文档库 最新最全的文档下载
当前位置:文档库 › 单光子器件及应用 - 中国人民大学理学院物理系

单光子器件及应用 - 中国人民大学理学院物理系

单光子探测器技术原理

单光子探测器技术原理简介 1. 工作原理 单光子探测器是一种对微弱光信号进行探测的设备,输入光强度最低可到单光子水平。以通信最常用的1550nm和1310nm光波长为例,单个光子的能量分别为1.28*10-19焦耳和1.52*10-19焦耳,这意味着输入信号能量极其微弱,必须使用特殊的光子检测器件探测输入光子脉冲事件。不同种类的雪崩管服务于不同的探测应用目的,例如基于Si的雪崩管适用于可见光波段检测,InGaAs或InP 的雪崩管更适合近红外波段。 薄结工艺标准CMOS工艺厚结工艺 常见的SACM型InGaAs/InP APD的半导体结构

数据来自Micro Photon Devices公司数据来自Perkin Elmer公司 单光子探测器的工作原理是利用工作于盖革模式(Geiger Mode)下的InGaAs/InP雪崩光电二极管(APD)进行单光子探测。所谓盖革模式是指APD 工作时要加反向偏压,偏压幅度略微超过雪崩阈值电压,盖革模式与线性模式的区别在于能够将微弱光生载流子放大产生宏观电流。根据对APD施加偏压的波形,将探测器分为门控工作模式和自由运行模式两类。光子入射到APD内部引发雪崩,产生微弱雪崩电流脉冲。探测器内部处理电路采用跨导放大器将微弱电流脉冲转换成电压脉冲并放大、整形,再经过甄别、死时间处理后输出电平、宽度固定的数字脉冲,探测器有脉冲输出表示检测到了输入单光子或微弱光脉冲,而脉冲前沿位置代表光子输入时刻。光子输入事件及其发生事件正是量子信息、单光子雷达等应用关注的最重要内容,单位时间内计数值则反映了输入光强度。入射光子引发雪崩发生后,必须尽快将雪崩淬灭,一方面避免雪崩管过度放电,更重要的是将雪崩管恢复到可用状态,能够及时检测下一个入射光子事件。根据淬灭方式的不同,将探测器分为主动淬灭和被动淬灭两类。

光电子与微电子器件及集成重点专项2019年度项目申报

附件4 “光电子与微电子器件及集成”重点专项 2019年度项目申报指南 为落实《国家中长期科学和技术发展规划纲要(2006—2020年)》《2006—2020年国家信息化发展战略》提出的任务,国家重点研发计划启动实施“光电子与微电子器件及集成”重点专项(以下简称“本重点专项”)。根据本重点专项实施方案的部署,现提出2019年度项目申报指南。 本重点专项的总体目标是:发展信息传输、处理与感知的光电子与微电子集成芯片、器件与模块技术,构建全链条光电子与微电子器件研发体系,推动信息领域中的核心芯片与器件研发取得重大突破,支撑通信网络、高性能计算、物联网等应用领域的快速发展,满足国家发展战略需求。 本重点专项按照硅基光子集成技术、混合光子集成技术、微波光子集成技术、集成电路与系统芯片、集成电路设计方法学和器件工艺技术6个创新链(技术方向),共部署49个重点研究任务。专项实施周期为5年(2018—2022年)。 2019年度项目申报指南在核心光电子芯片、光电子芯片共性支撑技术、集成电路与系统芯片、集成电路设计方法学和器件工 —1—

艺技术5个技术方向启动19个研究任务,拟安排国拨总经费概算6.75亿元。凡企业牵头的项目须自筹配套经费,配套经费总额与专项经费总额比例不低于1:1。 各研究任务要求以项目为单元整体组织申报,项目须覆盖所申报指南方向二级标题(例如:1.1)下的所有研究内容并实现对应的研究目标。除特殊说明外,拟支持项目数均为1~2项。指南任务方向“1.核心光电子芯片”和“2.光电子芯片共性支撑技术”所属任务的项目实施周期不超过3年;指南任务方向“3.集成电路与系统芯片”、“4.集成电路设计方法学”和“5.器件与工艺技术”所属任务的项目实施周期为4年。基础研究类项目,下设课题数不超过4个,参研单位总数不超过6个;共性关键技术类和应用示范类项目,下设课题数不超过5个,参与单位总数不超过10个。项目设1名项目负责人,项目中每个课题设1名课题负责人。 指南中“拟支持项目数为1~2项”是指:在同一研究方向下,当出现申报项目评审结果前两位评分评价相近、技术路线明显不同的情况时,可同时支持这2个项目。2个项目将采取分两个阶段支持的方式。建立动态调整机制,第一阶段完成后将对2个项目执行情况进行评估,根据评估结果确定后续支持方式。 1.核心光电子芯片 1.1多层交叉结构的光子集成芯片(基础研究类) 研究内容:聚焦基于硅基多维度交叉结构的光子集成芯片,—2—

单光子探测用于光子统计测量的研究

论文第49卷第8期 2004年4月 单光子探测用于光子统计测量的研究 肖连团降雨强赵延霆尹王保赵建明贾锁堂 (山西大学物理电子工程学院, 量子光学与光量子器件国家重点实验室, 太原 030006. E-mail: xlt@https://www.wendangku.net/doc/a87522433.html,) 摘要实验研究了通过记录每一个光子事件直接测量微弱脉冲激光(平均光子数n≈0.1, 脉冲持续时间10ns)的Mandel 参数. 在基于Hanbury-Brown-Twiss探测结构, 取样时间内每个单光子计数器最多探测到一个光子的情况下, 测量发现低于阈值电流工作的二极管激光呈Super-Poisson统计分布. 另外验证了工作于远高于阈值电流的二极管激光(强度噪声主要为散粒噪声)的Poisson分布相干态的Mandel 参数Q C约为?n/2. 在测量误差内, 实验结果与理论分析一致. 关键词光子统计Mandel参数死区时间单光子计数器Poisson分布 辐射源的光量子态特性对于研究近代量子光学中光与物质的相互作用具有重要意义. 对光量子态的严格表述需要密度算符或Wigner函数, 但是这些参数在通常的实验条件下难以测量[1]. 为了进行光场的非经典特性研究, 通常利用基于经典电磁场理论的Hanbury-Brown-Twiss (HBT)结构形式[2]测量光子统计分布. 通过50/50光分束器把光束分为两束, 其中一束经过一个可调变的时间延迟装置, 由两个光电探测器分别接收后进入相关器进行处理, 从而获得两束光强度涨落的关联特性. 这种光子统计测量的方法是单光子源如单原子[3]、单分子[4]和量子点[5]研究中的重要测量手段, 同时在分子生物学[6]和生物化学[7]等学科领域有着广泛的应用. 分析光子统计特性普遍采用对二阶关联函数的测量, 即通过测量一定时间内的光子数和两通道光子事件之间的时间间隔[8], 利用时间幅度转换得到的峰值大小确定光子源的光子分布概率P S(n; n = 0, 1, 2), 计算Mandel参数Q. 但是这种开始-停止的测量方法不能给出光子数在时域上的起伏变化, 同时不能准确给出光子统计概率. 最近Roch小组[4]通过记录两个单光子计数器响应触发式单分子光源输出的每一个事件, 由大量光子计数事件获得统计分布概率P S(n), 直接测量Mandel 参数Q. 利用单光子计数器在死区时间(数十至数百纳秒)不对光子响应的特点,即在测量过程中单光子计数器首先对第1个到达的光子信号响应, 而对后续死区时间到达的光子没有反应, 使得在小于死区时间的取样时间内对每次光脉冲触发信号事件最多只能探测到一个光子. 研究得到基于HBT形式的单光子探测对具有Poisson 光子统计的相干态光脉冲的Mandel 参数Q C = ?n/2, n为平均光子数, 通过比较测得Q与Q C的大小分析单分子光源的光子统计分布特性. 单光子态的量子信息传输是量子密钥分配的物理基础[9]. 在量子密钥分配的实际应用方案中[9,10], 人们通常认为单模二极管激光的光子统计分布特性服从相干态Poisson分布, 通过不断衰减二极管激光强度以降低双光子和更多光子的分布概率, 把具有超低平均光子数(远小于1)的相干态近似为单光子态. 这里我们采用直接测量Q参数的方法研究单模二极管激光脉冲的光子统计分布特性. 通过测量比较连续二极管激光工作于不同驱动电流下强度噪声中的过剩噪声与散粒噪声基准, 研究二极管激光分别工作于阈值电流、强度噪声主要为过剩噪声和远高于阈值电流工作时强度噪声为散粒噪声基准的情况下经脉冲调制和强衰减后(脉冲持续时间10 ns, 平均光子数n≈0.1)的光子统计分布, 并首次给出了这种测量方法的误差分析. 1基于HBT结构的单光子探测与光子统计特性 为了研究光子数随时间的起伏变化, 我们首先给出W个取样周期内光子数随时间的起伏, 定义归一化相对涨落V W, V W <(?n)2>W /<n>W, (1) 这里<(?n)2>w 2 1 ()/, W i W i n n W = ? ∑<>n i是第i个脉冲激发时探测到的光子数, <n>W是W个激发周期内探测到的平均光子数. 对于<n>W = 0, V W定义为1. 对于光电计数为Poisson 分布时V W= 1, 相应V W < 1为Sub-Poisson分布, V W > 1为Super-Poisson 分布. 如图1所示. 如果考虑全部采样事件, 测量结果对应单一相对涨落V. 为了分析光子统计分布, 我们采用Mandel

1.5μm单光子探测器在激光遥感中的应用

1.5μm单光子探测器在激光遥感中的应用 单光子探测器作为最精密的测量仪器,可探测到光的最小单元,单个光子。单光子检测技术己广泛应用在激光雷达、分布式光纤探测器、生物荧光检测、量子信息、光学成像等领域。目前,1.5 μm波段单光子探测器主要包括超导纳米线单光子探测器、频率上转换单光子探测器、InGaAs/InP单光子雪崩二极管。1.5 μm波段气溶胶激光雷达具有人眼安全,大气透过率高,受瑞利散射干扰小,太阳背景辐射弱的优点。 本论文针对这三个探测器的特点,分别研制了不同类型的激光遥感设备。本论文的主要工作如下:1.研制了基于上转换单光子探测器的人眼安全1.5μm微脉冲气溶胶激光雷达。采用高探测效率和超低噪声的上转换单光子探测器,实现了大气回波信号的高信噪比探测。在脉冲能量为110μJ,望远镜口径100mm,时间分辨率5分钟,激光雷达实现了水平距离7km的大气气溶胶探测。 在验证实验中,上转换气溶胶激光雷达实现了对大气能见度的昼夜连续24 小时的观测。2.研制了 1.5μm波段的全光纤、微脉冲、人眼安全的高光谱分辨测风激光雷达。通过采用基于扫描Fabry-Perot干涉仪的高光谱分辨率技术,以及单光子检测技术,同时获得了大气气溶胶谱的频移和谱宽信息。在验证实验中,当时间分辨率1分钟时,水平探测距离达到4km。 在距离为1.8km的位置,距离分辨率由30m变换到60m。对比实验中,高光谱分辨测风激光雷达的径向风速测量结果与超声风场传感器Vaisala所得测量结果吻合。根据经验公式,风速的标准偏差在1.8km处为0.76m/s,光谱展宽的标准偏差在1.8km处为2.07MHz。3.研制了基于1.5 μm波段的结构紧凑、人眼安全、双边缘直接探测多普勒测风激光雷达。 通过采用全光纤保偏结构,保证了光学耦合效率,提高了系统稳定性。通过采用时分复用技术,仅采用单通道Fabry-Peort干涉仪和单通道上转换单光子探测器,实现了双边缘探测技术。校准实验中,系统的相对误差低于0.1%。验证实验中,双边缘测风激光雷达实现了连续48小时的大气的风场和能见度探测。 该激光雷达的测量结果与超声测风传感器具有很好的一致性,速度的标准偏差为1.04 m/s,方向的标准偏差为12.3°。4.研制了基于自由运行InGaAs/InP 单光子探测器的1.5气溶胶激光雷达。针对激光雷达应用,对自由运转单光子探

超导纳米线单光子探测技术进展

中国科学:信息科学2014年第44卷第3期:370–388 https://www.wendangku.net/doc/a87522433.html, https://www.wendangku.net/doc/a87522433.html, 超导纳米线单光子探测技术进展 尤立星xy x信息功能材料国家重点实验室,中国科学院上海微系统与信息技术研究所,上海200050 y中国科学院上海超导中心,上海200050 E-mail:lxyou@https://www.wendangku.net/doc/a87522433.html, 收稿日期:2013–05–27;接受日期:2014–01–03 国家自然科学基金(批准号:91121022)、国家重点基础研究发展计划(批准号:2011CBA00202)、国家高技术研究发展计划(批准号:2011AA010802)和中国科学院战略性先导科技专项(B类)(批准号:XDB04010200,XDB04020100)资助项目 摘要超导纳米线单光子探测技术自2001年出现以来,已经成为超导电子学领域的一个热点研究方向.作为一种新型的单光子探测技术,其具有探测效率高、暗计数低、时间抖动小、计数率高、响应频谱宽、电路简单等优势,综合性能在近红外波段已经明显超越传统的半导体探测技术,成为一种主流的单光子探测技术.本文从应用基础角度出发,对超导纳米线单光子探测器件的材料、器件工艺、性能、系统集成以及前沿应用等进行介绍,并对国际上该领域研究未来的发展趋势进行探讨. 关键词单光子探测超导纳米线单光子探测量子通信探测效率暗计数时间抖动 1引言 探测技术是对于物质实现有效感知的技术,极限灵敏度探测能力是探测技术发展的终极目标.对于光来说,光能量的最小单位是一个光子,这是由量子理论确定的不可再分的量子极限.因此光探测能力的极限将是实现单个光子探测.单光子探测技术(single photon detector/detection,SPD)作为极限灵敏度光信号测量技术,在量子信息技术、物理、化学、生物和天文等领域具有不可替代的作用.特别是在量子信息领域,单光子探测技术已经成为该领域发展不可或缺的核心关键技术之一. 在量子信息、生物荧光分析、激光雷达等应用对SPD技术需求推动下,基于硅材料的雪崩光电二极管(APD),光电倍增管(PMT)等SPD技术发展迅速,已经出现一些较为成熟的商用半导体单光子探测器产品,著名的产品厂商包括德国PicoQuant公司、Excelitas公司、瑞士的ID Quantique 公司、法国AUREA公司和日本Hamamatsu公司等.这些SPD已经获得了较为广泛的应用.但是多数SPD只能工作在可见光区域.近红外波段很多应用(光纤量子通信等)对在近红外波段工作的SPD提出了迫切的需求.基于Si的APD和PMT由于材料禁带宽度的制约无法实现近红外波段单光子的有效探测.为此发展了基于窄禁带半导体材料InGaAs/InP的SPD1).其典型探测效率在1550nm可达到20%,但是其暗计数率通常很高(10KHz左右),且计数率低,时间抖动较大,整体性能和可见光波段SPD相差甚远.因此亟需发展新型近红外波段高性能单光子探测技术.在此背景下,很多近红外波段新型单光子探测技术应运而生,包括频率上转换探测[1],量子点探测器[2]以及 1)Website:https://www.wendangku.net/doc/a87522433.html,/en/

中国人民大学心理学系

中国人民大学心理学系 中国人民大学心理学系应用心理学专业课程研修班★国内最早开展心理学教学科研的机构★拥有心理学、教育学学科授予权★可参加我系国内外著名心理学家系列讲座中国人民大学,教育部直属,教育部与北京市共建,中央直管副部级建制,位列“双一流”、“211工程”、“985工程”,入选“111计划”、“2011计划”、“卓越法律人才教育培养计划”、“卓越农林人才教育培养计划”、“海外高层次人才引进计划”、“中国政府奖学金来华留学生接收院校”,为世界大学联盟成员、亚太国际教育协会创始成员,是一所以人文社会科学为主的综合性研究型全国重点大学。中国人民大学“十年基础”、“固本强基、重塑形象”的阶段性目标已圆满实现,并已成功开启“十年腾飞”、建设世界一流大学的新阶段。目前,

心理学系的师资队伍梯队合理,专业突出,重于实践,服务社会,该心理学科类各专业均国内知名的教授主持教学及研究,在社会工作的各领域取得卓越成果,获得各方大力支持,形成良好广泛的社会认知,其中应用心理学,社会心理学心理学备受关注。为适应高层次专门人才的需要,提高在职人员的业务素质,经北京市学位委员会办公室备案同意,中国人民大学理学院心理学系在北京举办应用心理学专业在职课程研修班。营销与管理方向一、培养目标:本专业方向以培养能适应当代社会需求,具有综合素质的复合型、应用型心理专业人才为目标。广泛了解心理科学和相关学科知识,熟练掌握心理学科基本研究方法,重点掌握消费者、员工和客户心理的分析方法、沟通与谈判技巧;以及营销活动中卖买双方的心理现象产生、发展的一般规律的科学。使其成为在该领域相关部门、公司、企业工作的高级复合型管理专门

光子探测器的应用及行业发展

光子计数探测器的应用 混合像素探测器,为您的实验室精心准备 PILATUS混合像素探测器的设计从理论到现实均达到最佳的数据质量X射线检测。他们带来了两项关键技术,单光子计数和混合像素技术相结合,同步到您的实验室。单光子计数消除所有探测器噪声,并提供卓越的数据。在收集数据时,读数无噪音和暗电流的消失特别具有优势:在实验室中的X射线光源比同步加速时要弱很多,需要更长的曝光时间,并导致较弱的信号。由于没有了暗电流和读数噪音, PILATUS探测器更加适合在实验室使用。混合像素技术可以直接检测X射线,与其他任何探测器技术相比实现了更清晰,更好地解决信号传输问题。加上读取时间短和连续采集的特点,PILATUS探测器可以高效提供优质数据。低功耗和冷却需求,给你一个无忧的、维护量极小探测器系统,。PILATUS探测器系列是专为您在实验室中的需求定制,并提供同步加速器的技术,有无与伦比的价值。利用PILATUS独特的功能,可以从你的最具挑战性的样品获得最佳的数据。 针对您的需求 PILATUS探测器成功推动和同步加速器光束线。PILATUS的独特功能在实验室和相关产业的优势也很明显。根据您在实验室的需求,现在PILATUS的产品阵容,辅以一系列的PILATUS探测器,。固定能量校准和简化的读数电子器件完美匹配了实验室相关要求而且PILATUS完全符合您的预算。混合像素技术和单光子计数,关键的技术,优质的数据和高效率,完全无障碍实施是PILATUS探测器的优势。越来越多的实验室和工业应用的仪器可配备或升级了PILATUS探测器。根据自己的设置或利益自由整合PILATUS,可以从一个现成的仪器变成一个PILATUS OEM合作伙伴

中国人民大学理学院心理学系2018年拟录取硕士生

中国人民大学理学院心理学系2018年拟录取硕士生 政审和档案工作的说明 理学院心理学系2018年拟录取研究生的政审、调档工作于5月份进行,现将有关要求通知如下: 一、政审及档案材料要求 1、应届毕业生 (1)政治思想鉴定由所在院校院(系)党委出具。 (2)政治思想鉴定请按照附件格式开具。 (3)推免本院或考取本院研究生,不需办理政审、档案等手续。 (4)因故不能毕业者不予录取,档案不必寄送我校。 2、非应届毕业生 (1)政治思想鉴定请按照附件格式开具。 (2)拟录取研究生所在单位有档案保管权的,由所在单位党委或人事管理部门出具政审鉴定; (3)拟录取研究生所在单位没有档案保管权,而档案存放在其他机构、并且档案材料不连续、不齐全的,可以采取以下两种方式之一提交政审材料; ①提交本人工作过的全部单位出具的政审鉴定(分别注明工作的起至时 间);②提交本人最后一个单位出具的政审鉴定(注明工作的起至时间)。 3、提交时间 应届毕业生政审鉴定密封后于5月30日前寄至(或送交)中国人民大学理学院党委(北园物理楼309);人事档案由所在学校于7月10日前后寄至(或送交)中国人民大学理学院党委。非应届毕业生人事档案及政审鉴定于5月底之前寄至(或送交)中国人民大学理学院党委。 二、其他说明 1、党(团)组织关系介绍信由本人保管,不放入个人档案材料袋中,待开学后班级 统一收齐后交院党委,进行组织关系转入(介绍信尽量缓开或将有效期开尽量长,以保证9月份入学时介绍信仍然有效)。本人由外地及中央直属的单位,部队、铁路、国家级的单位转入的,介绍信抬头必须为“中共北京市委教育工委组织处”,2、本人由北京市属单位转入的,介绍信抬头为:中国人民大学党委组织部。所有党 员京内党组织关系转入须通过党员e先锋系统进行转接。硕士生转入支部为:中共中国人民大学心理硕士党支部党组织编码0 3、博士生转入支部为:中共中国人民大学心理博士党支部党组织编码0 4、政审鉴定模板可在心理学系网站下载。提交的人事档案及政审鉴定由相关单位加 盖密封章,我校拒绝接收未密封或被拆封的人事档案。 5、政审工作需要按批进行,有一定的工作周期。理学院党委收到考生的人事档案或 政审材料后,会及时对政审鉴定和档案材料进行审阅,审查结果报送校党委学工部审批。考生可在我校研究生院网站(.cn/)查询政审结果。 6、理学院政审工作联系人、联系方式及通讯地址。 联系人:李老师联系电话: / 通讯地址:北京市海淀区中关村大街59号中国人民大学理学院党委((北园物理楼309))李老师收,邮编100872 中国人民大学理学院2018年研究生预录取政审鉴定表 (应届生用)

人大考博辅导班:2019中国人民大学理学院心理学系考博难度解析及经验分享

人大考博辅导班:2019中国人民大学理学院心理学系考博难度解析 及经验分享 中国人民大学理学院心理学系2019 年博士研究生招生实行“申请―审核”制,符合《中国人民大学2019年博士研究生招生简章》中报考条件的申请人提交相关材料,依据考生申请材料的综合评价结果确定差额综合考核名单,经综合考核后择优推荐拟录取。强军计划、少数民族骨干计划、论文博士等采取相同的办法同时进行。 一、院系简介 中国人民大学心理学的发展就像心理学的历史一样,有一个漫长的过去,但只有短暂的历史。心理学与中国人民大学的渊源,可追溯到1985年。这一年,中国人民大学社会学系建立了社会心理学教研室,是国内最早开展社会心理学教学科研的机构。1986年,创建中国人民大学心理科学研究中心暨心理咨询室,1987年开始招收社会心理学方向硕士生,1995年获社会心理学方向博士生招生资格。1993年成立了社会心理学研究所,是相对独立的研究机构,在实际上承担了课题、调查、合作交流项目和培养研究生的任务,为社会学系及全校开设与心理学有关的课程。 2009年6月2日,中国人民大学为推进和落实新时期学校学科发展战略部署,进一步提升我校学科竞争力,完善“主干的文科、精干的理工科”的学科布局,学校决定在理学院下成立心理学系,原社会与人口学院心理研究所的硕士、博士点调整至心理学系。同年,在以往招收社会心理学(应用心理学)方向的硕士生和博士生的基础上,开始招收应用心理学专业的本科生。学校提出了“有基础,相关联,高起点,入主流,争取高水平”的发展思路,走跨越式发展道路,建设具有中国人民大学特色的国内一流水平的心理学系。 在沙莲香等老一代学者的努力下,中国人民大学心理学科的建设取得了长足的进展。目前,心理学系的师资队伍梯队合理,该专业由国内知名的教授主持教学及研究,与副教授、讲师及博士后等构成的师资梯队,拥有优秀的专业背景,年富力强、成果丰硕。2011年4月,心理学系获批心理学硕士一级学科授予权,下设基础心理学和应用心理学两个二级学科。 心理学是研究人的心理现象发生、发展规律的科学。心理学的目的首先是要描述所发生的心理现象,其次是要对所发生的心理现象进行解释,三是要对将要发生的心理现象进行预测,最后则是根据所掌握的心理现象的规律来对其进行控制。让我们一起走进精彩纷呈的心理学的世界。

单光子探测器应用

单光子探测技术典型应用 单光子探测是一种探测超低噪声的技术,增强的灵敏度使其能够探测到光的最小能量量子——光子。单光子探测器可以对单个光子进行计数,实现对极微弱目标信号的探测,因此也活跃在许多可获得的信号强度仅为几个光子能量级的新兴应用领域中。 人眼安全激光雷达 激光雷达是一种基于光学探测与测距的光学遥感技术,实用窄线宽短脉冲激光在大气中进行光子激射从而产生背向散射。接收这些微弱的背向散射信号需要用到单光子计数器等高灵敏度的光学探测设备。今天,激光雷达活跃在污染监测,空气质量分析,气候学等很多领域。 激光雷达典型应用 量子密码学/量子密钥分配 量子密码学/量子密钥分配是一种非常前沿的技术,它利用量子物理特性获得传统技术无法企及的安全传输保证。这种技术基于量子原理将秘钥安全保密的分配给通信双方。同光纤通信技术相结合,实现量子密钥分配需要将光信号能量降低至光子水平,因此,高精度的光子探测设备是必须的。在此类应用里,单光子源/双光子纠缠源,单光子计数器都需要用到。特别是单光子计数器,它不仅能够接收极低水平的量子密钥信号,还能够探测不明侵入,从而保障系统安全。 量子通信

光子源特性测试 随着量子物理技术、非线性技术和量子点技术的进步和发展,单光子源和光子纠缠源的开发需求日益增多。在这些设备的开发过程中,需要高灵敏度的检测手段来对其进行特性分析和测试,单光子计数器就是一种有效的手段。 荧光测量 莹光时间测量技术(Fluorescence Timing Measurement)被应用在很多科研和工业领域,例如:分子特性,纳米技术和成像显微技术等等。莹光信号是一种非常微弱的光信号,因此需要非常灵敏的光学探测器进行探测,单光子计数器就是不二之选。

单光子探测器及其发展

单光子探测器及其发展 摘要:本文介绍了光电倍增管单光子探测器、雪崩光电二极管单光子探测器和真空单光子探测器以及它们的基本工作原理和特性,分析了它们各自的优缺点和未来的发展方向。 关键词:单光子探测;光电倍增管(PMT);雪崩光电二极管(APD);真空雪崩光电二极管(VAPD) 中图分类号:TP21.14 文献标识码:A 一、引言 单光子探测技术在高分辨率的光谱测量、非破坏性 物质分析、高速现象检测、精密分析、大气测污、生物 发光、放射探测、高能物理、天文测光、光时域反射、 量子密钥分发系统等领域有着广泛的应用。由于单光子 探测器在高技术领域的重要地位,它已经成为各发达国 家光电子学界重点研究的课题之一。 二、单光子探测器的原理及种类 单光子探测是一种极微弱光探测法,它所探测的光的光电流强度比光电检测器本身在室温下的热噪声水平(10-14W)还要低,用通常的直流检测方法不能把这种湮没在噪声中的信号提取出来。单光子计数方法利用弱光照射下光子探测器输出电信号自然离散的特点,采用脉冲甄别技术和数字计数技术把极其弱的信号识别并提取出来。这种技术和模拟检测技术相比有如下优点[1]: (1)测量结果受光电探测器的漂移、系统增益变化以及其它不稳定因素的影响较小; (2)消除了探测器的大部分热噪声的影响,大大提高了测量结果的信噪比;(3)有比较宽的线性动态区; (4)可输出数字信号,适合与计算机接口连接进行数字数据处理。 入射的光子信号打到光电倍增器件上产生光电子,然后经过倍增系统倍增产生电脉冲信号,称为单光子脉冲。计数电路对这些脉冲的计数率随脉冲幅度大小的分布如图1所示。脉冲幅度较小的脉冲是探测器噪声,其中主要是热噪声;脉冲幅度较大的是单光电子峰。V h为鉴别电平,用它来把高于V h的脉冲鉴别输出,以实现单光子计数。 可用来作为单光子计数的光电器件有许多种,如光电倍增管(PMT)、雪崩光电二极管(APD)、增强型光电极管(IPD)、微通道板(MCP)、微球板(MSP)和真空光电二极管(VAPD)等。 1、光电倍增管(PMT)单光子探测器 光电倍增管是利用光的外光电效应的一种光电器件,主要由光电阴极和打拿极构成。其工作原理如下:首先光电阴极吸收光子并产生外光电效应,发射光电子,光电子在外电场的作用下被加速后打到打拿极并产生二次电子发射,二次电子又

光子集成芯片介绍

光子集成芯片介绍 在美国硅谷实验室中,Infinera研发的创始人DavidWelch,手持着一个2厘米宽的金色的长方体,这就是用磷化铟等材料制成的半导体光子集成芯片。在这个外表看似简单的芯片中,集成了大量的复杂的光电器件,使得光通信从此进入了一个更低成本更高容量的新时代。 光子集成技术是光纤通信最前沿、最有前途的领域。自1990年以来,密集波分复用系统(DWDM)的大规模应用,使得光通信有了飞速发展。DWDM系统中,多达80个不同波长的激光器调制的数据信号在光纤的一端复用,而后在一根细如发丝的光纤中传送。在光纤的另一端,光信号被解复用为不同波长,不同波长的数据信号通过光电转换最终进入到计算机。 在信息传输的过程中,激光器进行发光,光复用器对信号进行复用/解复用,调制器对信号进行编码调制,检测器进行光电检测等等。在传统DWDM系统中,这些器件都分离在不同的板卡中,整个系统庞大而又昂贵。“没有人想过要将DWDM系统做在一个芯片上,也没有人试着这么做过”,Infinera将不可能的事情变成可能。 2004年,大规模光子集成芯片——一对集成了50个光子器件的芯片呈现在人们的面前。此前,一些光芯片厂商只是做了一些少量器件的集成,现在,光子集成技术还成功地作出了400G和1.6T的芯片,实现了多达240个光器件的集成。 当人们还在固守着“全光通信”的思路的时候,网络已在悄然改变。节点设备需要光电变换,通过“O-E-O”才能将信号进行整形和放大,从而传给计算机。光子集成技术顺应了时代发展,光子集成比传统的分立“O-E-O”处理降低了成本和复杂性,带来的好处是,以更低的成本构建一个具有更多节点的全新的网络结构,更多的节点意味着更灵活的接入,更有效的维护和故障处理。 光子集成芯片制造并不是一件容易的事情。光子器件具有三维结构,比二维结构的半导体集成要复杂得多。将激光器、检测器、调制器和其他器件都集成到芯片中,这些集成需要在不同材料多个薄膜介质层上重复地沉积和蚀刻,这些材料包括砷化铟镓、磷化铟等。 磷化铟晶片在生产线上经过一种称为光刻胶的浆状化学物质进行包裹。紫外线光通过一个镂空设计的模板照射到光刻胶上,产生了复杂的反应,其中一些半导体材料就粘在了晶片上,一些就被蚀刻掉了。 就像Intel使用光刻法制造PC机的硅微处理器一样,光子集成达到了一个很高的技术水平。但是还有些重要的不同,“在Intel芯片中,全部都是硅材料。在光子领域中,还需要很多种的半导体材料”,Welch说。磷化铟晶片比硅片需要更多次的沉淀和蚀刻。 由于互联网语音和视频业务的不断增长,传统的1M~6M的互联网接入带宽变得不足,“我们正在考虑人们会需要25M、50M或者100M的带宽。Welch说。为了满足这样的需求,互联网公司还要在已经很拥挤的站点中继续增加更多的设备。“随着互联网流量每年60%到100%的增长,不可能再继续增加这些庞大的子架了”,Welch说。“光子集成技术将会成为满足互联网持续增长的重要因素”。

中国人民大学 研究生国家奖学金

中国人民大学研究生国家奖学金 财政金融学院 财政金融学院 陈宇赵芸淇甘顺利黄鸿星刘志洋谢巧燕魏平宋玉颖陈栋冯柏林一山华天姿李君安少平卢立屹刘娜刘强 信息学院 慈祥张晓莹王淼杨涛杨向峰马跃峰曹懿妮刘晨赫干艳桃蔡春丽张露李靓靓 信息资源管理学院 魏扣海薇加小双谢兴梅李松 艺术学院 苏晓敏李涵张熙高静 哲学院 陈欣雨姚云刘剑陈琼珍亓娇秦慧源闫恒张城向慧赵俊海包大为文晗耿子洁林黎君王润稼温权龙倩顾知巍尉光吉 法学院 贺葸葸王祎茗李佳明王柏荣陈正健曹炜李慈强陶盈汪东升陈贤凯冯会波韩煦李代君卢建府吕宏庆蒙超邵省杨帆张刘玉张薰尹张舜玺李若兰隋燕飞乔博娟黄忠顺陈建桦罗明东田伟陈柄言陈舒范仲夏陈一豪李斌王莉陈晴雨薛亚楠王棉谭思敔张家祺张强刘北溟文诚公高天竹付莉韩春琴曹波庄智博 公共管理学院 王俊杰骆苗闫志刚王超群修大鹏丁力夏方舟戚斌杨琪张琦姜颖雁符丽丽马子博毛雪莹干锦清 国际关系学院 李大陆赵晨光姜姝赵婷郑海祥杨达袁珂莫盛凯温尧彭博周宇翔 国际学院(苏州研究院) 高培亮田晓崔浩雄张迪吴楚男康舒陈曲邱唐王瑞婷王帅傅思晴杨少波伍明月黄煌

陈驾驭施旦旦杨洁周若曦韩志豪王玉王雪娇国学院 柴冰顾家宁把梦阳赵依 汉青研究院 熊琰潘祺谢边岑李奥陈曦王闻达 环境学院 王炳周芳李小冬王琪王也陈枫侯东林教育学院 祝贺姚荣王理 经济学院 刘磊邹一南李黎力姚东旻安晓明叶素云丁振辉解运亮姚一旻刘磊石腾超王婷姜鹏龙少波陈小亮卢长庚蔡伊鸽惠炜于永利韩奕潘璐郑文平高文孙科杨连星 劳动人事学院 张成刚宋强徐强宁亚芳鲍晓鸣任婕柠蔡子君李彦熹王亚楠黄阳涛 理学院 贺荣强李文娟李肖肖李振华张仁刘晓东庚钱秋萍闻建吴雁江史红玲王伟王晨光潘雪历史学院 赵立波施剑王大文褚宏霞韩祥张公政强光美辛格非郑云艳王栋唐雪梅徐聪赵刘洋 马克思主义学院 濮灵刘明明袁雷周杨吴文珑穆阿妮常宴会张廷广陈媛姜希伦 农业与农村发展学院 董加云高强李腾飞刘同山黄圣男吴本健王浩支婷婷曾雅婷刘涛王辉杰钱成济 商学院 陈福中高升好朱冰莫冬燕苏芳徐士琴张铭慎梁云孙飞杨静何洁罗文豪王近思刘勇凤刘斌唐凡王璟王娜魏韡谢彧慧武犇周嵘邹洋成治李赫朱鑫榕刘浏周博然朱碧莹徐珣李丹妮张姗姗马黎珺梁季末子 社会与人口学院 吕利丹梁海艳齐钊李飞范文婷范叶超郑日强赵梦晗

单光子探测器

单光子探测器 单光子探测器是进行光子探测的实验设备,它通常只能探测光子的有或者没有,不能直接给出光量子态的完整信息,要想从探测结果来重构光量子态信息,需要结合其他的理论和实验手段。目前在可见和红外波段,单个光子的能量约为10-19 J,实现对如此低能量粒子的准确探测是很有挑战的工作。早期的单光子主要是光电倍增管,随着材料科学和量子信息科学的发展,单光子探测器的类型也逐渐丰富起来,这里主要介绍单光子探测器性能的主要指标:特征波长范围,死时间,暗计数,探测效率,时间抖动,光子数分辨能力。 探测器的特征波长范围指的是探测器能够响应的光谱频率范围。目前的单光子探测器都只对某一波段的光子敏感,这是由探测器的制作材料及加工工艺决定的,而探测器的光谱响应特性也决定了它的应用范围。例如对自由空间的量子通信来说,使用的光子波长主要集中在可见光波段400nm-1060nm或者近红外波段900nm-1700nm,需要对这一波段较敏感的探测器;而对于光通信来说,由于光纤在1550nm这个波长具有最小的损耗,所以对基于光纤的量子信息网络,探测器必须对1550nm光子有足够高的探测效率。 当探测器探测到一个光子之后,在一定的时间内,探测器不能响应新的光子,这一段时间称为探测器的死时间,一般来说死时间越短越好。在当前的技术条件下,死时间取决于探测器的电子学后处理系统而非探测器的感光材料。例如,对于基于雪崩二极管的单光子探测器,当探测器探测到一个光子之后,探测器需要抑制这个信号带来的后脉冲信号,这样就必须将探测器关断一段时间,等到前一个探测器的后脉冲信号基本消除之后才能重新开启,这一段时间就是雪崩二极管的单光子探测器的死时间,可见光波段400nm-1060nm探测器的死时间一般固定为33ns,近红外波段900nm-1700nm探测器的死时间一般从500ns到1ms可调,死时间决定了探测器的最大计数率。 当没有光子进入探测器时,探测器仍然有计数率,这就是暗计数。暗计数是由于感光材料的缺陷,电压偏置和外界环境的干扰比如温度,湿度,热噪声等因素引起的。暗计数对实验的信噪比有直接影响,因此降低暗计数是单光子探测器发展的重要目标。现在法国Aurea Technology的单光子探测器暗计数可以做到小于25cps(世界第一). 探测效率指的是当有光子进入探测器的时候,它被探测到的概率。目前商用探测器的最大探测效率约为70%,如Aurea Technology生产的SPD_A_VIS.提高探测效率在

光子探测器

单光子探测器 基本概念 单光子探测器:(SPD)是一种超低噪声器件,增强的灵敏度使其能够探测到光的最小能量量子——光子。单光子探测器可以对单个光子进行探测和计数,在许多可获得的信号强度仅为几个光子能量级的新兴应用中,单光子探测器可以一展身手。 光子,是光的最小能量量子。单光子探测技术,是近些年刚刚起步的一种新式光电探测技术,其原理是利用新式光电效应,可对入射的单个光子进行计数,以实现对极微弱目标信号的探测。 光子计数也就是光电子计数,是微弱光(低于10-14W)信号探测中的一种新技术。 研究背景 通常的直流检测方法不能把淹没在噪声中的信号提取出来。微弱光检测的方法有:锁频放大技术、锁相放大技术和单光子计数方法。最早发展的锁频,原理是使放大器中心频率f0与待测信号频率相同,从而对噪声进行抑制。但这种方法存在中心频率不稳、带宽不能太窄、对待测信号缺乏跟踪能力等缺点。后来发展了锁相,它利用待测信号和参考信号的互相关检测原理实现对信号的窄带化处理,能有效的抑制噪声,实现对信号的检测和跟踪。但是,当噪声与信号有同样频谱时就无能为力,另外它还受模拟积分电路漂移的影响,因此在弱光测量中受到一定的限制。单光子计数方法,是利用弱光照射下光电倍增管输出电流信号自然离散化的特征,采用了脉冲高度甄别技术和数字

计数技术 光子计数原理 1、光子 光是由光子组成的光子流,光子是静止质量为零、有一定能量的粒子。与一定的频率υ相对应,一个光子的能量E p可由下式决定: E p=hυ=hc/λ(15-1) 式中c=3×108m/s,是真空中的光速;h=6.6×10-34J·s,是普朗克常数。例如,实验中所用的光源波长为λ=5000?的近单色光,则E p =3.96×10-19J。光流强度常用光功率P表示,单位为W。单色光的光功率与光子流量R(单位时间内通过某一截面的光子数目)的关系为: P=R·E p (15-2)所以,只要能测得光子的流量R,就能得到光流强度。如果每秒接收到R=104个光子数,对应的光功率为P=R?E p=104×3.96×10-19=3.96×10-15W。 2、测量弱光时光电倍增管输出信号的特征 在可见光的探测中,通常利用光子的量子特性,选用光电倍增管作探测器件。光电倍增管从紫外到近红外都有很高的灵敏度和增益。当用于非弱光测量时,通常是测量阳极对地的阳极电流(图15-1(a)),或测量阳极电阻R L上的电压(图15-1(b)),测得的信号电压(或电流)为连续信号;然而在弱光条件下,阳极回路上形成的是一个个离散的尖脉冲。为此,我们必须研究在弱光条件下光电倍增

单光子探测提高探测距离和灵敏度

单光子探测器能够探测到光的最小能量量子——光子。单光子探测器可对单个光子进行探测和计数,在信号强度仅为几个光子能量级的条件下,单光子探测器的作用十分巨大。(资料图) 光子,是光的最小能量量子。单光子探测技术,是近些年刚刚起步的一种新式光电探测技术,其原理是利用新式光电效应,可对入射的单个光子进行计数,以实现对极微弱目标信号的探测。有关专家认为,单光子探测技术能将现有的机载光电探测距离从几十公里提高到几千公里,势必带来机载目标探测系统的革命,极大地改变未来空天战场的作战方式。 隐身飞机将无处“隐身”。F-22、B-2等飞机高超的隐身性能,几乎使现役雷达和光电探测系统变成“瞎子”。但单光子探测系统极高的探测灵敏度,即使对F-22、B-2这样的隐身飞机,作用距离也可达到几百到几千公里,可在极远距离上发现隐身飞机,使其“无处遁形”。空战将从“中距”拉向“远距”。配装单光子探测系统的作战飞机,由于对空目标探测距离极远,将使空中作战从目前的中距进一步扩为远距。如:配挂单光子超远程空空导弹,火力攻击距离可达到几百到几千公里之外。空中战争将从传统的几十公里的超视距作战变为间隔几千公里的非接触战争。 “全球感知,全球打击”成为可能。利用空中平台或临近空间平台配装单光子探测系统,构建单光子探测网络,只需几部单光子探测系统就可实现对领空的全域覆盖。在此基础上用地面或空中远程导弹构建空中地面联合火力网,把单光子探测网络作为网络中心战的目标探测网络系统,可对任何位置(地面或空中)发射的导弹进行目标指引,有效攻击全球目标,实现“全球感知,全球打击”。(曾尧徐文)

单光子探测技术,极大提高了传感器的灵敏度,使一些以往难以涉及的观测领域向人类开放,在生物光子学、医学影像、非破坏性材料检查、国土安全与监视、军事视觉与导航、量子成像以及加密系统等方面有很高价值。图为单光子探侧技术的部分应用原理图。(资料图)

光子计数探测器

PILATUS光子计数探测器 混合像素探测器,为您的实验室精心准备 PILATUS混合像素探测器的设计从理论到现实均达到最佳的数据质量X射线检测。他们带来了两项关键技术,单光子计数和混合像素技术相结合,同步到您的实验室。单光子计数消除所有探测器噪声,并提供卓越的数据。在收集数据时,读数无噪音和暗电流的消失特别具有优势:在实验室中的X射线光源比同步加速时要弱很多,需要更长的曝光时间,并导致较弱的信号。由于没有了暗电流和读数噪音, PILATUS探测器更加适合在实验室使用。混合像素技术可以直接检测X射线,与其他任何探测器技术相比实现了更清晰,更好地解决信号传输问题。加上读取时间短和连续采集的特点,PILATUS探测器可以高效提供优质数据。低功耗和冷却需求,给你一个无忧的、维护量极小探测器系统,。PILATUS探测器系列是专为您在实验室中的需求定制,并提供同步加速器的技术,有无与伦比的价值。利用PILATUS独特的功能,可以从你的最具挑战性的样品获得最佳的数据。 针对您的需求 PILATUS探测器成功推动和同步加速器光束线。PILATUS的独特功能在实验室和相关产业的优势也很明显。根据您在实验室的需求,现在PILATUS的产品阵容,辅以一系列的PILATUS探测器,。固定能量校准和简化的读数电子器件完美匹配了实验室相关要求而且PILATUS完全符合您的预算。混合像素技术和单光子计数,关键的技术,优质的数据和高效率,完全无障碍实施是PILATUS探测器的优势。越来越多的实验室和工业应用的仪器可配备或升级了PILATUS探测器。根据自己的设置或利益自由整合PILATUS,可以从一个现成的仪器变成一个PILATUS OEM合作伙伴

光集成(PIC)技术概述

光子集成技术概论 摘要:本文以光子学为基础,详细介绍了光子技术和光子集成的概念、主要应用领域、目前的研究热点及以光波导集成为基础的光子集成器件的研究进展。 关键词:光子光子晶体光子技术光子集成光波导 光子集成(Photonic Integrated Circuit,PIC),也叫光子集成电路。以介质波导为中心集成光器件的光波导型集成回路,即将若干光器件集成在一片基片上,构成一个整体,器件之间以半导体光波导连接,使其具有某些功能的光路。如集成外腔单稳频激光器,光子开关阵列,光外差接收机和光发射机等。 一、光子集成(PIC)的理论基础 光子集成技术的理论基础是光子学。当前,支撑信息社会的两大微观信息载体是电子和光子,它们都是微观粒子。光子是波色子,不带电、传播速度快,光束可互相穿越而不互相干扰,因而可大规模互联和并行传输,具有独特的优越性。目前已研究开发和正在开发的光子技术主要领域有:激光技术和、光子计算机、光存储技术、光通信和全息光技术等。与电子学器件相比,光子学器件中光子的运用不受回路分布延迟的影响(一般为10-9s),光在固体中传输速度为10-12cm/s左右,光子学器件的时间响应和容量要比电子学器件高得多。目前实验室已能获得十几个飞秒的光子脉冲。光子信息系统的运算速度要大大超出现有的电子信息系统。光子信息系统的空间带宽和频率带宽都很大,光子学与光子技术使光纤通信的容量从原理上讲比微波通信大1万倍到10万倍以上,一路微波通道可以传送一路彩色电视或1千多路数字电话信号,而一根光纤则可以同时传送1千多万甚至1亿路电话。目前已完成了从第一代0.85μm波段与多模光纤,到第二代1.3μm波段零色散与单模光纤,再到第三代1.55μm波段与低损耗色散位移单模光纤的换代发展。利用光子学方式可以实现三维立体存储。光存储信息容量大,可靠性强,存取速度快,成本低且应用范围广。光盘、光卡的存储容量比磁盘、磁卡要高出200至20000倍,且不易磨损,不受外界磁场、温度影响,可靠性强。由于光的频率高,故此可高速传递信息,也可利用多重波长使信息二维并列传送,更甚者,光还可以进行并列处理,且无需阻抗匹配和布线回路,故可进行高速信号调制,同电气布线相比较,在未来光计算机中将超越电气布线的极限,使高速处理系统得以实现。 以光子晶体(photonic crystals)(图1)为代表的光集成技术是近年来快速发展的前沿成果。近年来,技术

相关文档
相关文档 最新文档