文档库 最新最全的文档下载
当前位置:文档库 › 数据结构 内部排序算法比较

数据结构 内部排序算法比较

数据结构 内部排序算法比较
数据结构 内部排序算法比较

内部排序算法比较

1、课程设计的目的

本课程设计为了更好的了解和认识数据结构常用的内部排序算法。排序对于数据结构的管理来说是至关重要的,所以熟悉掌握和深入了解这些常用的经典内部排序算法是有必要的。

2、课程设计的要求

1. 掌握常用的排序方法和各种排序方法的特点。

2.熟悉排序的基本概念。

3、课程设计的内容

3.1需求分析

编制一个演示内部排序算法比较的程序。可对冒泡排序、直接插入排序、简单选择排序、快速排序、希尔排序和堆排序进行比较。

3.2概要设计

(1)冒泡排序

基本思想是:设数组a中存放了n 个数据元素,循环进行n-1次如下的排序过程:第一次时,依次比较相邻两个数据元素a[i]和a[i+1].key(i=0,1,2,3...,n-2).若为逆序,则交换两个数据元素,否则不交换,这样,当作完n-1次比较后数值最大的数据元素将比放置在a[n-1]中。第二次时,数据元素个数减1,即数据元素个数为n-1,操作方法与第一次类似,这样,n个数据元素集合中数值次大的数据元素将被放置在a[n-2]中。当第n-1次排序结束时,n个数据元素集合中次小的数据元素将被放置在a[1]中,而a[0]中放置了最小的数据元素。

冒泡排序算法的空间复杂度为o(n2)。

(2)直接插入排序

基本思想是:顺序地把待插入的数据元素按其关键字的大小插入到已排序数据元素子集合的适当位置.子集合的数据元素个数从只有一个数据元素开始逐次增大,当子集合最终与集合大小相同时排序完毕.

设待排序的N个数据元素存放在数组A中,初始时子集合a[0]以排好序.第一次循环准备把数据元素a[1]插入到以排好序的子集合中,这只需比较a[0].key和a[1].key,若

a[0].key<=a[1].key,则说明序列已有序,否则,将a[1]插入到a[0]之前,这样子集合的大小增大为2;第二次循环是把数据元素a[2]插入到以排好序的子集合中,这需要先比较

a[2].key和a[1].key,已确定是否需要把a[2]插到a[1]之前,然后比较a[2].key和

a[0].key,以确定是否需要把a[2]插入到a[0]之前;这样的循环过程一直进行到a[n-1]插入完为止.这时,数据元素集合a[0],a[1],a[2],...,a[n-1]就全部排好了序。

直接插入排序算法最坏情况下的时间复杂度为O(n2).

(3)直接选择排序

基本思想是:从待排序的数据元素集合中选取关键字最小的数据元素并将它与原始数据元素集合中的第一个数据元素交换位置;然后从不包括第一个位置的数据元素集合中选取关键字最小的数据元素并将它与原始数据集合中的第二个数据元素交换位置;如此重复,直到数据元素集合中只剩一个数据元素为止。

直接选择排序算法的时间复杂度为O(n2)。

(4)快速排序

快速排序是一种二叉树结构的交换排序方法,其基本思想是:设数组a中存放了n个数据元素,low为数组的低端下标,high为数组的高端下标,从数组a中任取一个元素作为标准,调整数组a中各个元素的位置,使排在标准元素前面元素的关键字均小于标准元素的关键字,排在标准元素后面元素均大于或等于标准元素的关键字。这样一次过程结束后,一方面将标准元素放在了未来排好序的数组中该标准元素应在的位置上,另一方面将数组中的元素以标准元素为中心分为了两个子数组,位于标准元素左边均大于等于标准元素的关键字。然后对这两个子数组中的元素分别再进行方法类同的递归快速排序。

(5)堆排序

堆排序的基本思想是:循环执行如下过程直到数组为空:(1)把堆顶a[0]元素为最大元素与当前最大堆的最后一个元素交换;(2)最大堆元素个数减1;(3)若此时根节点不满足最大堆的定义,则调整根节点使之满足最大堆的定义。

堆排序算法的时间复杂度为O(nlog2n)。

(6)各种排序的比较

通过计算各种排序算法的平均时间复杂度等来比较几种算法。

冒泡排序算法平均时间复杂度为o(n2)。冒泡排序算法的空间复杂度为o(1).显然,冒泡排序是一种稳定的排序方法。

直接插入排序算法的时间复杂度为o(n2),空间复杂度为O(1).显然,直接插入排序算法

是一种稳定的排序算法.

直接选择排序算法的时间复杂度为O(n2)。直接选接排序算法的空间复杂度为o(2)。显然,直接选择排序算法是一种不稳定的排序算法.

快速排序算法的平均算法复杂度为O(log2n)。平均空间复杂度为O(log2n)。快速排序算法是一种不稳定的排序方法。

堆排序算法的时间复杂度为O(nlog2n)。堆排序算法的空间复杂度为O(1)。观察例子即可发现,堆排序算法是一种不稳定的排序方法。

3.3详细设计(源代码)

#include

#include

#include

#include

typedef int DataType;

#define MaxSize 100

static int SortTAndTs[6][4];

void SortTimeAndTimes(int No,int time,int times)//算法的数据交换次数和算法耗时

{

SortTAndTs[No][1]=No;

SortTAndTs[No][2]=time;

SortTAndTs[No][3]=times;

}

void ShowResult()

{

printf("排序方法\t数据交换次数\t排序所耗时间\n");

for(int i=1;i<=6;i++)

{

if(SortTAndTs[i][1]==1)

{

printf("冒泡排序法\t");

printf("%d\t\t",SortTAndTs[i][2]);

printf("%d\n",SortTAndTs[i][3]);

}

else if(SortTAndTs[i][1]==2)

{

printf("直接插入排序\t");

printf("%d\t\t",SortTAndTs[i][2]);

printf("%d\n",SortTAndTs[i][3]);

}

else if(SortTAndTs[i][1]==3)

{

printf("直接选择排序\t");

printf("%d\t\t",SortTAndTs[i][2]);

printf("%d\n",SortTAndTs[i][3]);

}

else if(SortTAndTs[i][1]==4)

{

printf("快速排序\t");

printf("%d\t\t",SortTAndTs[i][2]);

printf("%d\n",SortTAndTs[i][3]);

}

else if(SortTAndTs[i][1]==5)

{

printf("堆排序\t\t");

printf("%d\t\t",SortTAndTs[i][2]);

printf("%d\n",SortTAndTs[i][3]);

}

}

}

void NoSort(int b[],int n)//排序前乱序数据输出{

int i;

int a[MaxSize];

for(i=0;i < n;i++)

a[i] = b[i];

printf("排序前数据\t");

for(i=0;i < n; i++)

{

printf("%4d",a[i]);

//printf("\t");

}

printf("\n\n");

}

void MaoPao(int b[],int n)//冒泡法排序

{

NoSort(b,n);

int i,j,flag=1;

int q;

int a[MaxSize];

for(i=0;i < n;i++)

a[i] = b[i];

a[i]='\0';

clock_t begin,end;//定义计时器

DataType temp;

printf("冒泡法排序\n");

printf("排序过程\n");

begin = clock();//开始计时

for(i=1;i

{

flag=0;

for(j=0;j

{

if(a[j]>a[j+1])

{

flag=1;

temp = a[j];

a[j]=a[j+1];

a[j+1]=temp;

}

}

printf("第%d次排序结果\t",i);

for (q=0;q

{

printf("%4d",a[q]);

//printf("\t");

}

printf("\n\n");

}

end = clock();//结束计时

SortTimeAndTimes(1,i,end-begin);

printf("所用时间%d\n",end-begin); }

void ZhiJie(int b[],int n)//直接插入排序{

NoSort(b,n);

int i,j;

DataType temp;

int q;

int a[MaxSize];

for(i=0;i < n;i++)

a[i] = b[i];

a[i]='\0';

clock_t begin,end;//定义计时器

printf("直接插入排序\n");

printf("排序过程\n");

begin = clock();//开始计时

for(i=0;i

{

temp=a[i+1];

j=i;

while(j>-1&&temp

{

a[j+1]=a[j];

j--;

}

a[j+1]=temp;

printf("第%d次排序结果\t",i+1);

for (q=0;q

{

printf("%4d",a[q]);

//printf("\t");

}

printf("\n\n");

}

end = clock();//结束计时

SortTimeAndTimes(2,i+1,end-begin);

printf("所用时间%d\n",end-begin);

}

void SelectSort(int b[],int n)//直接选择排序{

NoSort(b,n);

int i, j, small;

DataType temp;

int q;

int a[MaxSize];

for(i=0;i < n;i++)

a[i] = b[i];

a[i]='\0';

clock_t begin,end;//定义计时器

printf("直接选择排序\n");

printf("排序过程\n");

begin = clock();//开始计时

for(i=0;i

{

small=i;

for(j=i+1;j < n; j++)

if(a[j] < a[small])small=j;

if(small!=i)

{

temp=a[i];

a[i]= a[small];

a[small] = temp;

}

printf("第%d次排序结果\t",i+1);

for (q=0;q

{

printf("%4d",a[q]);

}

printf("\n\n");

}

end = clock();//结束计时

SortTimeAndTimes(3,i+1,end-begin);

printf("所用时间%d\n",end-begin);

}

void QuickSort(DataType b[],int n, int low , int high)//快速排序

{

int i;

static int sum=1;

int leap=0;

int q;

int a[MaxSize];

for(i=0;i < n;i++)

a[i] = b[i];

a[i]='\0';

clock_t begin,end;//定义计时器

DataType temp = a[low]; /* 第一个元素为标准数据元素*/ begin = clock();//开始计时

i =low;

int j = high;

while(i

{

while(i

if(i < j)

{

a[i] = a[j];

i++ ;

leap =1;

}

while(i

{

a[j] = a[i];

j--;

leap =1;

}

}

a[i] = temp;

if(leap == 1)

{

printf("第%d次排序结果\t",sum);

for (q=0;q

{

printf("%4d",a[q]);

}

sum++;

printf("\n\n");

}

if(low < i) QuickSort(a ,n,low , i-1); /* 对左端子集合进行递归*/ if(i < high) QuickSort(a,n,j+1,high); /* 对右端子集合进行递归*/ if(high>low)

{

end = clock();//结束计时

SortTimeAndTimes(4,sum,end-begin);

printf("所用时间%d\n",end-begin);

}

}

int CreatHeap(DataType a[],int n,int h)

{

int i,j,flag;

static int sum=0,q=0;

DataType temp;

i = h;

j = 2*i+1;

temp = a[i];

flag = 0;

while (j < n &&flag != 1)

{

if(j < n-1 && a[j] < a[j+1])j++;

if(temp > a[j])

flag = 1;

else

{

a[i] = a[j];

i = j;

j = 2*i+1;

}

}

a[i] = temp;

if(flag == 0)

{

printf("第%d次排序结果\t",sum+1);

for (q=0;a[q]!= '\0';q++)

{

printf("%4d",a[q]);

}

printf("\n");

printf("\n");

sum++;

}

return sum;

}

void InitCreatHeap(DataType a[],int n)

{

int i;

for (i = (n-1)/2;i >=0; i--)

CreatHeap(a,n,i);

}

void HeapSort(int b[],int n)//堆排序

{

NoSort(b,n);

int i;

int times;

int a[MaxSize];

for(i=0;i < n;i++)

a[i] = b[i];

a[i]='\0';

DataType temp;

clock_t begin,end;//定义计时器

printf("堆排序\n");

printf("排序过程\n");

begin = clock();//开始计时

InitCreatHeap(a,n);

for(i=n-1;i>0;i--)

{

temp=a[0];

a[0]=a[i];

a[i]=temp;

times=CreatHeap(a,i,0);

}

end = clock();//结束计时

SortTimeAndTimes(6,times,end-begin);

printf("所用时间%d\n",end-begin);

}

void main()

{

int BiaoChang=0;

int i=0,j=0;

int ptrData[MaxSize];

int choose;

char pause;

while(1)

{

printf("

**************************************************************\n");

printf(" ** **\n");

printf(" ** **\n");

printf(" ** 欢迎使用内部排序算法分析器**\n");

printf(" ** **\n");

printf(" ** 算法选择提示**\n");

printf(" **

**\n");

printf(" ** 1.冒泡排序**\n");

printf(" ** 2.直接插入排序**\n");

printf(" ** 3.简单选择排序**\n");

printf(" ** 4.快速排序**\n");

printf(" ** 5.堆排序**\n");

printf(" ** 6.所有排列比较**\n");

printf(" ** 0.退出程序**\n");

printf(" ** **\n");

printf(" ************************************************************\n");

printf("请输入要排序的数据表的表长");

scanf("%d",&BiaoChang);

printf("请输入要排序的数据\n");

//srand((unsigned)time(NULL));

for(i=0;i < BiaoChang; i++)

{

scanf("%d",&ptrData[i]);

//ptrData[i] = rand() * 10 % 1000;

}

ptrData[i] = '\0';

//for (q=0;q

// {

// printf("%d",ptrData[q]);

// printf(" ");

//

// }

printf("请选择排序方法\n");

printf("\n");

scanf("%d",&choose);

switch (choose)

{

case 1:MaoPao(ptrData,BiaoChang);break;

case 2:ZhiJie(ptrData,BiaoChang);break;

case 3:SelectSort(ptrData,BiaoChang);break;

case 4: printf("快速排序\n");printf("排序过程\n");QuickSort(ptrData,BiaoChang,0,BiaoChang-1);break;

case 5:HeapSort(ptrData,BiaoChang);break;

case

6:MaoPao(ptrData,BiaoChang);ZhiJie(ptrData,BiaoChang);SelectSort(ptrData,BiaoChang);

QuickSort(ptrData,BiaoChang,0,BiaoChang-1);

HeapSort(ptrData,BiaoChang);ShowResult();break;

case 0:exit(0);

}

printf("按任意键继续\n");

pause=getchar();

pause=getchar();

}

}

3.4程序调试与测试结果:

程序运行无错误

、程序连接无误。

3.5结果分析

(1)系统初始选择,运行结果如下:

运行结果正确

(2)冒泡排序运行结果如下:

运行结果正确

(3)直接插入排序结果如下

运行结果正确。

(4)直接选择排序运行结果如下:

运行结果正确。

(5)快速排序运行结果如下:

运行结果出现了两次所用时间,与理想的不符,可能是因为循环的时候出现了错误,uyao 进行调整。

(6)堆排序的运行结果如下:

运行结果无误。

(7)各种排序方法的数据交换次数和排序所耗时间的比较,运行结果如下:

运行结果无误。

4、总结

通过这次课程设计,使我对数据结构又了更深的了解,上机实践能力也有了很大提高。同时,通过这次的课程设计,使我知道如何把理论运用于实践。理论不再只是理论,而是一种方法。

5、参考文献

[1]谭浩强.C程序设计(第二版).清华大学出版社,1999

[2]朱战立编著.数据结构——使用C语言(第三版).西安交通大学出版社,2004

[3]梁田贵,张鹏.算法设计与分析.北京:冶金工业出版社,2004

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

数据结构 各种排序算法

数据结构各种排序算法总结 2009-08-19 11:09 计算机排序与人进行排序的不同:计算机程序不能象人一样通览所有的数据,只能根据计算机的"比较"原理,在同一时间内对两个队员进行比较,这是算法的一种"短视"。 1. 冒泡排序 BubbleSort 最简单的一个 public void bubbleSort() { int out, in; for(out=nElems-1; out>0; out--) // outer loop (backward) for(in=0; in a[in+1] ) // out of order? swap(in, in+1); // swap them } // end bubbleSort() 效率:O(N2) 2. 选择排序 selectSort public void selectionSort() { int out, in, min; for(out=0; out

swap(out, min); // swap them } // end for(out) } // end selectionSort() 效率:O(N2) 3. 插入排序 insertSort 在插入排序中,一组数据在某个时刻实局部有序的,为在冒泡和选择排序中实完全有序的。 public void insertionSort() { int in, out; for(out=1; out0 && a[in-1] >= temp) // until one is smaller, { a[in] = a[in-1]; // shift item to right --in; // go left one position } a[in] = temp; // insert marked item } // end for } // end insertionSort() 效率:比冒泡排序快一倍,比选择排序略快,但也是O(N2) 如果数据基本有序,几乎需要O(N)的时间

数据结构课程设计(内部排序算法比较_C语言)

数据结构课程设计 课程名称:内部排序算法比较 年级/院系:11级计算机科学与技术学院 姓名/学号: 指导老师: 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。

第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并 打印出结果。 (2)选择2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

链表排序算法总结

这个星期做数据结构课设,涉及到两个基于链表的排序算法,分别是基于链表的选择排序算法和归并排序算法。写出来跟大家一起分享一下,希望对数据结构初学朋友有所帮助,高手就直接忽视它吧。话不多说,下面就看代码吧。 [c-sharp]view plaincopy 1.node *sorted(node *sub_root) 2.{ 3.if (sub_root->next) 4. { 5. node * second_half = NULL; 6. node * first_half = sub_root; 7. node * temp = sub_root->next->next; 8.while (temp) 9. { 10. first_half = first_half->next; 11. temp = temp->next; 12.if(temp) 13. temp = temp->next; 14. } 15. second_half = first_half->next; 16. first_half->next = NULL; 17. node * lChild = sorted(sub_root); 18. node * rChild = sorted(second_half); 19.if (lChild->data < rChild->data) 20. { 21. sub_root = temp = lChild; 22. lChild = lChild->next; 23. } 24.else 25. { 26. sub_root = temp = rChild; 27. rChild = rChild->next; 28. } 29.while (lChild&&rChild) 30. { 31.if (lChild->data < rChild->data ) 32. { 33. temp->next = lChild; 34. temp = temp->next; 35. lChild = lChild->next; 36. } 37.else 38. {

数据结构实验五-查找与排序的实现

实验报告 课程名称数据结构实验名称查找与排序的实现 系别专业班级指导教师11 学号实验日期实验成绩 一、实验目的 (1)掌握交换排序算法(冒泡排序)的基本思想; (2)掌握交换排序算法(冒泡排序)的实现方法; (3)掌握折半查找算法的基本思想; (4)掌握折半查找算法的实现方法; 二、实验内容 1.对同一组数据分别进行冒泡排序,输出排序结果。要求: 1)设计三种输入数据序列:正序、反序、无序 2)修改程序: a)将序列采用手工输入的方式输入 b)增加记录比较次数、移动次数的变量并输出其值,分析三种序列状态的算法时间复杂 性 2.对给定的有序查找集合,通过折半查找与给定值k相等的元素。 3.在冒泡算法中若设置一个变量lastExchangeIndex来标记每趟排序时经过交换的最后位置, 算法如何改进? 三、设计与编码 1.本实验用到的理论知识 2.算法设计

3.编码 package sort_search; import java.util.Scanner; public class Sort_Search { //冒泡排序算法 public void BubbleSort(int r[]){ int temp; int count=0,move=0; boolean flag=true; for(int i=1;ir[j+1]){ temp=r[j]; r[j]=r[j+1]; r[j+1]=temp; move++; flag=true; } } } System.out.println("排序后的数组为:"); for(int i=0;i

数据结构实验八内部排序

实验八内部排序 一、实验目的 1、掌握内部排序的基本算法; 2、分析比较内部排序算法的效率。 二、实验内容和要求 1. 运行下面程序: #include #include #define MAX 50 int slist[MAX]; /*待排序序列*/ void insertSort(int list[], int n); void createList(int list[], int *n); void printList(int list[], int n); void heapAdjust(int list[], int u, int v); void heapSort(int list[], int n); /*直接插入排序*/ void insertSort(int list[], int n) { int i = 0, j = 0, node = 0, count = 1; printf("对序列进行直接插入排序:\n"); printf("初始序列为:\n"); printList(list, n); for(i = 1; i < n; i++) { node = list[i]; j = i - 1; while(j >= 0 && node < list[j]) { list[j+1] = list[j]; --j; } list[j+1] = node; printf("第%d次排序结果:\n", count++); printList(list, n); } } /*堆排序*/ void heapAdjust(int list[], int u, int v)

数据结构-各类排序算法总结

数据结构-各类排序算法总结 原文转自: https://www.wendangku.net/doc/a83837761.html,/zjf280441589/article/details/38387103各类排序算法总结 一. 排序的基本概念 排序(Sorting)是计算机程序设计中的一种重要操作,其功能是对一个数据元素集合或序列重新排列成一个按数据元素 某个项值有序的序列。 有n 个记录的序列{R1,R2,…,Rn},其相应关键字的序列是{K1,K2,…,Kn},相应的下标序列为1,2,…,n。通过排序,要求找出当前下标序列1,2,…,n 的一种排列p1,p2,…,pn,使得相应关键字满足如下的非递减(或非递增)关系,即:Kp1≤Kp2≤…≤Kpn,这样就得到一个按关键字有序的记录序列{Rp1,Rp2,…,Rpn}。 作为排序依据的数据项称为“排序码”,也即数据元素的关键码。若关键码是主关键码,则对于任意待排序序列,经排序后得到的结果是唯一的;若关键码是次关键码,排序结果可

能不唯一。实现排序的基本操作有两个: (1)“比较”序列中两个关键字的大小; (2)“移动”记录。 若对任意的数据元素序列,使用某个排序方法,对它按关键码进行排序:若相同关键码元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;而不能保持一致的排序方法则称为不稳定的。 二.插入类排序 1.直接插入排序直接插入排序是最简单的插入类排序。仅有一个记录的表总是有序的,因此,对n 个记录的表,可从第二个记录开始直到第n 个记录,逐个向有序表中进行插入操作,从而得到n个记录按关键码有序的表。它是利用顺序查找实现“在R[1..i-1]中查找R[i]的插入位置”的插入排序。

数据结构中的内部排序算法及性能分析

数据结构中的排序算法及性能分析 一、引言 排序(sorting )是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个按关键字有序的序列。为了查找方便通常希望计算机中的表是按关键字有序的。因为有序的顺序表可以使用查找效率较高的折半查找法。 在此首先明确排序算法的定义: 假设n 个记录的序列为 { 1R ,2R ,…n R } (1) 关键字的序列为: { 1k ,2k ,…,n k } 需要确定1,2,…,n 的一种排列:12,n p p p ,…,使(1)式的序列成为一个按关键字有序的序列: 12p p pn k k k ≤≤≤… 上述定义中的关键字Ki 可以是记录Ri (i=1,2,…,n )的主关键字,也可以是记录i R 的次关键字,甚至是若干数据项的组合。若在序列中有关键字相等的情况下,即存在i k =j k (1,1,i n j n i j ≤≤≤≤≠),且在排序前的序列中i R 领先于j R 。若在排序后的序列中Ri 仍领先于j R ,则称所用的排 序方法是稳定的;反之若可能使排序后的序列中j R 领先于i R ,则称所用的排序方法是不稳定的。 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法的时间与算法中语句执行次数成正比,那个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度,记为T(n)。 在刚才提到的时间频度中,n 称为问题的规模,当n 不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n 的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n 趋近于无穷大时,T (n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。

数据结构课程设计(内部排序算法比较 C语言)

课题:内部排序算法比较 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。 第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------|

|-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择 1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并打印出结果。 (2)选择 2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| (3.1) (II)方便快捷的操作:用户只需要根据不同的需要在界面上输入系统提醒的操作形式直接进行相应的操作方式即可!如图(3.2所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

数据结构课程设计排序算法总结

排序算法: (1) 直接插入排序 (2) 折半插入排序(3) 冒泡排序 (4) 简单选择排序 (5) 快速排序(6) 堆排序 (7) 归并排序 【算法分析】 (1)直接插入排序;它是一种最简单的排序方法,它的基本操作是将一个记录插入到已排好的序的有序表中,从而得到一个新的、记录数增加1的有序表。 (2)折半插入排序:插入排序的基本操作是在一个有序表中进行查找和插入,我们知道这个查找操作可以利用折半查找来实现,由此进行的插入排序称之为折半插入排序。折半插入排序所需附加存储空间和直接插入相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。 (3)冒泡排序:比较相邻关键字,若为逆序(非递增),则交换,最终将最大的记录放到最后一个记录的位置上,此为第一趟冒泡排序;对前n-1记录重复上操作,确定倒数第二个位置记录;……以此类推,直至的到一个递增的表。 (4)简单选择排序:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。 (5)快速排序:它是对冒泡排序的一种改进,基本思想是,通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。 (6)堆排序: 使记录序列按关键字非递减有序排列,在堆排序的算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1记录进行筛选,重新将它调整为一个“大顶堆”,如此反复直至排序结束。 (7)归并排序:归并的含义是将两个或两个以上的有序表组合成一个新的有序表。假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序称为2-路归并排序。 【算法实现】 (1)直接插入排序: void InsertSort(SqList &L){ for(i=2;i<=L.length ;i++) if(L.elem[i]L.elem[0];j--) L.elem [j+1]=L.elem [j]; L.elem [j+1]=L.elem[0]; } } (2)折半插入排序:

南邮数据结构上机实验四内排序算法的实现以及性能比较

实验报告 (2015 / 2016学年第二学期) 课程名称数据结构A 实验名称内排序算法的实现以及性能比较 实验时间2016 年 5 月26 日 指导单位计算机科学与技术系 指导教师骆健 学生姓名耿宙班级学号B14111615 学院(系) 管理学院专业信息管理与信息系统

—— 实习题名:内排序算法的实现及性能比较 班级 B141116 姓名耿宙学号 B14111615 日期2016.05.26 一、问题描述 验证教材的各种内排序算法,分析各种排序算法的时间复杂度;改进教材中的快速排序算法,使得当子集合小于10个元素师改用直接插入排序;使用随即数发生器产生大数据集合,运行上述各排序算法,使用系统时钟测量各算法所需的实际时间,并进行比较。系统时钟包含在头文件“time.h”中。 二、概要设计 文件Sort.cpp中包括了简单选择排序SelectSort(),直接插入排序InsertSort(),冒泡排序BubbleSort(),两路合并排序Merge(),快速排序QuickSort()以及改进的快速排序GQuickSort()六个内排序算法函数。主主函数main的代码如下图所示: 三、详细设计 1.类和类的层次设计 在此次程序的设计中没有进行类的定义。程序的主要设计是使用各种内排序算法对随机 生成的数列进行排列,并进行性能的比较,除此之外还对快速排序进行了改进。下图为主函 数main的流程图:

——

main() 2.核心算法 1)简单选择排序: 简单选择排序的基本思想是:第1趟,在待排序记录r[1]~r[n]中选出最小的记录,将它与r[1]交换;第2趟,在待排序记录r[2]~r[n]中选出最小的记录,将它与r[2]交换;以此类推,第i趟在待排序记录r[i]~r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到

数据结构各种常用排序算法综合

#include"stdio.h" #define LT(a,b) ((a)<(b)) #define LQ(a,b) ((a)>(b)) #define maxsize 20 typedef int keytype; typedef struct{ keytype key; }RedType; typedef struct{ RedType r[maxsize+1]; int length; }Sqlist; //直接插入排序 void insertsort(Sqlist &L){ int i,j; for(i=2;i<=L.length;++i) if(LT(L.r[i].key,L.r[i-1].key)){ L.r[0]=L.r[i]; L.r[i]=L.r[i-1]; for(j=i-2;LT(L.r[0].key,L.r[j].key);--j) L.r[j+1]=L.r[j]; L.r[j+1]=L.r[0]; }//if }//insertsort //折半插入排序 void BInsertSort(Sqlist &L) { int i,j,low,high,m; for(i=2;i<=L.length;++i) { L.r[0]=L.r[i]; low=1; high=i-1; while(low<=high){ m=(low+high)/2; if(LT(L.r[0].key,L.r[m].key)) high=m-1; else low=m+1; }//while for(j=i-1;j>=high+1;--j) L.r[j+1]=L.r[j]; L.r[high+1]=L.r[0]; }//for

数据结构课程设计(内部排序算法比较-C语言)

` 课题:内部排序算法比较… 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。 第二章系统分析 界面的设计如图所示: !

|******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| ~ 请选择操作方式: 如上图所示该系统的功能有: (1):选择 1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并打印出结果。 (2)选择 2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 、 第三章系统设计 (I)友好的人机界面设计:(如图所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| : ()

数据结构第九章排序习题及答案

习题九排序 一、单项选择题 1.下列内部排序算法中: A.快速排序 B.直接插入排序 C. 二路归并排序 D. 简单选择排序 E. 起泡排序 F. 堆排序 (1)其比较次数与序列初态无关的算法是() (2)不稳定的排序算法是() (3)在初始序列已基本有序(除去n个元素中的某k个元素后即呈有序,k<

排序算法学习报告

排序算法学习报告 一、学习内容 所谓排序,就是要整理文件中的记录,使之按关键字递增(或递减)次序排列起来。当待 排序记录的关键字都不相同时,排序结果是惟一的,否则排序结果不惟一。 在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生改变,则称这种排序方法是不稳定的。 要注意的是,排序算法的稳定性是针对所有输入实例而言的。即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。 常见的排序算法 2.1插入排序 插入排序是这样实现的: 首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。 从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。重复2号步骤,直至原数列为空。 插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。 【示例】: [初始关键字][49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] 2.2冒泡排序冒泡排序是这样实现的:首先将所有待排序的数字放入工作列表中。 从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。 重复2号步骤,直至再也不能交换。

数据结构各种排序算法总结

数据结构各种排序算法总结 计算机排序与人进行排序的不同:计算机程序不能象人一样通览所有的数据,只能根据计算机的"比较"原理,在同一时间内对两个队员进行比较,这是算法的一种"短视"。 1. 冒泡排序BubbleSort 最简单的一个 public void bubbleSort() { int out, in; for(out=nElems-1; out>0; out--) // outer loop (backward) for(in=0; in a[in+1] ) // out of order? swap(in, in+1); // swap them } // end bubbleSort() 效率:O(N2) 2. 选择排序selectSort public void selectionSort() { int out, in, min; for(out=0; out

3. 插入排序insertSort 在插入排序中,一组数据在某个时刻实局部有序的,为在冒泡和选择排序中实完全有序的。public void insertionSort() { int in, out; for(out=1; out0 && a[in-1] >= temp) // until one is smaller, { a[in] = a[in-1]; // shift item to right --in; // go left one position } a[in] = temp; // insert marked item } // end for } // end insertionSort() 效率:比冒泡排序快一倍,比选择排序略快,但也是O(N2) 如果数据基本有序,几乎需要O(N)的时间 4. 归并排序mergeSort 利用递归,不断的分割数组,然后归并有序数组 效率为O(N*logN),缺点是需要在存储器中有一个大小等于被排序的数据项数目的数组。public void mergeSort() // called by main() { // provides workspace long[] workSpace = new long[nElems]; recMergeSort(workSpace, 0, nElems-1); } //-----------------------------------------------------------

数据结构内部排序比较分析

数据结构实训报告 实验名称:数据结构 题目:内部排序比较 专业:班级:姓名:学号:实验日期: 一、实验目的:通过随机数据比较各内部排序算法的关键字比较次数和关键字移动的次数,以取得直观感受。训练学生综合设计算法能力。 二、实验要求:待排序长度不小于100,数据可有随机函数产生,用五组不同输入数据做比较,比较的指标为关键字参加比较的次数和关键字移动的次数;对结果做简单的分析,包括各组数据得出结果的解释;设计程序用顺序存储。 三、实验内容 1、待排序表的表长不小于100;至少要用5组不同的输入数据作比较;排序算法不少于3种; 2 、待排序的元素的关键字为整数; 3 、比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换以3次计)。 4、演示程序以人机对话的形式进行。每次测试完毕显示各种比较指标的列表,以便比较各种排序的优劣。 5、最后要对结果作简单的分析。 6、测试数据:用伪随机数产生程序产生。 四、实验编程结果或过程: 1. 数据定义 typedef struct { KeyType key; }RedType; typedef struct { RedType r[MAXSIZE+1]; int length; }SqList; 2. 函数如下,代码详见文件“排序比较.cpp” int Create_Sq(SqList &L) void Bubble_sort(SqList &L)//冒泡排序void InsertSort(SqList &L)//插入排序 void SelectSort(SqList &L) //简单选择排序int Partition(SqList &L,int low,int high) void QSort(SqList &L,int low,int high)//递归形式的快速排序算法 void QuickSort(SqList &L) void ShellInsert(SqList &L,int dk)//希尔排序 void ShellSort(SqList &L,int dlta[ ]) 3. 运行测试结果,运行结果无误,如下图语速个数为20

数据结构内排序实验报告

一、实验目的 1、了解内排序都是在内存中进行的。 2、为了提高数据的查找速度,需要对数据进行排序。 3、掌握内排序的方法。 二、实验内容 1、设计一个程序e xp10—1.cpp实现直接插入排序算法,并输出{9,8,7,6,5,4,3,2,1,0}的排序 过程。 (1)源程序如下所示: //文件名:exp10-1.cpp #include #define MAXE 20 //线性表中最多元素个数 typedef int KeyType; typedef char InfoType[10]; typedef struct //记录类型 { KeyType key; //关键字项 InfoType data; //其他数据项,类型为InfoType } RecType; void InsertSort(RecType R[],int n) //对R[0..n-1]按递增有序进行直接插入排序 { int i,j,k; RecType temp; for (i=1;i=0 && temp.key

相关文档
相关文档 最新文档