理工艺的第一环节,同时还在为脱硫工段提供碱源的过程中起重要作用,因此蒸氨系统的稳定运行直接影响到生化工段出水指标及脱硫工段的脱硫效果。鼓冷工段昌盛的大量剩余氨水与蒸氨塔底废水换热后,进入到蒸氨塔中开始蒸馏,蒸氨塔底部通入饱和水蒸汽,以提供蒸氨所需热量及氨气载体,蒸出的大量氨气与水蒸气混合气体从塔顶分缩器出来后,去往脱硫工段,塔底废水在与剩余氨水、冷却水连续换热后,去往盛化工段进行水处理,同时在蒸氨过程中,需要在剩余氨水中加入一定量的液体氢氧化钠,以促进剩余氨水中固定铵盐的分解,保证蒸氨效果。 3蒸氨工段设备的计算 3.1 蒸氨塔的计算 3.1.1 基本数据的确定 ①原始数据:煤气总量 35000Nm 3 进料温度 50℃ 分凝器后产品浓度 10% 塔顶温度 102℃ 塔顶压力 14.7MPa 塔底温度 105℃ 塔底压力 34.3MPa 回流温度 90℃ 进料浓度 3.5 g/h 经计算得 进料量F 及浓度X F F = 12.63 t/h %35.0%10063 .12105.363.123 =???=-F X 参考《炼焦化学品回收与加工》附表5,得氨水在水溶液里及液面上蒸汽内的含量为Y 1 = 3.5% ② 氨分缩器后成品氨气浓度的确定 X D = 10%,设在蒸氨塔里的氨回收率99%,则氨为: 99%×12.63×3.5×103-/1000≈43.75kg/h 或54.51h Nm /3 氨气混合物 D = 43.75÷10% = 437.5 kg/h

化工原理课程设计---水吸收氨气-资料

《化工原理》课程设计水吸收氨气填料塔设计 学院医药化工学院 专业化学工程与工艺 班级 姓名姚 学号 090350== 指导教师蒋赣、严明芳 2011年12月25日

目录 前言 (1) 1. 水吸收氨气填料塔工艺设计方案简介 (4) 1.1任务及操作条件 (4) 1.2设计案的确定 (4) 1.3填料的选择 (4) 2. 工艺计算 (6) 2.1 基础物性数据 (6) 2.1.1液相物性的数据 (6) 2.1.2气相物性的数据 (6) 2.1.3气液相平衡数据 (6) 2.1.4 物料衡算 (7) 2.2 填料塔的工艺尺寸的计算 (7) 2.2.1 塔径的计算 (7) 2.2.2 填料层高度计算 (9) 2.2.3 填料层压降计算 (12) 2.2.4 液体分布器简要设计 (13) 3. 辅助设备的计算及选型 (15) 3.1 填料支承设备 (15) 3.2填料压紧装置 (16) 3.3液体再分布装置 (16) 4. 设计一览表 (17) 5. 后记 (18) 6. 参考文献 (10) 7. 主要符号说明 (10) 8. 附图(工艺流程简图、主体设备设计条件图)

前言 在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大应用面广的重要单元设备。塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。所以塔设备的研究一直是国内外学者普遍关注的重要课题。 在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。 塔设备按其结构形式基本上可分为两类;板式塔和填料塔。以前在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小、性能稳定等特点。因此,填料塔已经被推广到大型气、液操作中,在某些场合还代替了传统的板式塔。如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。 综合考察各分离吸收设备中以填料塔为代表,填料塔技术用于各类工业物系的分离,虽然设计的重点在塔体及塔内件等核心部分,但与之相配套的外部工艺和换热系统应视具体的工程特殊性作相应的改进。例如在DMF回收装置的扩产改造项目中,要求利用原常压塔塔顶蒸汽,工艺上可以在常压塔及新增减压塔之间采用双效蒸馏技术,达到降低能耗、提高产量的双重效果,在硝基氯苯分离项目中;改原多塔精馏、两端结晶工艺为单塔精馏、端结晶流程,并对富间硝基氯苯母液进行精馏分离,获得99%以上的间硝基氯苯,既提高产品质量,又取得了降低能耗的技术效果。 过程的优缺点:分离技术就是指在没有化学反应的情况下分离出混合物中特定组分的操作。这种操作包括蒸馏,吸收,解吸,萃取,结晶,吸附,过滤,蒸发,干燥,离子交换和膜分离等。利用分离技术可为社会提供大量的能源,化工产品和环保设备,对国民经济起着重要的作用。为了使1填料塔的设计获得满足分离要

布朗氨合成流程及合成氨培训教材

布朗氨合成流程及合成氨培训教材由于布朗工艺{4}的特殊流程,合成气最终要经过深冷精制以除去其中所含多余的氮气,因而气体质量与其他冷法精制流程的氮洗大体相当,即不含微量水分及二氧化碳。这种高质量的合成补充气,系所有深冷净化法的一大优点。它对氨合成系统十分有利,可有效地提高合成系统的能力,降低消耗。 图(4-19-9)为布朗三台合成塔,三台废热锅炉的氨合成工艺流程。补充气经过压缩冷却后 在循环段中与循环气相混合,然后经过预热去合成塔(1),(2),(3)。每台合成塔出口都设有废热锅炉,副产12.5MPa

高压蒸汽。合成塔的出口气,经过废热锅炉和预热器回收热量后,再经水冷器,冷交换器,二级氨冷器,降温至4.4℃并分离掉冷凝液氨,然后进冷交换器回收冷量,并升温至32℃,进入透平压缩机循环段与补充合成气混合去氨合成塔,从而构成氨合成的循环回路。 此氨合成流程的合成压力为15MPa。第三氨合成塔出口气中含氨可达21%,入塔气中含氨4%左右。 四、卡萨里法合成氨流程 卡萨立高压法也是高压法的一种,意大利人卡萨里所创。氢氮混合气被压缩到50~90MPa后进入循环系统,催化剂在500℃操作,采用的空间速度为12000,出塔气中氨含量15%,虽然用循环法生产,但不用循环压缩机而用气体喷射泵,只需将补充进入系统的3:1的氢氮混合气压力提高一点,就可作为动力源而带动整个系统的气体进行循环。此法最大的特点在与催化剂床层的温度控制,在高温高压下催化剂活性很易衰老,为此卡萨里对循环系统氨的分离使用冷凝的方法,出合成塔的气体被冷却到一定的温度,其中反应生成的氨就被冷凝分离掉。由于这种冷凝的做法,使得气体中残留一定量的氨分压,参见图(1-2-5)3.气体在60MPa下冷凝之后还有大约2%到3%的氨保留在气相中,这就使得循环到合成塔催化剂层进口处时可以减慢氨的生成反应,因此也就避免了产生过热现象。而哈伯法是用水洗分氨。合成塔进口处氨含量接近于0。而克劳德法则更是用新鲜氢氮气一次通过,故这两种工艺对催化剂的反应确实是要剧烈的多。据报道,同样的催化剂在卡萨里法可用6到12个月。每千克的催化剂产率为0.5到0.6的氨。

合成塔的设计

合成塔的设计

合成塔的设计 一、概述 合成氨是世界上较为重要的基础化学品之一,氨既是主要最终产品,也是重要的中间体。氨的用途,无论是直接应用还是作为中间体,主要均在化肥领域。在无机和有机化学品制造中,氨也有许多其他较次要的用途,例如制造**和丙烯晴。 氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位;同时也是能源消耗的大户,世界上大约有10 %的能源用于生产合成氨。氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨、再加工成尿素或各种铵盐肥料,这部分约占70 %的比例,称之为“化肥氨”;同时氨也是重要的无机化学和有机化学工业基础原料,用于生产铵、胺、染料、炸药、制药、合成纤维、合成树脂的原料,这部分约占30 %的比例,称之为“工业氨”。未来合成氨技术进展的主要趋势是“大型化、低能耗、结构调整、清洁生产、长周期运行”。 从20 世纪20 年代世界第一套合成氨装置投产,到20 世纪60 年代中期,合成氨工业在欧洲、美国、日本等国家和地区已发展到了相当高的水平。美国Kellogg 公司首先开发出以天然气为原料、日产1 000 t 的大型合成氨技术,其装置在美国投产后每吨氨能耗达到了4210 GJ 的先进水平。Kellogg 传统合成氨工艺首次在合成氨装置中应用了离心式压缩机,并将装置中工艺系统与动力系统有机结合起来,实现了装置的单系列大型化(无并行装置) 和系统能量自我平衡(即无能量输入) ,是传统型制氨工艺的最显著特征,成为合成氨工艺的“经典之作”。之后英国ICI、德国Uhde 、丹麦Topsoe 、德国Braun 公司等合成氨技术专利商也相继开发出与Kellogg 工艺水平相当、各具特色的工艺技术,其中Topsoe 、ICI 公司在以轻油为原料的制氨技术方面处于世界领先地位。这是合成氨工业历史上第一次技术变革和飞跃。传统型合成氨工艺以Kellogg 工艺为代表,其以两段天然气蒸汽转化为基础,包括如下工艺单元:合成气制备(有机硫转化和ZnO 脱硫+ 两段天然气蒸汽转化) 、合成气净化(高温变换和低温变换+ 湿法脱碳+ 甲烷化) 、氨合成(合成气压缩+ 氨合成+ 冷冻分离) 。 传统型两段天然气蒸汽转化工艺的主要特点是:①采用离心式压缩机,用蒸汽轮机驱动,首次实现了工艺过程与动力系统的有机结合。②副产高压蒸汽, 并将回收的氨合成反应热预热锅炉给水。③用一段转化炉烟道气预热二段空气,提高一段转化压力,将部分转化负荷转移至二段转化。④采用轴向冷激式氨合成塔和三级氨冷,逐级将气体降温至- 23 ℃,冷冻系统的液氨亦分为三级闪蒸。在传统型两段蒸汽转化制氨工艺中,Kellogg 工艺技术应用最为广泛,约有160 套装置,其能耗为3717~41. 8 GJ / t 。经过节能改造后平均能耗已经降至3517 GJ / t 左右。 我国目前有大型合成氨装置共计34 套,生产能力约1 000 万t/ a ;其下游产品除1 套装置生产硝酸磷肥之外,均为尿素。按照原料类型分:以天然气 (油田气) 为原料的17 套,以轻油为原料的6 套,以重油为原料的9 套,以煤为原料的2 套。除上海吴泾化工厂为国产化装置外,其他均系从国外引进,按照专利技术分:以天然气和轻油为原料的有Kellogg传统工艺(10 套) 、Kellogg - TEC 工艺(2 套) 、Topsoe工艺(3 套) ,及20 世纪90 年代引进的节能型AMV工艺(2 套) 、Braun 工艺(4 套) 、KBR 工艺(1 套) ;以渣油为原料的Texaco 工艺(6 套) 和Shell 工艺(3套) ;以煤为原料的Lurgi 工艺(1 套) 和Texaco 工

水吸收氨过程填料吸收塔设计论文

一、设计任务书 (一)设计题目 试设计一座填料吸收塔,用于脱除混于空气中的氨气。混合气体的处理量为1000 m3/h,其中含氨气为8%(体积分数),要求塔顶排放气体中含氨低于0.02%(体积分数),采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。(20℃氨在水中的溶解度系数为H=0.725kmol/(m3.kPa) (二)操作条件 1.操作压力为常压,操作温度20℃. 2.填料类型选用聚丙烯阶梯环填料,填料规格自选。 3.工作日取每年300天,每天24小时连续进行。 (三)设计内容 1.吸收塔的物料衡算; 2.吸收塔的工艺尺寸计算; 3.填料层压降的计算; 4.吸收塔接管尺寸计算; 5.吸收塔设计条件图; 6.对设计过程的评述和有关问题的讨论。 二、设计方案 (一)流程图及流程说明 该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。 (二)填料及吸收剂的选择 该过程处理量不大,所用的塔直径不会太大,可选用25×12.5×1.4聚丙烯阶梯环塔填料,其主要性能参数如下: 比表面积a t :2233 2/m m空隙率ε:0.90 湿填料因子Φ:1 172m-填料常数 A:0.204 K:1.75

见下图: 根据所要处理的混合气体,可采用水为吸收剂,其廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。 三、工艺计算 (一)基础物性数据 1.液相物性数据 3998.2(/)L kg m ρ= 6100410() 3.6(/)L Pa s kg m h μ-=??= 272.6(d y n /c ) 940896(/)L m k g h σ== 931.7610(/)L D m s -=? 2. 气相物性数据 混合气体平均密度:31.166(/)v kg m ρ= c σ=427680(2/kg h ) 空气黏度:51.8110()0.065(/)v Pa s kg m h μ-=??= 273K ,101.3Kpa.氨气在空气中扩散系数:200.17(/)D m s = (二)物料衡算,确定塔顶、塔底的气液流量和组成 20℃,101.3Kpa 下氨气在水中的溶解度系数 30.725/H kmol m kpa = 998.20.7540.72518101.3s S E m P HM P ρ====?? 进塔气相摩尔比: 10.080.087010.08 Y = =- 出塔气相摩尔比:20.00020.00020010.0002Y ==- 对于纯溶剂吸收过程,进塔液相组成:20X =

水吸收氨气填料塔设计概述

化工原理课程设计 课程名称: _ 化工原理 设计题目: __水吸收空气中氨填料塔的工艺设计____ 院系: ___化学与生物工程学院__________ 学生姓名: _____王永奇__________ 学号: ____200907117________ 专业班级: __化学工程与工艺093_ 指导教师: ______张玉洁_________

化工原理课程设计任务书 一、设计题目:水吸收空气中的氨填料塔的工艺设计 二、设计条件 1.生产能力:每小时处理混合气体4500Nm/h; 2.设备型式:填料塔 3.操作压力:101.3KPa 4.操作温度:298K 5.进塔混合气中含氨8%(体积比) 6.氨的回收率为99% 7.每年按330天计,每天24小时连续生产 8.建厂地址:兰州地区 9.要求每米填料的压降都不大于103Pa 三、设计步骤及要求 1. 确定设计方案 (1)流程的选择 (2)初选填料类型 (3)吸收剂的选择 2.查阅物料的物性数据 (1)溶液的密度、粘度、表面张力、氨在水中的扩散系数 (2)气相密度、粘度、表面张力、氨在空气中的扩散系数 (3)氨在水中溶解的相平衡数据 3.物料衡算 (1)确定塔顶、塔底的气液流量和组成 (2)确定泛点气速和塔径 (3)校核D/d>8~10 (4)液体喷淋密度校核:实际的喷淋密度要大于最小的喷淋密度。 4.填料层高度计算 5.填料层压降校核

如果不符合上述要求重新进行以上计算 6.填料塔附件的选择 (1)液体分布装置 (2)液体在分布装置 (3)填料支撑装置 (4)气体的入塔分布 7.计算结果列表(见下表) 四、设计成果 1. 设计说明书(A4) (1)内容包括封面、任务书、目录、正文、参考文献、附录 (2)格式必须严格按照兰州交通大学毕业设计的格式打印。 2.精馏塔工艺条件图(2号图纸)(手绘) 五、时间安排 (1)第十九周---第二十二周 (2)第二十二周的星期五(7月20日)下午两点本人亲自到指定地点交设计成果,最迟不得晚于星期五的十八点钟。 六、设计考核 (1)设计是否独立完成; (2)设计说明书的编写是否规范 (3)工艺计算与图纸正确与否以及是否符合规范 (4)答辩 七、参考资料 1.《化工原理课程设计》贾绍义柴成敬天津科学技术出版社 2.《现代填料塔技术》王树盈中国石化出版社 3.化工原理夏清天津科学技术出版社

氨合成塔 (2)

氨合成塔 在高压、高温下用来使氮气和氢气发生催化反应以进行氨合成的设备。氨合成塔是合成氨厂的心脏,是一种结构复杂的反应器。 目录 ?1基本资料 ?2技术原理 ?内部换热 ?间断换热式 氨合成塔- 基本资料 在高压、高温下用来使氮气和氢气发生催化反应以进行氨合成的设备。氨合成塔是合成氨厂的心脏,是一种结构复杂的反应器。 现在工业上氨合成是在压力15.2~30.4MPa、温度400~520℃下进行的,为防止高压、高温下氢气对钢材的腐蚀,氨合成塔由耐高压的封头、外筒和装在筒体内耐高温的内件组成。内件外有保温层,操作时进塔的冷气体流过内、外筒间的环隙,从而避免外筒温度过高。这样,外筒只承受高压,可用低合金高强度钢制作。内件虽然是在高温下操作,但是只承受氨合成塔进出口的压力差,可用耐热镍铬合金钢制作。内件包括催化剂筐和换热器两个主要部分,筐内装铁催化剂,氨合成反应在此进行。从催化剂筐出来的热气体温度通常在460℃

以上,进氨合成塔的冷气体温度根据流程的不同,有的为20~30℃,有的可达140℃以上。为了使进氨合成塔的气体能加热到反应温度,同时又能冷却反应后气体,在塔内还设有换热器。换热器有列管式、螺旋板式和波纹板式,其中以列管式采用最多。氨合成催化剂在开车之前必须还原(见氨合成),还原需要提供一定的热量,为此中小型氨合成塔内部装有电加热器,大型氨合成塔则采用塔外设置开工加热炉的办法来解决。在给定的铁催化剂和压力下,氨合成温度不同,反应速度也不同。对于一定的氨含量,氨合成反应速度最大时的温度称为最佳温度,此最佳温度随着氨含量增大而降低。由于氨合成为放热反应,催化剂床层的温度将随着反应进行而不断升高。为使氨合成反应能在接近最佳温度下进行,需要采取措施移走多余的热量。工业上按传热方式区分催化剂筐的类型。[1] 氨合成塔- 技术原理 内部换热 式又称连续换热式。特点是在催化剂床层中设置 冷却管,通过冷却管进行床层内冷热气流的间接 换热,以达到调节床层温度的目的。冷却管形式 有单管、双套管和三套管之分,根据催化剂床层 和冷却管内气体流动方向的异同,又有逆流式和 并流式冷却管之分。以并流双套管式氨合成塔为 例(图1),气体从塔顶部进入,在环隙中沿塔壁

GC型φ1800三轴一径氨合成塔的设计及运行总结

GC型φ1800三轴一径氨合成塔的设计及运行总结 1概述 江苏灵谷化工有限公司总部原有合成氨系统两套,一套为老合成系统(φ1000合成系列),规模为年产8万吨合成氨(于1998年10月份投产),简称老系统;另一套为新合成系统(φ1200合成系列),规模为年产12万吨合成氨(2002年4月投产),简称新系统。两套系统生产能力为20万吨合成氨。老系统(φ1000合成)设备陈旧、管路复杂、系统阻力大,尤其是触媒已严重老化(设计寿命为3年,实际已使用了5年半),严重影响了生产力,也不利于安全与节能。为进一步增加市场竞争能力,为取得经济效益的最大化和发展空间,实现我公司的战略要求,公司于2003年10月份决定在合成工段再扩建一套18万吨合成氨系统(即φ1800合成)。同时将拆除下来的φ1000合成塔、高压管道及附属设备等移至姜堰重组公司,配套了姜堰重组公司扩能技改工程。公司领导和有关技术人员经过各方调研和细致分析、论证后,确定南京国昌公司作为设计、制造“GC型φ1800三轴一径合成塔内件及系统配套设备”单位。合成塔外筒制造,选定由上海化机厂制作;所有高压管件均选定浙江工业大学设计、生产、制造,并交送现场安装;安装单位选定江苏省工业设备安装公司。 φ1800合成系统终于在2004年3月29日一次开车投运成功。投运至今已有5个多月,从运行情况及各项技经数据显示,基本达到了设计的预期效果,为本公司的健康发展奠定了基础。 2合成系统设计: 2.1设计参数及技术特性: 合成系统压力25-28Mpa 入塔气量295600Nm3/h 新鲜气量72000Nm3/h 冷却水温度34℃ 气氨总管压力0.2Mpa 氨产量25TNH3/h 合成塔阻力≤0.8Mpa 系统压差≤2.0Mpa 2.2工艺流程选择: 由透平循环机出口油分来的气体分为两股,一股约占入塔总气量30%的气体通过塔主阀送至塔上部沿合成塔环隙自上而下,约升至86℃出塔后再分为两股,一股作为冷激气直接送至塔顶作为控制径向段触媒层温度。另外还有一股与约占总气量70%的气体合并,进入加热器通过加热至180℃后的气体又分为两股,一股直接从合成塔底部入塔,通过下部换热器管层与两次出塔气换热,温度升至380℃-400℃由合成塔中心管引入触媒层。另一股作为冷激气通过f0、f1、f2调节阀分别控制塔内上面一、二、三层触媒层温度,经反应后的气体通过合成塔下部换热器壳层与两次进塔气(管程)换热后出塔,出合成塔后气体约340℃进入废热锅炉,从废热锅炉出来的气体温度约223℃进入循环换热器热气入口,换热后温度约87℃-95℃的气体进入水冷器,经冷却后的气体温度约37℃进入冷交换器管外。由水冷器、冷交中冷凝的液氨在此分离(约分离掉70%的液氨),分离后的气体再进入氨冷器,气体中氨进一步得到冷凝,然后出来的气液温度约-3℃--5℃进入氨分离器,冷凝后的液氨进一步得到分离,然后出来后的气体进入冷交换热器冷气入口,出冷交

水吸收氨气过程填料吸收塔的设计说明

课程设计任务书 一、设计题目:水吸收氨气过程填料吸收塔的设计; 试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。混合气体的处理量为2600m3/h,其中含氨为7%(体积分数),混合气体的进料温度为25℃。要求:氨气的回收率达到98%。(20℃氨在水中的溶解度系数为H=0.725kmol/(m3.kPa) 二、工艺操作条件: (1)操作平均压力常压 (2)操作温度 : t=20℃ (3)吸收剂用量为最小用量的倍数自己确定 (4)选用填料类型及规格自选。 三、设计容 (1)设计方案的确定和说明 (2)吸收塔的物料衡算; (3)吸收塔的工艺尺寸计算; (4)填料层压降的计算; (5)液体分布器简要设计; (6)绘制液体分布器施工图 (7)吸收塔接管尺寸计算; (8)设计参数一览表; (9)绘制生产工艺流程图(A4号图纸); (10)绘制吸收塔设计条件图(A4号图纸); (11)对设计过程的评述和有关问题的讨论。

目录 1. 设计方案简介 (1) 1.1设计方案的确定 (1) 1.2填料的选择 (1) 2. 工艺计算 (1) 2.1 基础物性数据 (1) 2.1.1液相物性的数据 (1) 2.1.2气相物性的数据 (1) 2.1.3气液相平衡数据 (1) 2.1.4 物料衡算 (1) 2.2 填料塔的工艺尺寸的计算 (2) 2.2.1 塔径的计算 (2) 2.2.2 填料层高度计算 (3) 2.2.3 填料层压降计算 (6) 2.2.4 液体分布器简要设计 (7) 3. 辅助设备的计算及选型 (8) 3.1 填料支承设备 (8) 3.2填料压紧装置 (8) 3.3液体再分布装置 (8) 4. 设计一览表 (9) 5. 后记 (9) 6. 参考文献 (9) 7. 主要符号说明 (10) 8. 附图(工艺流程简图、主体设备设计条件图)

化工原理课程设计水吸收氨气填料塔设计

《化工原理》课程设计 ——水吸收氨气填料塔设计学院 专业 班级 姓名 学号 指导教师 2012年12月11 日

设计任务书 水吸收氨气填料塔设计 (一)设计题目 试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。混合气体的处理量为____3200____m3/h,其中含氨为____8%____(体积分数),混合气体的进料温度为25℃。要求: ①塔顶排放气体中含氨低于____0.04%____(体积分数); (二)操作条件 (1)操作压力:常压 (2)操作温度:20℃ (3)吸收剂用量为最小用量的倍数自己确定 (三)填料类型 聚丙烯阶梯环吸收填料塔 (四)设计内容 (1)设计方案的确定和说明 (2)吸收塔的物料衡算; (3)吸收塔的工艺尺寸计算; (4)填料层压降的计算; (5)液体分布器简要设计; (6)绘制液体分布器施工图 (7)吸收塔接管尺寸计算; (8)设计参数一览表; (9)绘制生产工艺流程图(A3号图纸); (10)绘制吸收塔设计条件图(A3号图纸); (11)对设计过程的评述和有关问题的讨论。

目录 前言 ............................................................................................................. 错误!未定义书签。第一节填料塔主体设计方案的确定.................................................. 错误!未定义书签。 1.1装置流程的确定 .................................................................................. 错误!未定义书签。 1.2 吸收剂的选择.................................................................................. 错误!未定义书签。 1.3 课程设计任务 .................................................................................... 错误!未定义书签。 1.4 填料的类型与选择 ............................................................................. 错误!未定义书签。 1.4.1 填料种类的选择 .............................................................................. 错误!未定义书签。 1.4.2 填料规格的选择 .............................................................................. 错误!未定义书签。 1.4.3 填料材质的选择 .............................................................................. 错误!未定义书签。 1.5 基础物性数据....................................................................................... 错误!未定义书签。 1.5.1 液相物性数据................................................................................. 错误!未定义书签。 1.5.2 气相物性数据 .............................................................................. 错误!未定义书签。 1.5.3 气液相平衡数据............................................................................ 错误!未定义书签。 1.5.4 物料横算............................................................................................. 错误!未定义书签。第二节填料塔工艺尺寸的计算 ........................................................... 错误!未定义书签。 2.1 塔径的计算 ........................................................................................... 错误!未定义书签。 2.2 填料层高度的计算及分段............................................................... 错误!未定义书签。 2.3填料层压降计算: .............................................................................. 错误!未定义书签。第三节填料塔内件的类型及设计 .................................................. 错误!未定义书签。

剩余氨水槽改造方案及安全措施

剩余氨水槽A改为沉淀槽技改方案 由于上蒸氨塔剩余氨水焦油含量高,造成氨水过滤器,换热器及再沸器堵塞严重。为降低其焦油含量特作以下技改: a)将两个剩余氨水槽其中一个改造为“中间沉淀槽”。使氨水在该 槽内有充足的时间静置,以除去其中的焦油。示意图如下:自循环氨水槽 b)将剩余氨水槽隔板恢复。投产前一冶施工方擅自将剩余氨水槽 隔板从中部以上开孔,(孔大小约150~200mm)导致剩余氨水 不能有效静置。故需将孔堵住。 化产车间 2009-3-22

剩余氨水槽改造动火安全措施主管副总经理: 总工程师: 安监部: 生产技术部: 调度室: 消防部门: 化产车间: 编制:

施工措施 由于自冷鼓工段出来的剩余氨水含焦油较多,需增加沉降时间以达到将其中焦油去除的目的,故需将其中一台剩余氨水槽改造为中间沉淀槽。 施工时间: 施工地点:冷鼓工段剩余氨水区域 施工内容:将剩余氨水槽A改造为氨水中间沉淀槽 安全负责人: 安全监管人: 影响范围:冷凝区域 施工方案: 1.提前准备无缝钢管,阀门,石棉板等施工材料。 2.提前将剩余氨水槽A中的剩余氨水抽空,并用蒸汽和热水对剩余氨 水槽进行清洗,将其中的焦油和氨水清洗干净。 3.将剩余氨水槽A氨水进出口阀门处打盲板。 4.将剩余氨水槽A人孔打开,顶部放散打开,自然通风不少于1天。 5.施工前化验其中的气体成分,合格后方可进入。 6.进人前必须从人孔处对剩余氨水槽进行强制通风。 7.将剩余氨水槽A中的隔板上的孔进行恢复。 8.如下图进行焊接与A槽相连接的管道。 9.施工完毕后拆除剩余氨水槽A的进出口阀门。 10.将剩余氨水槽B中的氨水倒换至剩余氨水槽A。动火前也同样对剩 余氨水槽B进行处理。

整体锻焊式氨合成塔主要设备材料的选择及论证

整体锻焊式氨合成塔主要设备材料的选择及论证 1.1 氨合成塔材料的选择原则 在氨合成塔设计过程中,选择材料是重要的一环。材料选择的正确与否,将直接影响到设备的成本、订货、材料消耗量以及设备能否长期安全运行等。 通常选材时应当考虑以下几个方面: 1.材料的资源符合国情、价格便宜、容易获得; 2.使用安全,具有良好的综合机械性能。即强度高、塑性和抗断性好,以及有较低的冷脆倾向、缺口和时效敏感性; 3.制造和加工性能良好; 4.具有良好的抗氢、氮腐蚀的能力。 由于氨合成塔的制造方法不同,各个组成部分工作条件不同,因而对材料的要求也不相同,例如对层板包扎式的内筒主要要求是:组织严密、质量好、强度高、延伸率大、冲击韧性好、可焊性好以及耐腐蚀等,而对层板则首先要求机

械性能高及焊接性能良好。 一般对筒体和内件以及废热锅炉用材还有如下具体要求: 1.宜用电炉、平炉或氧气顶吹转炉冶炼的镇静钢; 2.有良好的可焊性; 3.除了要求在使用温度下有较高强度外,还应有良好的塑性(内筒的材料通常要比层板或钢带有更好的塑性),一 般要求内筒 s 16% δ≥、层板及钢带s14% δ≥,单层筒体s15% δ≥;同时还须有良好的冲击韧性和较低的缺口敏感性; 4.和介质直接接触的材料(如内筒和单层容器等),还必须具有抗氢、氮、氨腐蚀的性能; 5.热稳定性好。 1.2 外筒材料的选择与论证 1.2.1 筒体材料的选择与论证 整体锻焊式筒体常用材料有Q235-B,16Mn,Cr-Mo-V 钢,SAE3230,SAE6130,AOS1135E等。

本设计氨合成塔外筒的材料选择16Mn锻造用钢。由查机械设计手册(第一卷)第3篇可知16Mn的许用应力及机械性能如表4-1和表4-2。 表4-1 16Mn的许用应力 表4-2 16Mn的力学性能

化工原理 水吸收氨填料塔设计

广东石油化工学院化工原理课程设计 题目: 水吸收氨填料塔的设计 指导教师: 李燕 成绩评阅教师

目录 第一节前言 (4) 1.1 填料塔的主体结构与特点 (4) 1.2 填料塔的设计任务及步骤 (4) 1.3 填料塔设计条件及操作条件 (4) 第二节填料塔主体设计方案的确定 (5) 2.1 装置流程的确定 (5) 2.2 吸收剂的选择 (5) 2.3填料的类型与选择 (5) 2.3.1 填料种类的选择 (5) 2.3.2 填料规格的选择 (5) 2.3.3 填料材质的选择 (6) 2.4 基础物性数据 (6) 2.4.1 液相物性数据 (6) 2.4.2 气相物性数据 (6) 2.4.3 气液相平衡数据 (7) 2.4.4 物料横算 (7) 第三节填料塔工艺尺寸的计算 (8) 3.1 塔径的计算 (8) 3.2 填料层高度的计算及分段 (9) 3.2.1 传质单元数的计算 (9) 3.2.3 填料层的分段 (11) 3.3 填料层压降的计算 (12) 第四节填料塔内件的类型及设计 (12) 4.1 塔内件类型 (12) 4.2 塔内件的设计 (12) 4.2.1 液体分布器设计的基本要求: (12) 4.2.2 液体分布器布液能力的计算 (13) 注: 1填料塔设计结果一览表 (13) 2 填料塔设计数据一览 (13)

3 参考文献 (15) 4 对本设计的评述或有关问题的分析讨论 (15)

第一节 前言 1.1 填料塔的主体结构与特点 结构: 图1-1 填料塔结构图 填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以她特别适用于处理量肖,有腐蚀性的物料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。 1.2 填料塔的设计任务及步骤 设计任务:用水吸收空气中混有的氨气。 设计步骤:(1)根据设计任务和工艺要求,确定设计方案; (2)针对物系及分离要求,选择适宜填料; (3)确定塔径、填料层高度等工艺尺寸(考虑喷淋密度); (4)计算塔高、及填料层的压降; (5)塔内件设计。 1.3 填料塔设计条件及操作条件 1. 气体混合物成分:空气和氨 2. 空气中氨的含量: 5.0% (体积含量即为摩尔含量) 液体 捕沫器 填料压板 塔壳填料 填料支承板液体再分布器填料压板填料支承板气体 气体 液体

ⅢJD2000型-φ2200氨合成塔

概述 湖南安淳高新技术有限公司(以下简称安淳公司)从上世纪80年代起,在分析了国际国内氨合成塔内件优缺点的基础上,独创了ⅢJ型氨合成塔内件,取得了国家专利,是国内数种氨合成塔内件中唯一经原化工部鉴定的内件,鉴定结论是,该内件为国内首创,主要技术指标取得突破性进展,达到国际先进水平。安淳公司不断创新、不断进取,随后又推出了ⅢJ99型氨合成内件,包含3个新的国家专利技术。ⅢJ型、ⅢJ99型氨合成内件经由φ800、φ1000到φ1200;后又开发了ⅢJD2000型φ1400、φ1600、φ1800、φ2000氨合成内件。单塔年产氨能力由20 kt(φ600塔)发展到180 kt、200 kt。近几年开发的ⅢJD2000型-φ2200氨合成塔,在技术上又有较大的提升;单塔生产能力日均达850~910 t,受到了用户的青睐。 2 ⅢJD2000型-φ2200氨合成塔的设计思想 为实现单系统生产能力规模化和进一步降低能耗,安淳公司在ⅢJD2000型-φ1800、φ2000氨合成内件的基础上,引入新的理念,设计了ⅢJD2000型-φ2200氨合成内件,具体如下。 (1)充分发挥第一绝热层的作用。进入零米未反应气氨含量低,距离反应平衡很远,反应速度很快,尽量在开始反应的第一层多产氨,使第一层之氨净值达到8%~9%,即第一绝热层温升110~133 ℃。具体措施如下。 ①增加第一绝热层的高度,第一绝热层设计高度2.5~3.1 m。 ②降低零米温度,提高热点温度。进第一绝热层零米点的循环气,氨含量最低(约2.16%),温度低(370~380 ℃),离反应平衡点最远;如零米温度为380 ℃,将第一绝热层反应终点温度设计为490~513 ℃,则第一绝热层的氨含量增加8%~9%(氨净值),即第一绝热层完成氨合成反应的50%。 (2)第一层绝热反应后的热气体,不再采取冷激,而是用塔内换热器间接冷却后再进入第二层,这样更有利于氨合成反应温度接近最适宜温度曲线。 (3)冷管束(段间冷却器)的气体出口设在催化剂床层表面,使进塔气体100%地通过第一层催化剂,有利于降低零米温度,提高氨净值。 (4)分流气占到近50%,使通过中心管和换热器的气体由原来的65%~70%减少至50%,降低塔阻力。 (5)提高出塔温度。设计最高出塔温度为380 ℃,产生3.0~4.0 MPa过热蒸汽,使回收蒸汽的利用价值更高。 (6)大幅度提高出塔氨含量。 3 ⅢJD2000型-φ2200氨合成塔的结构特点

(完整版)130万吨焦化剩余氨水蒸氨方案

山西永祥煤焦有限公司 130万吨/年焦化剩余氨水蒸氨工程 设 计 方 案

目录 一、剩余氨水来源及排放 (1) 1.1概述 (1) 1.2剩余氨水来源及排放情况 (1) 二、建设规模及要求达到的排放标准 (2) 三、蒸氨处理工艺流程简介 (2) 四、工艺设计说明 (3) 4.1概述 (3) 4.2设计能力 (3) 4.3原料及能耗 (3) 4.4工艺流程 (3) 4.5工艺特点 (4) 4.6设备选型 (5) 五、建筑结构及平面布置 (8) 六、电气、仪表及自动控制 (8) 6.1电气 (8) 6.2仪表及自动控制 (9) 七、环境保护、劳动安全及消防 (10) 7.1环境保护 (10) 7.2劳动安全与工业卫生 (10) 7.3消防 (11) 7.4节能 (11) 八、工作制度及定员 (12) 8.1 工作制度 (12) 8.2 劳动定员 (12)

九、公用及辅助工程 (12) 9.1给水 (12) 9.2蒸汽 (12) 9.3仓库 (12) 9.4化验 (12) 9.5维修 (13) 十、工艺设备及投资一览表 (14) 十一投资估算一览表 (15) 十二、技术经济 (16) 12.1成本估算 (16) 12.2经济分析结论 (16) 十三、项目进度计划 (16) 十四、质量保证和服务承诺 (16) 十五、蒸氨系统总承包或制造部分业绩.......................................................................... 错误!未定义书签。附件:1、工艺流程简图 2、设备平面布置图

水吸收氨气填料塔设计样本

东南大学成贤学院 课程设计报告 题目填料吸收塔的设计 课程名称化工原理课程设计 专业制药工程 班级 学生姓名 学号 设计地点东南大学成贤学院 指导教师 设计起止时间:2012 年8月28日至2012 年9 月14 日

目录 课程任务设计书 (3) 第一节吸收塔简介 (4) 1.1 吸收技术概况 (4) 1.2 吸收设备--填料塔概况 (4) 1.3 典型的吸收过程 (5) 第二节填料塔主体设计方案的确定 (6) 2.1 装置流程的确定 (6) 2.2 吸收剂的选择 (6) 2.3 填料的类型与选择 (7) 2.3.1填料种类的选择 (7) 2.3.2 填料规格的选择 (8) 2.3.3 填料材质的选择 (8) 第三节填料塔工艺尺寸的计算 (10) 3.1 基础物性数据 (10) 3.1.1 液相物性数据 (10) 3.1.2 气相物性数据 (10) 3.1.3 气液相平衡数据 (10) 3.2 物料衡算及校核 (11) 3.2.1水吸收氨气平衡关系 (11) 3.2.2绘制X-Y图 (11) 3.2.3物料衡算 (16) 3.3 塔径的计算及校核 (18) 3.3.1塔径的计算 (18) 3.3.2塔径的校核 (20) 3.4 填料层高度的计算及分段 (20) 3.4.1填料层高度的计算 (20) 3.4.2 填料层的分段 (23) 3.5 填料层压降的计算 (23) 第四节其他辅助设备的计算与选择 (24) 4.1 吸收塔的主要接管尺寸计算 (24) 4.2 气体进出口的压降计算 (24)

4.3 离心泵的选择与计算 (24) 附件一: 1.计算结果汇总 (26) 2.主要符号及说明 (27) 3.参考文献 (28) 4. 个人小结 (28) 附件二: 1.填料塔设备图 (30) 2.塔设备流程图 (31) 3.埃克特通用压降关联图 (32) 4.X-Y关系图(见计算过程)

焦化废水处理方案..-共19页

第二章方案设计 2.1 概述 2.1.1 工程概况 ****焦化污水处理工程,焦化厂在生产过程中产生有毒害污水及部分生活污水,处理后达到《炼焦生产设计技术规范》的要求,并且全部用于熄焦,不外排达到零排放。 2.1.2 设计依据 (1)****焦化厂的提供的原始资料; (2)提供每天产生的废水水质、水量等基本资料; (3)《炼焦生产设计技术规范》要求; (4)《室外排水设计规范》GBJ14-87; (5)《建筑给排水设计规范》GBJ15-88; (6)《城市区域环境噪声标准》GB3096-93; (7)《工业自动化仪表工程施工及验收规范》(GBJ93-86); (8)《给水排水工段结构设计规范》(GBJ69-84); 2.1.3 设计范围 2.1. 3.1本改造工程设计范围包括废水处理站的工艺、设备制造、安装调试、电气与自控等专业的内容。 2.1. 3.2 电线、电缆以污水处理站设备电控柜为交接点。 2.1.4 设计原则

(1)采用成熟、可靠的废水处理工艺,确保处理出水的各项指标达到国家的有关 排放标准(氰化物不能处理达标)。 (2)废水处理设施力求占地面积小,工程投资省,运行能耗低,处理费用少。 (3)废水处理设施在运行上有较大的灵活性和可调节性,以适应水质水量的变化, 同时设置事故应急排放管道,供紧急、特殊情况下使用; (4)采用性能稳定,技术先进的控制系统,主要部分实现自动化管理,减轻工人 劳动强度,使废水处理工程出水稳定,易操作,易管理,易维护。 (5)设计时充分考虑废水处理系统配套设备的减振、降噪措施,废水处理过程中 产生的剩余污泥经好氧消化稳定后浓缩处理,再经板框压滤机压成泥饼含水率低利于装运,避免产生二次污染。 2.1.5 其他配套条件 2.1.5.1 蒸氨塔(由业主委托化工设计院进行设计) 焦化废水中含有剩余氨水,废水中NH3-N 很高,必须进行蒸氨预处理,并且要加碱脱除固定氨。其目的一是为了回收剩余的NH3-N,充分利用资源;目的二是将焦化废水中的NH3-N 浓度降低至200mg/L 以下,避免对后续生化处理产生不利影响。高浓度的进水NH3-N会导致:①硝化菌负荷过高,活性受到抑制;②耗氧量大而出现供氧量不足,导致硝化过程不彻底,出水NH3-N 超标; ③为保证供氧充足而导致能耗高;④碳酸钠消耗量太大,从而导致运行成本很高。蒸氨废水中NH3-N 浓度决定于蒸氨塔的处理效率,蒸氨塔效率越高,废水中NH3-N 浓度越低,处理难度和能耗也就越低。

相关文档