文档库 最新最全的文档下载
当前位置:文档库 › 浅谈线性方程组在生活中的应用

浅谈线性方程组在生活中的应用

浅谈线性方程组在生活中的应用
浅谈线性方程组在生活中的应用

淺談線性方程組在生活中の應用

通過對課本上第二章線性方程組の研究,我認為其在生活中の應用是非常廣泛和深入の,經過自己の調查,我決定通過生活中の例子來說明線性方程組の應用及其重要性。

1.配平化學方程式

【例】化學方程式表示化學反應中消耗和產生の物質の量。配平化學反應方程式就是必須找出一組數使得方程式左右兩端の各類原子の總數對應相等。一個方法就是建立能夠描述反應過程中每種原子數目の向量方程,然後找出該方程組の最簡の正整數解。下面利用此思路來配平如下化學反應方程式

14243242524624KMnO MnSO H O MnO K SO H SO ++→++x x x x x x

其中,,

,x x x 126均取正整數。

【解】上述化學反應式中包含5種不同の原子(鉀、錳、氧、硫、氫),於是在R 5中為每一種反應物和生成物構成如下向量:

:,:,:,:,:,:44222424100020110100KMnO 4MnSO 4H O 1MnO 2K SO 4H SO 4010011002002????????????

????????????

????????????????????????????????????????????????????????????

其中,每一

個向量の各個分量依次表示反應物和生成物中鉀、錳、氧、硫、氫の原子數目。為了配平化學方程式,系數,,

,x x x 126必須滿足方程組

123456100020110100441244010011002002????????????

????????????????????????++=++???????????????????????????????????????????????

?x x x x x x 求解該齊次線性方程組,得到通解

,123

456232R 512????

????????????=∈????????????????

x x x c x x x c

由於化學方程式通常取最簡の正整數,因此在通解中取1=c 即得配平後の化學方程式:

442224242KMnO 3MnSO 2H O 5MnO K SO 2H SO ++→++。

2.營養食譜問題

【例】一個飲食專家計劃一份膳食,提供一定量の維生素C 、鈣和鎂。其中用到3種食物,它們の質量用適當の單位計量。這些食品提供の營養以及食譜需要の營養如下表給出

營養

單位食譜所含の營養(毫

克)

需要の營養總量(毫

克)

食物1 食物2 食物3

維生素C 10 20 20 100 鈣 50 40 10 300 鎂

30

10

40

200

【解】設,,123x x x 分別表示這三種食物の量。對每一種食物考慮一個向量,其分量依次表示每單位食物中營養成分維生素C 、鈣和鎂の含量:

食物1:1105030α????=????,食物2:2204010α????=????,食物3:3201040α????=????,需求:100300200β??

??=????

則,,112233αααx x x 分別表示三種食物提供の營養成分,所以,需要の向量方程為

112233αααβ++=x x x

解此方程組,得到,,505040123113333===x x x ,因此食譜中應該包含50

11個單位の食物1,5033

個單位の食物2,4033個單位の食物3。

通過生活中の兩個小例子,我們可以發現,線性方程組真の很有用,而其在科學研究等很多方面の確有更廣泛深入の應用。希望同學們學好線性方程組,努力將其聯系到實際中,真正の做到領會到數學の真諦。

【免费下载】线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间返回教案总目录6.7矩阵的秩,齐次线性方程组的解空间一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。三、教学过程 1、矩阵的秩的几何意义几个术语:设)(F M A n m ?∈,????? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

线性方程组的求解与应用开题报告

设计题目线性方程组理论及其应用 学生姓名陈彦语学号1111124123 专 业 数学与应用数 学(师范类) 一、课题的目的意义: 高等代数教材中只给出了运用克拉默法则(Cramer's Rule)和利用增广矩阵进行初等行变换求解线性方程组的方法,本文将更加系统的阐述求解线性方程组的几类方法,并进一步讨论线性方程组在许多领域中的应用。 线性代数是代数学的一个重要组成部分,广泛应用于现代科学的许多分支,其核心问题之一就是线性方程组的求解问题。线性方程组的求解是数值计算领域十分活跃的研究课题之一,大量的科学技术问题,最终往往归结为解线性方程组。因为计算机只能“线性”地求解问题,所以所有问题在计算机处理前都要线性化。可以说,线性方程组的求解在现代科学领域占有重要地位。 二、近几年来研究现状: 目前关于线性方程组的数值解法一般有两大类,一类是直接方法,另一类是迭代方法。直接方法最基本的是高斯消元法及其变形,这种方法是解低阶稠密矩阵方程组的有效方法,近十几年来直接法在求解具有较大型稀疏矩阵方程组方面取得了较大进展。迭代法就是用某种迭代过程去逐步逼近线性方程组的精确解,迭代法具有的优点是:需要计算机的存储单位较少、程序设计简单、原始系数矩阵在计算过程中始终不变,但存在收敛性和收敛速度的问题。迭代法是解大型稀疏矩阵方程组的重要方法,当前对迭代算法的研究已经较为成熟,但如何使之适合新体系模型,以获得更好的性能加速还有待进一步研究。 。三、设计方案的可行性分析和预期目标: 可行性分析:本文主要以查找资料,在现有知识水平上,对求解线性方程组的一般方法进行总结归纳,并根据对数学软件的学习,在借鉴前人对计算机编程科学性研究的基础上,给出利用matlab软件求解几类常见线性方程组的方法。通过广泛收集线性方程组应用方向的文献和书籍,并多次向导师请教,最终以具体实例来说明线性方程组在许多领域的应用,并实现线性方程组的求解过程。 预期目标:通过撰写论文,能让我从一个更高的角度来审视高等代数,对其中的线性方程组部分有一个更加深刻的理解和认识,锻炼自己的发散性思维和缜密的思考能力,培养自己利用所学知识解决实际问题的能力,从而达到对所学知识的融会贯通。

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

线性方程组的应用

线性方程组在现实中的应用 线性方程组在现实生活中的应用非常广泛的,不仅可以广泛地应用于工程学,计算机科学,物理学,数学,经济学,统计学,力学,信号与信号处理,通信,航空等学科和领域,同时也应用于理工类的后继课程,如电路、理论力学、计算机图形学、信号与系统、数字信号处理、系统动力学、自动控制原理等课程。 为了更好的运用这种理论,必须在解题过程中有意识地联系各种理论的运用条件,并根据相应的实际问题,通过适当变换所知,学会选择最有效的方法来进行解题,通过熟练地运用理论知识来解决数学得问题. 一、 线性方程组的表示 1.按照线性方程组的形式表示有三种 1)一般形式的表示 11112211 2112222211 22............n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=?? +++=?? ? ?+++=? 2)向量形式: 1122...n n x x x αααβ +++= 3)矩阵形式的表示 : ,AX β=()12,,...,n A ααα=() 12,,...,T n X x x x = 特别地,当0β =时,AX β=称为齐次线性方程组,而当0 β≠时, AX β =称为非齐次线性方程组

2.按照次数分类又可分为两类 1)齐次线性方程组 2)非齐次线性方程组 二、线性方程组的应用 1.在经济平衡中的应用 假设一个经济系统由三个行业:五金化工、能源(如燃料、电力等)、机械组成,每个行业的产出在各个行业中的分配见表1-1,每一列中的元素表示占该行业总产出的比例。以第二列为例,能源行业的总产出的分配如下:80%分配到五金化工行业,10%分配到机械行业,余下的供本行业使用。因为考虑了所有的产出,所以每一列的小数加起来必须等于1。把五金化工、能源、机械行业每年总产出的价格(即货币价值)分别用1 23,,p p p 表示。 试求出使得每个行业的投入与产出都相等的平衡价格。 表1-2 经济系统的平衡 产出分配 购买者 五金化工 能源 机械 0.2 0.8 0.4 五金化工 0.3 0.1 0.4 能源 0.5 0.1 0.2 机械 解:从表1-2可以看出,沿列表示每个行业的产出分配到何处,沿行表示每个行业所需的投入。例如,第1行说明五金化工行业购买了80%的能源产出、40%的机械产出以及20%的本行业产

浅析线性方程组的解法及应用

目录 摘要 ........................................................................ I Abstract.................................................................... II 第一章绪论 (1) 1.1 引言 (1) 第二章行列式与线性方程组求解 (1) 2.1 标准形式的二元线性方程组 (1) 2.2 标准形式的三元线性方程组 (2) 2.3 克莱姆法则 (3) 2.3.1逆序数 (3) 2.3.2 克莱姆法则 (4) 第三章线性方程组的理论求解 (6) 3.1 高斯消元法 (6) 3.2 线性方程组解的情况 (7) 3.3 将非齐次方程组化为齐次方程组求解方法 (8) 第四章求解线性方程组的新方法 (9) 第五章线性方程组的应用 (11) 5.1 投入产出数学模型 (11) 5.2 齐次线性方程组在代数中的应用 (14) 第六章结论 (16) 参考文献 (17) 致谢 (18)

浅析线性方程组的解法及应用 学生:陈晓莉指导教师:余跃玉 摘要:线性方程组的求解方法在代数学中有着极其重要的作用.本文介绍了有关线性方程组的一些基本求解方法,由二元到三元的线性方程组,再到n姐线性方程组,其中详细介绍了克莱姆法则。然后是对于齐次方程组和非齐次线性方程组,介绍了线性方程组的理论解法,里面介绍了消元法、解的情况、将非线性化成线性方程组来求解。并且给出了相关的例题,可以加深对线性方程组求解的方法的认识。对于线性方程组还有什么解法,本文也将有探讨。介绍了这么多解线性方程组的求解,相信在今后解线性方程组会更加方便。最后还有关于线性方程组的应用,主要介绍了关于投入产出的数学模型,在经济分析与管理中会经常用到。 关键词:线性方程组; 高斯消元法;行列式

线性方程组解的判定

1 / 3 第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解. 11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++= ? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵111212122212n n m m mn a a a a a a A a a a ??????=?????? 称为方程组(13-2)的系数矩阵.由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212n n m m mn m a a a b a a a b A a a a b ??????=?????? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X ;常数项组成一个m 行、1列 的矩阵(或列向量),记作b ,即12n x x X x ??????=??????,12m b b b b ??????=?????? 由矩阵运算,方程组(13—2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ????????????12n x x x ????????????=12m b b b ???????????? 即 AX=b

解线性方程组的基本思想

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

解线性方程组基思想

解线性方程组基思想

————————————————————————————————作者:————————————————————————————————日期:

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

线性方程组的解法及其应用

线性方程组的解法及其应用 The solution of linear equation and its application 专业:测控技术与仪器 班级: 2010-1班 作者:刘颖 学号: 20100310110105

摘要 线性方程组是线性代数的一个重要组成部分,也在现实生产生活中有着广泛的运用,在电子工程、软件开发、人员管理、交通运输等领域都起着重要的作用。在一些学科领域的研究中,线性方程组也有着不可撼动的辅助性作用,在实验和调查后期利用线性方程组对大量的数据进行处理是很方便简捷的选择。本文主要围绕如何解线性方程组来进行讲解,对于不同类型的线性方程组的不同方法,并简述线性方程组的一些实际应用。 关键词: 齐次线性方程组,非齐次线性方程组,克莱姆法则,消元法,矩阵,矩阵的秩,特解,通解。

Abstract Linear equations linear algebra is one of the important component parts, and in real life has extensive production use,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. In some discipline study, it also has the reigns of linear equations of the auxiliary function.In experiment and survey using the linear equations of the late on the data processing is very convenient simple choice. This article, focusing on how to solve linear equations to explain, for different types of linear equations of different methods, and briefly introduces some of the practical application of linear equations. Keywords: Homogeneous linear equations, Non homogeneous linear equation,Clem’s law,Elimination method,Matrix,Rank of matrix,Special solution,General solution.

线性方程组解的结构

线性方程组解的结构 我们在第一节讨论了线性方程组的解的情况,现在进一步研究它的解的结构。 一、 齐次线性方程组解的结构 齐次线性方程组的矩阵形式为 AX=0 (1) 其中n m ij a A ?=)(,???? ??? ??=n x x x X 21。 齐次线性方程组(1)的解有下列性质: (1) 如果21,X X 是齐次线性方程组(1)的两个解,则21X X +也是它的解。 证:因为21,X X 是齐次线性方程组(1)的两个解,因此有: 01=AX , 02=AX 得:000)(2121=+=+=+AX AX X X A 所以21X X +也是齐次线性方程组(1)的解。 (2) 如果0X 是齐次线性方程组(1)的解,则0X C ?也是它的解。(C 是常数) 证:已知0X 是齐次线性方程组(1)的解,所以有00=AX 从而 00)()(00=?==C AX C CX A 即0X C ?也是齐次线性方程组(1)的解。 由性质(1),(2)可得: (3)如果s X X X ,,,21 都是齐次线性方程组(1)的解,则其线性组合 s s X C X C X C +++ 2211也是它的解。其中s C C C ,,,21 都是任意常数。 当一个齐次线性方程组有非零解,即它有无穷多解,这无穷多解构成了一个向量组(称为解向量组)。若我们能求出这解向量组的一个极大线性无关组,那么就能用它的线性组合表示这个齐次线性方程组的全部解。 定义1:如果s ααα,,,21 是齐次线性方程组(1)的解向量组的一个极大线性

无关组,则称s ααα,,,21 是齐次线性方程组(1)的一个基础解系。 定理1:如果齐次线性方程组(1)的系数矩阵A 的秩n r A r <=)(,则齐次线性方程组的基础解系一定存在,且每个基础解系中恰恰含有r n -个解。 证:因为n r A r <=)(,所以齐次线性方程组有无穷多解,且齐次线性方程组的一般解为: ?? ?????----=----=----=++++++++++++n rn r rr r rr r n n r r r r n n r r r r x K x K x K x x K x K x K x x K x K x K x 22112222112212211111 (1) 其中n r r x x x ,,,21 ++为自由未知量。对n-r 个自由未知量分别取???? ?? ? ????????? ????????? ??100,,010,001 代入(1)可得齐次线性方程组的n-r 个解: ??? ?? ?? ????? ? ??---=????????????? ??---=????????????? ??---=-++++++100,,010,00121222212112111 rn n n r n rr r r rr r r K K K K K K K K K ααα 下面证明r n -ααα,,,21 是齐次线性方程组的一个基础解系,首先证明 r n -ααα,,,21 线性无关。因为向量组???? ?? ? ????????? ????????? ??100,,010,001 是线性无关,则由上节所证 明的性质得r n -ααα,,,21 线性无关。 再证齐次线性方程组的任意一个解???? ?? ? ??=n d d d X 21都可由r n -ααα,,,21 线性表

线性方程组的解空间

第六章 向量空间 6、1 定义与例子 6、2 子空间 6、3 向量的线性相关性 6、4 基与维数 6、5 坐标 6、6 向量空间的同构 6、7 矩阵的秩齐次线性方程组的解空间 返回教案总目录 6、7矩阵的秩,齐次线性方程组的解空间 一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。 2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。 3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。 三、教学过程 1、矩阵的秩的几何意义 几个术语:设)(F M A n m ?∈,??? ? ? ??=mn m n a a a a A ΛΛΛ ΛΛ 1111,A 的每一行瞧作n F 的一个元素,叫做A 的行向量,用),2,1(m i i Λ=α表示;由),2,1(m i i Λ=α生成的n F 的子空间 ),,(1m L ααΛ叫做矩阵A 的行空间。 类似地,A 的每一列瞧作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。 注:)(F M A n m ?∈的行空间与列空间一般不同,分别就是n F 与m F 的子空间;下证其维数相同。 引理6、7、1设)(F M A n m ?∈, 1)若PA B =,P 就是一个m 阶可逆矩阵,则B 与A 有相同的行空间; 2)若AQ C =,Q 就是一个n 阶可逆矩阵,则C 与A 有相同的列空间。 分析:设() ()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i Λ=α就是A 的行向

线性方程组解决实际问题项目

线性方程组解决实际问题项 目 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

项目名称应用线性方程组解决实际问题项目 【项目内容】营养食谱问题 高考前期一个饮食专家给即将踏入高考大门的学子准备了一份膳食计划,以此来帮助同学们提高和调节身体所摄入的大量营养,提供一定量的维生素C、钙和镁。其中用到3种食物,它们的质量用适当的单位计量。这些食品提供的营养以及食谱需要的营养如下表给出 【相关知识点】 1.线性方程组间的代数运算; 2.线性相关性之间的关系; 3.矩阵与增广矩阵之间的行最简化法; 4.其次线性方程组与非齐次线性方程组的解法; 5.向量组的线性组合以及线性相关性; 【模型假设与分析】

【解】设X1、X2、X3分别表示这三种食物的量。对每一种食物考虑一个向量,其分量依次表示每单位食物中营养成分维生素C、钙和镁的含量: 食物1:1= 食物2:2= 食物3:3=食物4:4= 需求: 【模型建立】 则X11、X22、X33、X44分别表示三种食物提供的营养成分,所以,需要的向量方程为 X11+X22+X33+X4 4 = 则有= 【模型求解】 利用矩阵与增广矩阵之间的行最简化法; = ~

则线性相关 R(A)=4=R(A,b)该线性方程组有唯一解。 【结论及分析】 解此方程组 得到: X1= X2= X3= X4=-5 因此食谱中应该包含个单位的食物1,个单位的食物2,个单位的食物3。个单位的食物4。 由此可得合理的膳食与线性方程组息息相关,由方程可知合理膳食的特解,即在一定的条件下,食物的摄入量是相对稳定的,过多或过少都不利于生理所需,唯有达到一个特解时,营养与体能的搭配才是最完美的。 【心得与体会】 通过生活中的这个小例子,我们小组总结以下发现,线性方程组在生活中的运用是普遍而广泛的,通过学习和查阅资料,让我们更真切的理解和体会到线性方程在身边的实用性,如果合理的运用,不仅对我们身体健康有所帮助,而且有益于我们全面的理解数学世界观,对我们人生有重大的指导和参考意义,线性方程组在科学研究等诸多方面有更广泛深入的应用。希望通过这次的实践和应用,努力将其联系到实际中,真正的做到领会到数学的真谛。【参考文献】 【1】刘振兴,浅谈线性代数在生活中的应用 【2】Loveyuehappy,浅析线性方程组的解法及应用 【3】

线性方程组解的判定

第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。 11112211211222 22 11 22n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+ ++= ????+++=? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵11121212221 2 n n m m mn a a a a a a A a a a ? ?? ? ? ?=?? ?? ? ? 称为方程组(13-2)的系数矩阵。由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212 n n m m mn m a a a b a a a b A a a a b ?? ????=??? ??? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1 列的矩阵(或列向量),记作b ,即12n x x X x ??????=?????? ,12 m b b b b ?? ????=?????? 由矩阵运算,方程组(13-2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ? ?? ? ? ? ?? ?? ? ? 12n x x x ???????????? =12m b b b ???????????? 即 AX=b

线性代数在生活中的应用

线性代数在生活中的运用 线性代数的研究对象就是向量,向量空间(或称线性空间),线性变换与有限维的线性方程组。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,既求解有限维的线性方程组,使各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,解线性方程组正就是解决这些问题的有力工具。本文由用初等数学解线性方程组的例子,引用线性代数中的一些基本概念,论述了线性代数与线性方程组的内在联系。 线性方程组就是各个方程关于未知量均为一次的方程组 x j表示未知量,ai j为系数,bi 为常数项。则有 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L L L L 22112222212111212111 若x1=c1,x2=c2,…,xn =cn 代入所给方程各式均成立,则称(c1,c 2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。 线性方程组主要讨论的问题就是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。 当非齐次线性方程组有解时,解唯一的充要条件就是对应的齐次线性方程组只有零解;解无穷多的充要条件就是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解与有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有解。 克莱姆法则给出了一类特殊线性方程组解的公式。n 个未知量的任一齐次方程组的解集均构成n维空间的一个子空间。 线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。请瞧下面一个例子。

线性方程组解的几何意义汇总

设有三元非齐次线性方程组 线性方程组解的几何意义 ???????=++=++=++, ,,)1(22221111m m m m d z c y b x a d z c y b x a d z c y b x a 我们来讨论一下三元非齐次线性方程组解的几何意义.

2) 有唯一解这时方程组(1) 中的m 个方?? ???=+--=--=+,423, 32,123z y x y x z x 该方程组有唯一解.817,21,4 7??? ??--则方程组(1) 的解有以下三种情况: 1) 无解这时方程组(1) 中的m 个方程所表示的平面既不交于一点, 也不共线、共面. 程所表示的平面交于一点. 例如

其几何意义如图3 -11 所示. 2x-y=-3 3x+2z=-1 x-3y+2z=4 图3-11

交直线所确定.3) 有无穷多组解这时又可分为两种情形:情形一自由变量, 基础解系中有两个向量,其一般解的形式为 γ=c 1η1+ c 2η2+ γ0(c 1, c 2为任意常数).这时方程组的所有解构成一个平面, 而这个平面是由过点γ0且分别以η1、η2为方向向量的两条相A 的秩=A 的秩= 1 .此时,有两个γ=c 1η1+ c 2η2+ γ0 称为平面的参数方程.

例如, 设保留方程组为 x + y + z = 3, 则可求得其通解为 . 11110101121???? ? ??+????? ??-+????? ??-=c c x

则过点P (1,1,1) 分别以(1,-1,0)T , (1,0,-1)T 为方向,1 10111:,01111 1:21--=-=--=--=-z y x L z y x L 则这两条相交直线L 1, L 2所确定的平面的方程即向量的两直线的方程分别为 为x + y + z = 3 . 如图3-12

矩阵在线性方程组中的应用

矩阵在线性方程组中的应用 摘要 矩阵和线性方程组都是高等数学的重要教学内容。在高等数学教学中利用矩阵解线性方程组的方法基本上是所知的固定几种:利用矩阵初等变换、克拉默法则、高斯—若尔当消去法。但是解一个线性方程组有时需要几种方法配合使用,有时则需要选择其中的最简单的方法。而对于一些特殊的线性方程组的解法很少有进行归类、讲解。我们希望可以通过对本课题的研究,总结和归纳用特殊矩阵解几类特殊线性方程组的解法。 关键词矩阵;线性方程组;齐次线性方程组;非齐次线性方程组

MATRICES IN THE APPLICATIONS OF THE SYSTEM OF LINEAR EQUATIONS ABSTRACT Matrices and system of linear equations are important content of advanced mathematics. We often use several fixed methods to solve system of linear equations in advanced mathematics,such as Matrix transformations;Cramer's Ruleand Gauss-Jordan elimination method. But sometimes, we need to choose one of the most simple ways,or we need to use several methods to solve system of linear equations. For some special solution method of system of linear equations, there are few classification and explanation in detail. We hope that we can research, summarizes and induces solution method of some special system of linear equations with special matrices. KEY WORDS matrices; system of linear equations; homogeneous system of linear equations; nonhomogeneoussystem of linear equations

线性方程组的数值解法及其应用

线性方程组的数值解法及其应用 一、问题描述 现实中的问题大多数是连续的,例如工程中求解结构受力后的变形,空气动力学中计算机翼周围的流场,气象预报中计算大气的流动。这些现象大多是用若干个微分方程描述。用数值方法求解微分方程(组),不论是差分方法还是有限元方法,通常都是通过对微分方程(连续的问题,未知数的维数是无限的)进行离散,得到线性方程组(离散问题,因为未知数的维数是有限的)。因此线性方程组的求解在科学与工程中的应用非常广泛。 经典的求解线性方程组的方法一般分为两类:直接法和迭代法。 二、基本要求 1)掌握用MATLAB软件求线性方程初值问题数值解的方法; 2)通过实例学习用线性方程组模型解决简化的实际问题; 3)了解用高斯赛德尔列主元消去法和雅可比迭代法解线性方程组。 三、测试数据 1) 直接法:A=[0.002 52.88;4.573 -7.290]; b=[52.90;38.44]; 2) 迭代法:A=[10 -1 -2;-1 10 -2;-1 -1 5]; b=[7.2;8.3;4.2]; 四、算法程序及结果 1) function[RA,RB,n,x]=liezy1(A,b) B=[A b];n=length(b);RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('因为RA~=RB,所以此方程组无解.') return

if RA==RB if RA==n disp('因为RA=RB=n,所以此方程组有唯一解.') x=zeros(n,1);C=zeros(1,n+1); for p=1:n-1 [Y,j]=max(abs(B(p:n,p)));C=B(p,:); B(p,:)=B(j+p-1,:);B(j+p-1,:)=C; for k=p+1:n m=B(k,p)/B(p,p); B(k,p:n+1)=B(k,p:n+1)-m*B(p,p:n+1); end end b=B(1:n,n+1);A=B(1:n,1:n);x(n)=b(n)/A(n,n); for q=n-1:-1:1 x(q)=(b(q)- sum(A(q,q+1:n)*x(q+1:n)))/A(q,q); end else disp('因为RA=RB> b=[52.90;38.44]; >> [RA,RB,n,x]=liezy1(A,b) 因为RA=RB=n,所以此方程组有唯一解. RA = 2 RB = 2

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算 董治军 (巢湖学院数学系,安徽巢湖238000) 摘要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过方法求出基解矩阵,这时可利用矩阵指数exp A t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数 Calculation of Basic solution Matrix of

Linear Homogeneous System with Constant Coefficients Zhijun Dong (Department of Mathematics, Chaohu College Anhui, Chaohu) Abstract: Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the base solution matrix by integral get, but when coefficient matrix is constant matrix, can pass out the base solution matrix method, then are available matrix exponential t, the general form base solution matrix, the paper discusses the most widely used differential equations with constant coefficients, combined with differential equations, linear algebra, discuss knowledge of homogeneous linear differential equation with constant coefficients of base solution matrix several general calculation method. Keyword: linear homogeneous system with constant coefficients; matrix of basic solutions; matrix exponent 引言: 线性微分方程组的求解历来是常微分方程的重点,根据线性微分方程组的解的结构理论,求解线性微分方程组的关键在于求出对应齐次线性微分方程组的基解矩阵,本文主要讨论齐次线性微分方程组 X ’=AX ★ 的基解矩阵的计算问题,这里A 是n n ?常数矩阵. 一.矩阵指数exp A 的定义和性质: 1.矩阵范数的定义和性质 定义:对于n n ?矩阵A =ij a ???? n ×n 和n 维向量X =()1,...,T n X X 定义A 的范数为A =,1 n ij i j a =∑ ,X =1 n i i x =∑ 设A ,B 是n ×n 矩阵,x ,y 是n 维向量,易得下面两个性质:

线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间 返回教案总目录 6.7矩阵的秩,齐次线性方程组的解空间 一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。 2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。 3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。 三、教学过程 1、矩阵的秩的几何意义 几个术语:设)(F M A n m ?∈,???? ? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一 个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。 注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈, 1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间; 2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。 分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

相关文档
相关文档 最新文档