文档库 最新最全的文档下载
当前位置:文档库 › 神经干细胞的研究及其应用新进展

神经干细胞的研究及其应用新进展

神经干细胞的研究及其应用新进展
神经干细胞的研究及其应用新进展

神经干细胞的研究及其应用新进展

[关键词] 神经干细胞研究

健康讯:

崔桂萍天津市脑系科中心医院 300060 1992 年, Reynolds 首次成功地从成年小鼠纹状体中分离出神经干细胞( neural stem cell, NSC ),于是“神经干细胞”这一概念被正式引入神经科学研究领域。可以总结为具有分化为神经元、星形细胞和少突胶质细胞的能力,能自我更新并足以提供大量脑组织细胞的细胞。不少文献中还提到神经祖细胞和神经前体细胞,目前认为,神经祖细胞是指比 NSC 更有明确发展方向的细胞,而神经前体细胞是指处于发育早期的增殖细胞,可指代 NSC 和神经祖细胞:与 NSC 相比,二者的分裂增殖能力较弱而分化能力较强,是有限增殖细胞,但三者均属 NSC 范畴。 1. NSC 的起源、存在部位及生物学特征中枢神经系统的发育起源于神经沟、神经嵴、神经管;研究发现, NSC 在神经管壁增殖,新生细胞呈放射状纤维迁移至脑的特定位置;主要存在于室管膜区,在成脑生发区以外的区域也广泛分布,即具有高度可塑性的神经前体细胞。现发现 NSC 的生物学特征为:( 1 )具有自我更新能力;( 2 )具有多向分化潜能,可分化为神经元、星形细胞和少突胶质细胞;( 3 )处于高度未分化状态;( 4 )终生具有增殖分化能力,在有损伤的局部环境信号变化的刺激下可以增殖分化。其中( 1 )和( 2 )是 NSC 的两个基本特征。 2. NSC 的基础研究进展 NSC 的增殖和分化调控是目前 NSC 研究的核心问题,最近的研究资料显示, NSC 的增殖、分化、迁移调控受多种相关因素的影响。神经递质神经递质作为细胞外环境的一员,不仅介导神经元之间和神经元与效应器之间的信号传递,还参与 NSC 的增殖和分化。这些神经递质包括谷氨酸( G1u )、 5- 羟色胺( 5-HT )、 GABA 、甘氨酸( G1y )、乙酰胆碱( Ach )一氧化氮( NO )、肾上腺素与性激素等。 G1u :在脑的发育过程中有高含量的 G1u 表达, Haydar 等发现, G1u 可以通过大鼠胚胎皮质 AMPA/KAR 的激活调节室周区前体细胞的增殖,但 GLU 对室管膜区( SZ )和室管膜下区( SVZ )体内细胞的影响是不同的,它可增加 SZ 细胞的增殖,减少 SVZ 细胞的增殖; GLU 还可促进神经元生长和分化。 5-HT :许多研究表明, 5-HT 在皮质发育、突触形成中起重要作用,抑制 5-HT 合成或选择性损伤 5-HT 神经元则引起齿状回及脑室下区神经元增殖活性下降, 5-HT 可促进胶质细胞分化和髓鞘形成。 GABA : GABA 是成体脑发育过程中主要的抑制性神经递质。 Haydar 等发现, GABA 受体的激活可控制神经前体细胞的细胞周期; Stewart 等研究发现, GABA 和 G1u 对脑内不同区域细胞增殖的影响是不同的,内源性 GABA 激活 GABA 受体在新皮质和调节神经前体细胞增殖方面起重要作用。 G1y 及其它: G1y 受体( G1yR )通过增加突触后细胞膜 C1 - 通透性而起突触后抑制作用。 Flint 等发现, G1yR 在胚胎大鼠和初生早期脊髓中为未成熟迁移和分化的神经元中起重要作用,推测 G1yR 信号可能在突触形成中其重要作用; Ach 可通过α-7 样烟碱乙酰胆碱受体激活导致新生大鼠嗅球原代培养细胞神经突起过度生长,相反, Ach 可抑制胚胎小

鼠脊髓神经元的神经突起生长。有资料显示, NO 作为 CNS 的神经递质广泛参与神经细胞的存活、分化和可塑性的发生。而肾上腺素和性激素则可使新生小鼠齿状回新生细胞数量减少。细胞外基质细胞外基质( ECM )是组成间质和上皮血管中基质的不溶性结构成分,主要有胶原蛋白、弹性蛋白、蛋白多糖和糖蛋白等。研究表明, ECM 可影响细胞分化、增殖、黏附、形态发生和表型表达等生物学过程。 NSC 具有位置特异性的分化潜能,其增殖、分化和迁移与 ECM 有非常密切的关系。 B- 链蛋白:新近资料表明, NSC 与 ECM 的黏附功能可以调节细胞的生长和增殖。 NSC 中的 B- 链蛋白和 Tcy/Lef 转录因子家族参与了细胞的成活、增殖和分化。 Chenn 等发现,在 NSC 中稳定表达 B- 链蛋白的转基因小鼠,其发育的大脑皮质表面积增大,沟回变深而宽,类似高级哺乳动物的皮质;侧脑室腔变大,与之相邻的脑室壁有大量增生的细胞;并且其大部分 NSC 在有丝分裂后可重新进入细胞周期,说明过度表达 B- 链蛋白并不破坏神经细胞正常发育分化,皮质的扩大是由于 NSC 增殖所致,提示 B- 链蛋白与 NSC 增殖有关。 Ree1in : Ree1in 是 ECM 中分子质量为400 × 10 3 的蛋白质,与神经细胞表面的整合素受体α 3 亚基、极低密度脂蛋白和载脂蛋白 E 相结合,触发 Dab-1 胞液蛋白的衔接功能。在皮质发育过程中的神经元以及脊髓节前神经元迁移中起重要作用。细胞黏附因子:细胞黏附因子是一种影响干细胞行为的重要信号蛋白,包括整合素和黏合素等。研究表明, ECM 中的整合素在调控 NSC 增殖、分化和迁移方面有重要的作用。脑内整合素与配体的相互作用促进了神经细胞的迁移,神经突起过度生长和少突胶质细胞髓磷脂膜的形成,在可塑性过程的成体突触结构形成中也起重要作用。黏合素家族中的TN-C 在早期发育的中枢神经系统中广泛表达,但在分化过程表达下降;成脑受伤后, TN-C 表达上调,提示 TN-C 在提高中枢神经系统功能和可塑性方面有重要作用。 Garcion 等用基因敲除 TN-C 的方法,发现小鼠少突胶质前体细胞向视神经方向迁移增加,但在各脑区的增殖率下降。细胞生长因子: NSC 的增殖和分化还受多种细胞生长因子的调控,如成纤维的细胞生长因子( FGF )和表皮生长因子( EGF )等。 FGF 有三种受体, FGFR1 、 FGFR2 和 FGFR3 ,发育早期 FGF 在胎脑内进行增殖或神经发生的区域内表达,成年脑内在相应的神经发生区内也有 FGF 的持续表达,提示 FGF 在调节 NSC 增殖中发挥重要作用, EGF 在发育脑和成年脑内均有表达,神经元和星形胶质细胞均可表达 EGF 。糖蛋白:糖蛋白家族包括层黏蛋白( LM ),纤维连接蛋白( FN )和腱蛋白( TN ),LM 为基底膜的构成成分,可促进细胞黏附,调节细胞形态、分化及细胞迁移等;FN 具有形成 ECM ,促进细胞黏附、伸展、迁移、吞噬及血液凝固等多种生物学作用; TN 有促进细胞黏附,促进或抑制细胞增殖和迁移等多种作用,并有拮抗FN 的细胞黏附作用。 Takano 等新近发现, FN 对小鼠神经脊细胞中黑色素细胞的增殖、分化和迁移有重要作用。而 Chipperfield 等则发现, ECM 中硫酸乙酰肝素葡糖胺聚糖( HS )可促进 FGF-1 对成体 NSC 的有丝分裂作用。基因调控 Notch 基因: Notch 信号通路对于决定胚胎发生、造血和 NSC 分化起着至关重要的作用,当 Notch 被激活,干细胞进行增殖,当 Notch 活性被抑制,干细胞进入分化程序,发育为功能细胞。 Tanigaki 等发现, Notch 在成体 NSC 发育为胶质细胞中起着重要作用,表达 Notch IC 明显增加星形细胞分化,减少神经元和少突胶质细胞的产生。 bHLH 基因: bHLH 基因具有

高度同源性,是发育过程中转录络的重要组成部分,广泛参与神经和肌肉、细胞增殖分化、细胞谱系决定和性别决定等生理过程。 bHLH 基因在神经上皮细胞发育为神经元中起关键并激活下游作用,可促进细胞脱离细胞周期,使细胞游离出皮质,并激活下游特定神经元分化的遗传基因表达。同源盒基因:同源合基因在生物进化中有高度保守性,对下游靶细胞具有调节作用。同源盒基因目前有 Hox 、 Pax 和 Lim 等几大类;目前认为, Hox 的表达与中枢神经在发育中的分区有关,为不同神经元的发育提供位置特征; Pax 的早期表达与神经发育过程中空间和时间的局限性有密切关系; Lim 绝大多数在特定的神经元亚群中表达,参与特定神经元的发育。 Galli 等 [11] 发现,成体哺乳动物室周区的NSC 表达同源盒基因 Emx2 分化成神经元和胶质细胞时 Emx2 基因表达明显下调;然而, Emx2 表达停止后, NSC 对称分化为两个干细胞的频率增加,随着Emx2 表达的增加,这种对称分化能力逐渐降低。 Nestin 基因: Nestin 属于中间丝蛋白家族,存在于分裂的 NSC 中,成熟神经元和胶质细胞不表达,被选作 NSC 的识别物,通过检测 Nestin 的表达即可确定多潜能干细胞的存在。 3. NSC 的应用研究进展随着对 NSC 了解的不断深入,国内外科学家积极开展对 NSC 的临床应用研究。表现如下:细胞移植试验研究表明, NSC 可用于损伤的神经细胞替代;如脑缺血的细胞移植治疗以成为目前脑移植的新热点。多项研究证实,移植胚胎脑组织是修复脑损害,重建神经功能的有效治疗途径。目前有自体移植和异体移植两种途径,由于胎脑来源有限,并受到孕龄选择、活力保持、异体排斥反应及伦理道德等因素制约,使异体移植受到很大限制。于是自体移植的体外分离培养受到诸多科学家的深入研究并取得成功。刘辉等 [12] 将人类胎儿海马 NSC 移植入大鼠颅脑损伤模型,一周后发现 NSC 移植治疗组与未治疗损伤组相比,呈明显运动功能改善, NSC 分裂增殖为神经元或胶质细胞,并向受损脑组织迁移,所以, NSC 是细胞移植治疗颅脑损伤的一种良好来源。基因载体治疗一些大分子物质如神经生长因子( NGF )、脑源性生长因子,尽管有治疗作用,却不能通过血脑屏障,其治疗作用受到限制;然而,用 NSC 作载体,将编码特定神经递质或蛋白质因子的基因转导入 NSC 载体,以治疗 CNS 疾病,取得可喜进展,在脑肿瘤基因治疗更为突出。 Benedetti 等 [13] 将表达白介素 -4 的基因转导到 C57BL6J 小鼠原代神经组织细胞,然后将这些细胞注入已建立的胶质母细胞瘤模型中,结果导致大多数带瘤小鼠的存活,磁共振证实了大肿瘤渐进性缩小、消失。神经损伤的再生大量的试验研究表明,脑缺血可以出现发生区内源性 NSC 激活,以达到神经再生。 Iwai 等 [14] 认为,脑缺血后的神经再生可分为增殖、迁移、分化三个阶段;他们通过沙土鼠海马齿状回缺血再灌注损伤试验模型发现,沙土鼠脑缺血后第 10 天 NSC 增殖达高峰;缺血后 20 天,开始增殖的细胞表达神经黏附分子,并从颗粒层下区迁移至颗粒层;在到缺血后 60 天,这些迁移的细胞才分化为成熟细胞。生命科学的研究首先,通过干细胞的研究来检测人体的一些数量和浓度极为稀少的蛋白质;其次,通过研究药物对胚胎神经干细胞的生长分化的影响,推测某些药物潜在的胎儿致畸作用,人胚胎干细胞还可以提供在细胞和分子水平上研究人体发育过程中极早期事件的方法,并且不会引起相关的伦理问题。目前采用移植NSC 治疗帕金森病、亨廷顿病、脊髓损伤、缺血性中风及老年痴呆等疾病取得一定进展,仍有待于进一步的研究和探讨。 4. 结语近几年,对 NSC 的基础

研究和应用研究均取得了可喜的进展,随着认识的不断深入,尚有许多问题未能明确,如:人体能获得利用移植 NSC 的程度有多大?移植物增殖分化的关键基因是什么?国内外的部分研究已发现神经干细胞移植到动物脑内后有潜在的致

瘤性,等等。这些都有待于深入研究和解决,也希望我们的研究能广泛应用于临床。作者简介:崔桂萍,女,主管检验师。参考文献 1. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cell of the adult mammalian central nervous system. Science, 1992,225:1707-1710. 2. Haydar TF, Wang F, Schwartz MI, et al. Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci, 20XX,20:5764-5774. 3. Roerig B, Feller MB. Neurotransmitters and gap junctions in developing neural circuits. Brain Res Brain Res Rev.

20XX,32:86-114. 4. Stewart RR, Hoge GJ, Zigova T, et al. Neural progenitor cells of the neonatal rat anterior subventricular zone express functional GABA(A) receptors. J Neurobil, 20XX,10:305-322. 5. Flint AC, Liu X, Kriegsein AR. Nonsynaptic glycine receptor activation during early neocortical development. Neuron, 1998,20:43-53. 6. Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science, 20XX,99:4020-4025. 7. Garcion E, Faissner A, ffrench Constant C. Knockout mice reveal a contribution of the extracellular matrix molecule tenascin –C to neural precursor proliferation and migration. Development, 20XX,128:2485-2496. 8. Takano N, Kawakami T, Kawa Y, et al. Fibronectin bined with stem cell factor plays an important role in melanocyte proliferation differentiation and migration in culture mouse neural crest cells. Pigment Cell Res,

20XX,15:192-200. 9. Chipperfield H, Bedi KS, Cool SM, et al. Heparan sulfates isolated from adult neural progenitor cells can direct phenotypic maturation. Int J Dev Biol, 20XX,46:661-670. 10. Tanigak K, Nogaki F, Takahashi J, et al. Notch1 and Notch3 Instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron, 20XX,29:45-55. 11. Galli R, Fiocco R, De Filippis L, et al. Emx2 regulates the proliferation of stem cells of sthe adult mammalian central nervous system. Development, 20XX,129:1633-1644. 12. 刘辉,杨树源,张建宁,等 . 神经干细胞移植对颅脑外伤神经组织的替代和修复作用 . 中华神经外科杂志 . 20XX , 18 ( 5 ): 282-285. 13. Benedetti S, Pirola B, Pollo B,et al. Gene therapy of experimental brian tumors using neural progenitor cells, Nat Med,20XX,6(4):447-450. 14. Iwai M, Sato K, Omon M, et al. Three steps of neural stem cells development in gerbil dentate gyrus after transient ischema. J Cereb Blood Flow ,22(4):411-419. 中华综合临床医学杂志

出师表

两汉:诸葛亮

先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。

宫中府中,俱为一体;陟罚臧否,不宜异同。若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。

侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。

将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。

亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。

臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。

先帝知臣谨慎,故临崩寄臣以大事也。受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。此臣所以报先帝而忠陛下之职分也。至于斟酌损益,进尽忠言,则攸之、祎、允之任也。

愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。臣不胜受恩感激。

今当远离,临表涕零,不知所言。

国内外干细胞研究进展

国内外干细胞的研究进展 摘要:干细胞研究是近年来生物医学领域的热门方向之一,干细胞产业具有巨大的社会效益和市场前景,受到世界各国的高度重视。美国、欧盟、日本、韩国和中国在干细胞领域投入重金支持基础和临床研究,大力推动干细胞产业化发展。本文通过对比世界干细胞研究的热点领域,分析了中国在该学科取得的成绩和存在的差距,进一步提出了针对中国干细胞研究发展的政策建议。 关键词:干细胞,研究现状,前景与展望 Abstract: Stem cell research is one of the hot research fields in biomedicine nowada ys. Many countries attach importance to the stem cell industry because of the great s ocial benefits and market potential. USA,EU,Japan,Korea and China have increased the input of capital dramatically to promote the basic and clinical research of stem cel l as well as stem cell industry. By comparing the situation of stem cell research at ho me and abroad,we found that,in recent years,an obvious progress has been made in stem cell research, however, the gap between China andthe developed countries still exists. And further puts forward the policy suggestions in the development of stem c ell research in China. Key words:stem cells,research status,prospect 1、前言 20世纪90年代以来,随着细胞生物学技术的发展及体外分离、培养人胚胎干细胞的成功,干细胞经适当诱导分化可发育为不同类型的细胞、组织和器官,成为移植供体的新来源,作为“种子细胞”的干细胞可以通过细胞工程的方法在体外发育为各种特异性的细胞供移植和细胞替代所需,并可作为基因疗法的靶细胞用于治疗和研究。由于干细胞有广泛的应用前景,它已成为近年来医学和生物学领域研究的热点。 干细胞(stem cells)是人体及其各种组织细胞的最初来源,是一类具有自我更新、

神经干细胞的研究及其应用新进展

神经干细胞的研究及其应用新进展 [关键词] 神经干细胞研究 健康讯: 崔桂萍天津市脑系科中心医院 300060 1992 年, Reynolds 首次成功地从成年小鼠纹状体中分离出神经干细胞( neural stem cell, NSC ),于是“神经干细胞”这一概念被正式引入神经科学研究领域。可以总结为具有分化为神经元、星形细胞和少突胶质细胞的能力,能自我更新并足以提供大量脑组织细胞的细胞。不少文献中还提到神经祖细胞和神经前体细胞,目前认为,神经祖细胞是指比 NSC 更有明确发展方向的细胞,而神经前体细胞是指处于发育早期的增殖细胞,可指代 NSC 和神经祖细胞:与 NSC 相比,二者的分裂增殖能力较弱而分化能力较强,是有限增殖细胞,但三者均属 NSC 范畴。 1. NSC 的起源、存在部位及生物学特征中枢神经系统的发育起源于神经沟、神经嵴、神经管;研究发现, NSC 在神经管壁增殖,新生细胞呈放射状纤维迁移至脑的特定位置;主要存在于室管膜区,在成脑生发区以外的区域也广泛分布,即具有高度可塑性的神经前体细胞。现发现 NSC 的生物学特征为:( 1 )具有自我更新能力;( 2 )具有多向分化潜能,可分化为神经元、星形细胞和少突胶质细胞;( 3 )处于高度未分化状态;( 4 )终生具有增殖分化能力,在有损伤的局部环境信号变化的刺激下可以增殖分化。其中( 1 )和( 2 )是 NSC 的两个基本特征。 2. NSC 的基础研究进展 NSC 的增殖和分化调控是目前 NSC 研究的核心问题,最近的研究资料显示, NSC 的增殖、分化、迁移调控受多种相关因素的影响。神经递质神经递质作为细胞外环境的一员,不仅介导神经元之间和神经元与效应器之间的信号传递,还参与 NSC 的增殖和分化。这些神经递质包括谷氨酸( G1u )、 5- 羟色胺( 5-HT )、 GABA 、甘氨酸( G1y )、乙酰胆碱( Ach )一氧化氮( NO )、肾上腺素与性激素等。 G1u :在脑的发育过程中有高含量的 G1u 表达, Haydar 等发现, G1u 可以通过大鼠胚胎皮质 AMPA/KAR 的激活调节室周区前体细胞的增殖,但 GLU 对室管膜区( SZ )和室管膜下区( SVZ )体内细胞的影响是不同的,它可增加 SZ 细胞的增殖,减少 SVZ 细胞的增殖; GLU 还可促进神经元生长和分化。 5-HT :许多研究表明, 5-HT 在皮质发育、突触形成中起重要作用,抑制 5-HT 合成或选择性损伤 5-HT 神经元则引起齿状回及脑室下区神经元增殖活性下降, 5-HT 可促进胶质细胞分化和髓鞘形成。 GABA : GABA 是成体脑发育过程中主要

简述干细胞的形态特征及其研究进展

简述干细胞的形态特征及其研究进展 干细胞是一类具有自我复制能力的原始的未分化细胞,是形成哺乳类各组织器官的原始的多潜能的细胞。在一定条件下,它可以分化成多种功能细胞。干细胞在形态上具有共性,通常呈圆形或椭圆形,细胞体积小,核相对较大,细胞核多为常染色质,并具有较高的端粒酶活性。根据它所处的发育阶段可以分为胚胎干细胞和成体干细胞。 胚胎干细胞的发育等级较高,是全能干细胞,而成体干细胞的发育等级较低,是多能干细胞或单能干细胞。干细胞的发育受多种内在机制和微环境因素的影响。目前人类胚胎干细胞已可成功地在体外培养。 干细胞的形态特征: 干细胞具有自我更新复制的能力,能够产生高度分化的功能细胞。 1 胚胎干细胞:胚胎干细胞当受精卵分裂发育成囊胚时,内层细胞团的 细胞即为胚胎干细胞。具有全能性,可以自我更新并具有分化为体内所有组织的能力。进一步说,胚胎干细胞是一种高度未分化细胞。它具有发育的全能性,能分化出成体动物的所有组织和器官,包括生殖细胞。 2 成体干细胞:成年动物的许多组织和器官,比如表皮和造血系统,具 有修复和再生的能力。成体干细胞在其中起着关键的作用。在特定条件下,成体干细胞或者产生新的干细胞,或者按一定的程序分化,形成新的功能细胞,从而使组织和器官保持生长和衰退的动态平衡。 3 造血干细胞:造血干细胞是体内各种血细胞的唯一来源,它主要存在 于骨髓、外周血、脐带血中。造血干细胞的移植是治疗血液系统疾病、先天性遗传疾病以及多发性和转移性恶性肿瘤疾病的最有效方法。 4 神经干细胞:理论上讲,任何一种中枢神经系统疾病都可归结为神经 干细胞功能的紊乱。脑和脊髓由于血脑屏障的存在使之在干细胞移植到中枢神经系统后不会产生免疫排斥反应。除此之外,神经干细胞的功能还可延伸到药物检测方面,对判断药物有效性、毒性有一定的作用。 5 肌肉干细胞:可发育分化为成肌细胞,可互相融合成为多核的肌纤维,形成骨骼肌最基本的结构。

神经干细胞的应用前景及研究进展

神经干细胞的应用前景及研究进展 生科1301班李桐 1330170031 神经干细胞( neuralstem cells, NSCs)是重要的干细胞类型之一,是神经系统发育过程中保留下来的具有自我更新和多向分化潜能的原始细胞,可分化为神经元、星形胶质细胞、少突胶质细胞等多种类型的神经细胞。具有很多的特性,如自我更新、多潜能分化、迁移和播散、低免疫原性、良好的组织相容性、可长期存活等。目前神经干细胞的分离与体外培养已取得可喜的进展,有关神经干细胞的研究已经成为国内外神经科学领域的热点。 一、神经干细胞的生物学特性 19世纪80年代提出了神经干细胞的概念,它是指一类多潜能的干细胞,能够长期自我更新与复制,并具有分化形成神经元、星形胶质细胞的能力。神经干细胞的主要特征:未分化、缺乏分化标记、能自我更新并具有多种分化潜能。它并不是指特定的单一类型的细胞,而是具有相类似性质的细胞群。Gage将神经干细胞的特性进一步描绘为以下三点,可生成神经组织或来源于神经系统,具有自我更新能力,可通过不对称法、分裂产生新细胞。神经干细胞经过不对称分裂产生一个祖细胞和另一个干细胞,祖细胞只有有限的自我更新能力,并自主分化产生神经元细胞和成胶质细胞。神经干细胞是具有自我更新和具有多种潜能的母系神经细胞,它能分化成各种神经组织细胞表型,如神经元、星形胶质细胞和少突胶质细胞.并能自我更新产生新的神经干细胞,在神经发育和神经损伤中发挥作用。神经干细胞移植、迁移及分化与局部环境密切相关,这种特性为移植及移植后的结构重建和功能恢复提供了依据,为移植治疗不同疾病提供了局可能。 二、神经干细胞的应用前景 1.细胞移植以往脑内移植或神经组织移植研究进展缓慢,主要受到胚胎脑组织的来源、数量以及社会法律和伦理等方面的限制。神经干细胞的存在、分离和培养成功,尤其是神经干细胞系的建立可以无限地提供神经元和胶质细胞,解决了胎脑移植数量不足的问题,同时避免了伦理学方面的争论,为损伤后进行替代治疗提供了充足的材料。研究表明,干细胞不仅有很强的增殖能力,而且尚有潜在的迁移能力,这一点为治疗脑内因代谢障碍而引起的广泛细胞受损提供了理论依据,借助于它们的迁移能力,可以避免多点移植带来的附加损伤。另外,神经干细胞移植也为研究神经系统发育及可塑性的实验研究提供了观察手段,前文提及细胞因子参与调控神经元增殖和分化,通过移植的手段对这些因素的具体作用形式和机制进行探索,为进一步临床应用提供了理论基础。 2.基因治疗目前诱导干细胞向具有合成某些特异性递质能力的神经元分化尚未找到成熟的方法,利用基因工程修饰体外培养的干细胞是这一领域的又一重大进展;另外已经发现许多细胞因子可以调节发育期甚至成熟神经系统的可塑性和结构的完整性,将编码这些递质或因子的基因导入干细胞,移植后可以在局部表达,同时达到细胞替代和基因治疗的作用。 3.自体干细胞分化诱导移植免疫至今为止仍是器官或组织移植的首要问题。前文提到已经证明成年动物或人脑内、脊髓内存在着具有多向分化潜能的干细胞,那么使人们很容易想到通过自体干细胞诱导来完成损伤的修复。中枢神经系统损伤后,首先反应的是胶质细胞,在某些因子的作用下快速分裂增殖,形成胶质瘢。其实在这个过程中也有干细胞的参与,可不幸的是大多数干细胞增殖后分化为胶

人胚胎干细胞的研究发展

人胚胎干细胞的研究发展 摘要:叙述了人胚胎干细胞(hES细胞)的研究现状,并对hES 细胞的研究进展及其应用前景等全面综述。 关键词:人,胚胎干细胞,原始生殖细胞,全能性,多功能性干细胞(Stemcell)是一类具有自我更新能力的多潜能细胞,即干细胞保持未定向分化状态和具有增殖能力,在合适的条件下或给予合适的信号,它可以分化成多种功能细胞或组织器官,又称其为“万用细胞”。干细胞来源于胚胎、胎儿组织和成年组织。根据发育阶段,干细胞分为胚胎干细胞和成体干细胞。1998 年Thomson等第一次从胚胎中分离培养了人体胚胎干细胞(hES C),并随后发现它能分化为体内几乎所有的细胞后,由此掀起全球范围内的hESC研究热潮。 人胚胎干细胞的生理意义:人胚胎干细胞最有价值的应用是用来修复甚至替换已丧失功能的组织和器官,因为它具有发育分化成所有类型组织细胞的能力。任何导致丧失正常细胞的疾病都可以通过移植由胚胎干细胞分化而来的特异组织细胞来治疗,如用神经细胞治疗神经变性疾病(帕金森综合征、亨廷顿舞蹈症、阿尔茨海默病等),用造血干细胞重建造血功能,用胰岛细胞治疗糖尿病,用心肌细胞修复已坏死的心肌等。 1 人胚胎干细胞的来源 胚胎干细胞来源于着床前的囊胚内细胞团或早期胚胎的原始生殖细胞是一大类未分化的二倍体全能干细胞,具有无限增殖、自我更新

和多向分化的潜能。 2 人胚胎干细胞的生物学特性 (1)具有分化的多潜能性,在体外可诱导分化出属于三个胚层的分化细胞; (2)具有种系传递功能; (3)具有长期的未分化增殖能力,细胞不仅能分化成各种器官组织,而且能增殖生成新的保持同种性状的ES 细胞; (4)易于进行基因改造操作; (5)保留了正常的二倍体的性质且核型正常; (6)胚胎干细胞端粒酶活性呈阳性,具有维持端粒长度,保持干细胞增殖能力的重要作用。 3 人胚胎干细胞的培养 (1) 常规培养液常用的基础培养基有改良伊格尔培养基(MEM)α、达氏修正依氏培养基(DMEM)、组织培养基(TCM)199、F12 等合成培养基,以DMEM应用最为普遍。它的主要成分是氨基酸、维生素、碳水化合物、无机离子和一些其他辅助物质。 (2) 无血清培养基血清中含有许多未知的成分和一些分化诱导因子,不利与ESC未分化状态的维持。为此人们尝试使用无血清培养液、化学合成培养液’进行ESC的培养,加入刺激细胞生长的激素、细胞因子等,实验表明ESC增殖旺盛,且能保持未分化状态,并认为无血清培养基优于血清培养基。但也有学者认为含血清培养液更利于胚胎干细胞向中胚层细胞分化,是因为血清中富含中胚层诱导因子,

干细胞研究进展综述

干细胞研究进展(综述) Advances in the research of stem cells(LR) 【摘要】:干细胞是人体及其各种组织细胞的最初来源,具有高度自我复制、高度增殖和多向分化的潜能。干细胞技术是生物技术领域最具有发展前景和后劲的前沿技术,其已成为世界高新技术的新亮点,势将导致一场医学和生物学革命。干细胞研究正在向现代生命科学和医学的各个领域交叉渗透,干细胞技术也从一种实验室概念逐渐转变成能够看得见的现实。干细胞研究作为一门新兴学科已成为生命科学中的热点。本文对近几年来国内外对干细胞的研究现况作一综述。 【关键词】:干细胞因子帕金森病神经干细胞糖尿病 ABSTRACT:Stem cells are the body and cells of various tissues of origin, has high self replication, high proliferation and multilineage differentiation potential. Stem cell technology is the field of biotechnology has the most development prospect and potential of cutting-edge technology, it has become a new bright spot in the world of high-tech, will lead to a revolution in medicine and biology. The research of stem cell is to modern life science and medical fields intersection, stem cell technology from a laboratory concept gradually transformed to be able to see the reality. Stem cell research as a new discipline has become the hotspot of life science. Based on the domestic and abroad in recent years on stem cell research summarizes. Keywords:Stem cell factor Parkinson disease Neural stem cells Diabetes mellitus 干细胞技术最显著的特征就是能再造一种全新的、正常的甚至更年轻的细胞、组织或器官。由此人们可以用自身或他人的干细胞和干细胞衍生组织、器官替代病变或衰老的组织、器官,并可以广泛涉及用于治疗传统医学方法难以医治的多种顽症。 干细胞研究是一门新兴的学科,干细胞生物学研究与应用几乎涉及所有的生命科学和生物 医学领域。 一、目前干细胞的主要研究热点

肠神经干细胞研究进展

肠神经干细胞研究进展 神经干细胞主要有两类:中枢神经干细胞和外周神经嵴干细胞。中枢起源的神经干细胞研究颇多,而外周起源的神经干细胞研究还刚刚起步。两者具有很多相似性。目前研究表明,在肠道内有神经嵴来源的神经干细胞池[1]。本文就肠起源的神经干细胞—肠神经干细胞((Enteric neural stem cells,ENSCs)),对其生物学特性,迁移分化调控因素,应用前景等做一概述。 一.肠神经干细胞与肠神经系统 具有多向分化潜能的干细胞可以从出生以后的人类及啮齿类动物的大脑、胰腺、肝脏、骨髓等获取,进行体外培养并研究其相关性状。有报道,从肠管也可以获取干细胞[2] 。这种细胞在个体中一生都存在,且可以分化为神经元、神经胶质细胞以及其他细胞,具备自我更新和多向分化潜能等干细胞特性,这种细胞即为“肠神经干细胞”(Enteric neural stem cells,ENSCs)。 肠神经干细胞起源于神经嵴。在个体发育过程中,其通过迷走神经嵴在胚胎早期迁移进入肠道,从头端至尾端向成熟分化,发育形成肠神经系统[3]。国内外研究者对其不同的命名,但通过分离培养以及生物学性状的研究证实为同一种细胞。Morrison[4]等将其称为肠神经嵴细胞(Enteric neural crest cells ,ENCC)或肠神经嵴干细胞(Enteric neural crest stem cells,ENCSC),在胚胎发育时期或成年组织中,从消化道中分离出神经嵴干细胞,进行体外培养,并进行了一系列鉴定,证明其具备干细胞特性,且主要分化为神经元和神经胶质细胞。Natarajan[5]等在研究中则将其称为“肠神经系统源性的多能祖细胞”(Enteric nervous system derived multipotential progenitor cells,ENSPCs),从小鼠胚胎或出生后的肠管中制取单细胞,行体外培养后可以获取。国外学者Y oung[6]和Suarez-Rodriguez [2]等在研究中则称其为“肠神经干细胞”(Enteric neural stem cells,ENSCs)。 肠神经干细胞和肠神经系统的发育密切相关。脊椎动物的肠神经系统是外周神经系统中最复杂的部分。它是由大量的、不同种类的神经元和神经胶质细胞构成的。相互连接的神经节,围绕肠壁、外肌层、以及内部的粘膜下层的辐射轴,排列成两个同心圆状。如同外周神经系统的绝大多数细胞一样,肠神经系统完全起源于神经嵴。大多数肠神经系统的祖细胞产生于1-7 体节听泡后方的后脑迷走神经嵴。从神经管脱离不久,迷走神经嵴亚群向腹外侧移动,聚集在中间后肢区,移向主动脉背侧颈丛腹外侧,在局部信号的影响下,迷走神经嵴细胞会诱导表达RET酪氨酸激酶受体。在孕9.5 天至10 天这些RET+迷走神经嵴侵入前肠肌层,称为“肠神经嵴细胞”,即肠神经干细胞,接下来的 4 天,则会向尾侧迁移以定位于整个肠段。发育过程中,如果肠神经干细胞迁移、定位失败,就会导致肠神经节的缺失,形成神经节细胞缺失症。这种情况发生在结肠部位,会形成先天性巨结肠症,即神经节细胞缺失,导致分泌调节障碍和严重的肠道阻塞[6]。 肠神经干细胞与肠神经系统的发育密切相关。肠神经干细胞的出现为研究肠神经系统的发育提供了一个较为理想的模型,可以来研究肠神经形成过程中的分化、调节的影响因素,为阐明神经发育提供有力的证据由此可解释肠神经系统发育和修复的一些机制,此外,肠管作为器官,易于进行活检,且肠神经分布丰富,其与中枢神经系统具有许多共性。据此,可以就有可能采用肠神经干细胞对一些中枢或外周神经缺失性疾病行细胞移植替代治疗了。二.肠神经干细胞的生物学特性 作为干细胞,其特性简要概况即:①可自我复制更新,产生与自己相同的子代细胞,维持稳定的细胞储备②处于较原始的未分状态,无相应的成熟细胞的特异性标志③具有多向分化的潜能,即演变成不同类型成熟细胞的能力。要识别肠神经干细胞,可以从三个方面

人胚胎干细胞研究进展

人胚胎干细胞的研究进展 周进学号10170807 【摘要】干细胞( Stem Cell)是一类具有分化潜能和自我复制的早期未分化细胞。胚胎干细胞( Embryonic stem cells, ES细胞)是一种早期胚胎内细胞(inner cell mass, ICM)或原始生殖细胞(primordial germ cell, PGC)经体外分化抑制培养,分离和克隆得到的具有发育全能性的高度未分化细胞。人类胚胎干细胞系的建立是人类发育生物学研究的重大突破,揭示了人体发生发展奥秘的进程,可能为现代临床医疗模式带来革命性的变化。现对人类胚胎干细胞的来源,建系、生物学特性、应用前景及所涉及的伦理学问题作一综述。 【关键词】胚胎干细胞;克隆;伦理学,医学;综述 1、胚胎干细胞的概念 胚胎干细胞是从哺乳动物早期胚胎内细胞团(ICM)或桑椹胚分离出来的、能在体外长期培养的、高度未分化的全能细胞系,可在适合的条件下分化为胎儿或成体的各种类型的组织细胞。 胚胎干细胞属全能干细胞。ESCs 这一名词因其来源于胚胎而得名, 但从研究角度来说, 其概念一直没有一个特殊的标准, 2001 年美国国立卫生院根据Austin Smith 对小鼠ESCs 的研究, 概括了ESCs 的一些基本特征, 对其概念提出了一系列标准[1]: ①、来源于内细胞团或囊胚上胚层; ②、能够无限地进行对称分裂并保持未分化状态( 长期自我更新) ; ③、显示并维持正常、完整( 二倍体) 和稳定的染色体核型; ④、全能的ESCs 能够分化成三个胚层( 内胚层、中胚层、外胚层) 来源的所有细胞类型;⑤、在发育过程中能整合到所有胚胎组织中( 体外经长期培养的小鼠ESCs, 被植入另一胚胎形成嵌合体动物后, 仍能产生所有组织) ; ⑥、具有能克隆形成胚胎细胞系的能力, 并能产生卵子或精子细胞; ⑦、基因克隆, 即一个单一的ESCs 能产生一群具有相同遗传特性的细胞( 克隆) , 这些细胞有着与亲代细胞

苏教版高中生物选修3 3.2《胚胎干细胞的研究及其应用》学习要点

第二节胚胎干细胞的研究及其应用 学习目标 1.理解干细胞的概念与分类。 2.掌握胚胎干细胞来源、特点及分离途径与方法。 3.举例说明胚胎干细胞的应用。 4.了解胚胎干细胞的研究进展及其所面临的各种挑战。 学习重、难点 学习重点 1.理解干细胞的概念。 2.简述胚胎干细胞的特点及其研究进展。 学习难点 简述胚胎干细胞的特点及其研究进展。 知识要点梳理 一、胚胎干细胞及其研究进展 1.干细胞的概念:是动物(包括人)胚胎及某些器官中具有自我复制和多向分化潜能的原始细胞。 2.干细胞作用:具有重建、修复病损或衰老组织、器官功能。 3.干细胞分类 (1)专能干细胞:只能分化成一种类型或功能密切相关的两种类型的细胞,如上皮组织基底层的干细胞、肌肉中的成肌细胞。(2)多能干细胞:具有分化成多种细胞或组织的潜能,但却失去了发育成完整个体的能力,如造血干细胞等。(3)全能干细胞:可以分化为全身的多种细胞,并进一步形成机体的所有组织、器官。 二、胚胎干细胞的应用 1.如果科学家最终能够成功诱导和调控胚胎干细胞的分化与增殖,将会给胚胎干细胞的基础研究和临床应用带来积极的影响。 2.在研究新药对各种细胞的药理和毒理试验中,提供了材料,大大减少了新药研究所需动物的数量,从而降低了成本。 3.胚胎干细胞研究为细胞或组织移植提供无免疫原性的材料,用于疾病治疗等,给人类带来全新的医疗手段。

4.通过胚胎干细胞,结合基因工程等还可以在试管中改良并创造动物新品种,培育出生长快、抗病力强、高产的家畜品种等。 三、胚胎干细胞研究面临的挑战 1.胚胎干细胞的应用给法律、伦理、国家和社会安全带来的冲击是空前的。 2.胚胎干细胞在体内或者是体外都具有自我分化的潜能,极易分化成其他细胞,对培养条件的优化仍需要进一步研究。 3.对胚胎干细胞向不同组织细胞定向分化的条件还不清楚。 4.创造一种“万能供者”细胞,需要破坏或改变细胞中的许多基因,其可行性仍不清楚。

干细胞特性及最新研究进展(精)

第26卷第3期2012年6月 白城师范学院学报 Journal of Baicheng Normal University Vol.26,No.3June ,2012 干细胞特性及最新研究进展 刘 惠 (白城医学高等专科学校,吉林白城137000 摘要:干细胞是人体的种子细胞,是构成人体各种组织细胞的最初来源,在一定条件 下, 它能分化演变成多种可利用的功能细胞.干细胞是一种具有自我更新,高度繁殖和多向分化潜能的细胞群体.近年来干细胞研究已经渗透到现代生命科学及医学的多个方向,该技术也实现了由实验室向临床应用的转化.干细胞疗法逐渐成为治疗多种疾病的新途径,具有重要的理论研究意义和临床应用价值.本文阐述了干细胞的特性及其在临床上的发展及应用. 关键词:干细胞;干细胞疗法;临床应用 中图分类号:Q813文献标识码:A 文章编号:1673-3118(201203-0032-03收稿日期:2011-12-14 作者简介:刘惠(1970———,女,白城医学高等专科学校讲师,研究方向:组织胚胎学.

干细胞从被发现至今,各国的科学家对其研究 的热情丝毫未减.从早期的干细胞调节机制研究到如何获取这类“全能”细胞,再到近些年对其临床应用的各项探索,相关研究推进了干细胞技术的不断进步,也为医疗应用带来了曙光. 1干细胞的分类 干细胞(stem cells ,SC 是人体的种子细胞,是 构成人体各种组织细胞的最初来源, 是一类具有自我复制能力的多潜能细胞群体,在一定条件下,它 可以分化成多种功能细胞.对于哺乳动物来说,根据干细胞所处的发育阶段分为胚胎干细胞(embry-onic stem cell ,ES 细胞和成体干细胞(somatic stem cell .1.1 胚胎干细胞 胚胎干细胞(embryonic stem cell ,ES 细胞,亦作胚性干细胞,取自囊胚里的内细胞团,是从胚泡(早期胚胎阶段未分化的内部细胞团中得到的干细胞.它们是万能的,可以发育成为身体内200多种细胞类型中的任何一种. 开发和利用ES 细胞是目前生物工程领域主要研究的核心问题之一,并在诸多方面取得了良好的成绩.例如:德国和美国某医学研究小组, 在2010年成功的向试验小鼠体内移植了神经胶质 细胞,该细胞是由小鼠的胚胎干细胞培养的.此实验之后,密苏里的研究者通过实验小鼠的胚细胞移植技术,成功恢复了一只瘫痪的猫的部分肢体活动能力.随着胚胎干细胞的研究进展的日益深入,生命科学领域的研究人员对人体胚胎干细胞的了解与应用进入到一个崭新的水平.1998年,人类的胚胎干细胞就已经成功的培养

胚胎干细胞研究进展-干细胞的研究进展

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 胚胎干细胞研究进展-干细胞的研究进展胚胎干细胞研究进展-干细胞的研究进展干细胞的研究进展干细胞是一类具有自我更新和多向分化潜能的细胞群体。 近年来干细胞的应用几乎涉及到所有生命科学和生物医学领域。 本文概述了干细胞的生物学特性,并综述了干细胞的可塑性、分离培养及其在基础研究及临床上的应用的研究进展。 最后,展望了今后研究的方向。 干细胞;生物学特性;可塑性;分离培养;应用 Advances in study of stem cells Stem cells are non-specialized cells which have the ability of self-renewal and multiple differentiation potential. The application of stem cells has nearly involved in all the research field on life sciences and biomedicine in recent years. This article summarizes the biological characteristic of stem cells, and reviews the latest progress in the study on stem cells plasticity, isolation, culture in vitro, and its extensive application in basic research and clinical application. The prospects of stem cells are also discussed. stem cells; biological characteristic; plasticity; isolation; culture in vitro; application 干细胞(stem cells)是一类具有自我更新、高度增殖和多向分化潜能的细 1 / 10

国内近期干细胞研究进展

干细胞研究进展消息 干细胞是人体及其各种组织细胞的最初来源, 具有高度自我复制、高度增殖和多向分化的潜能。干细胞研究正在向现代生命科学和医学的各个领域交叉渗透, 干细胞技术也从一种实验室概念逐渐转变成能够看得见的现实。干细胞研究已成为生命科学中的热点。介于此, 本刊将就干细胞的最新研究进展情况设立专栏, 为广大读者提供了解干细胞研究的平台。 干细胞专题近期国外干细胞研究进展 Geron抗癌药GRN163L选择性瞄准癌症干细胞据美国BussinessWire 1月10日报道称, 杰隆(Ge-ron)发表临床前研究数据显示, 其端粒酶抑制剂药物imetelstat (GRN163L)在小儿科神经肿瘤当中可选择性瞄准癌症干细胞, 这一发现为儿童肿瘤的临床试验提供了支持。该研究发表于2011年1月1日的Clinical Cancer Research杂志上。近年来有关端粒酶抑制的研究日益增多, 成为癌症治疗的一个热点方向, GRN163L是此类药物开发中最前沿的一个候选药物。2002年3月, Geron从Lynx Therapcutics获得了用GRN163和GRN163L两种化合物的核心专利。早期研究显示, GRN163对十四种不同癌症细胞均表现出有意义的端粒酶活性抑制作用, 它可以抑制黑色素瘤等细胞的生长。因脂质修饰物GRN163L更易进入细胞发挥端粒酶抑制作用, 后续临床前及临床试验均为GRN163L。2005年, FDA同意GRN163L在患慢性淋巴细胞白血病患者的临床实验。2007年, Geron公司开始GRN163L单独治疗多发性骨髓瘤的I期临床试验。2008年开始了GRN163L治疗乳腺癌的I期临床试验。同年12月, Geron发布了有关GRN163L治疗再发的和难治的多发性骨髓瘤的暂时性临床试验数据。2009年, Geron发布了Geron163L对抗癌症干细胞的实验活动, 包括非小型细胞肺癌、乳癌、胰脏炎、前列腺癌、小儿科神经肿瘤。公司发表Geron163L治疗乳癌的假定癌症干细胞与胰脏炎症系数据。数据显示, 在以Geron163L治疗后, 人类乳癌细胞MCF7的假定干细 胞数量与自我再生的能力大幅减弱。目前Geron163L正处于临床II期试验中。(来源: 生物谷2011-01-11)Cell Stem Cell: iPS细胞具更高基因畸变频率加州大学圣地亚哥分校医学院及斯克里普斯研究所的干细胞科学家领导的跨国研究团队, 记录了在人类胚胎干细胞(hESC)和诱导功能干细胞(iPSC)系中特殊的基因畸变, 研究结果在1月7日的Cell Stem Cell上发表。该公布的发现强调了需要对多能干细胞进行频繁的基因检测以保证其稳定性和临床安全性。该研究的第一作者, 加州大学圣地亚哥分校再生医学系的路易斯·劳伦特博士认为, 人类多能干细胞(hESC和iPSC)比其他类型细胞有更高的基因畸变频率。最令人吃惊的是, 与其他非多能干细胞样本相比较, 观察到hESC的基因扩增和iPSC的缺失方面出现的频率更高。人类多能干细胞在人体内具有发展成其他类型细胞的能力, 可成为细胞替换治疗的潜在来源。斯克里普斯研究员再生医学中心主任珍妮·罗伦教授谈到, 由于基因畸变常常与癌症相关联, 免受癌症相关的基因突变对于临床使用的细胞系来说至关重要。研究团队确认了在多能干细胞系中可能发生突变的基因区域。对于hESC而言, 可观察到的畸变大多是靠近多潜能相关基因区域的基因扩增; 对于iPSC而言, 扩增主要涉及细胞增殖基因及与肿瘤 抑制基因相关的缺失。传统的显微技术, 如染色体组型分析可能无法检测到这些变化。研究组使用一种高分辨率的分子技术, 称为“单核苷酸多态性(SNP)”, 能观察到人类基因组里一百多万个位点里的基因变化。 劳伦特说, 我们惊喜地发现在较短时间培养中的基因变化, 例如在体细胞重编程为多能干细胞的343过程以及在培养中细胞的分化过程。我们不知道这会有怎样的影响, 如果有的话, 这些基因畸变都会对基础研究或者临床应用的结果产生影响, 对此应当深究。劳伦特总结到, 该研究结果解释了有必要对多能干细胞培养进行经常性的基因监控, SNP分析仍不失为人类胚胎干细胞和多能干细胞日常监控的一部分, 但是这一结果提醒我们应当予以重视。(来源: 中国干细胞网2011-01-12)美用胚胎干细胞制造出血小板美国先进细胞技术公司的实验证明, 使用人类胚胎干细胞研制出的血小板可修复实验鼠的受损组织, 人类未来有望源源不断地

神经干细胞及其应用研究新进展

神经干细胞及其应用研究新进展 摘要:长期以来,人们一直认为成年哺乳动物脑内神经细胞不具备更新能力,一旦受损乃至死亡不能再生。这种观点使人们对中枢神经系统疾病的治疗受到了很大限制。虽然传统的药物、手术及康复治疗取得了一定的进展,但是仍不能达到满意的效果。现在,神经干细胞(neural stem cells,NSCs)不仅存在于所有哺乳动物胚胎发育期的脑内,而且在其成年之后也有,这已为神经科学界所普遍接受。神经干细胞由于具有自我更新和多向分化潜能,使神经系统损伤后的细胞替代治疗成为可能本文综述了神经干细胞的分布、生物学特性、神经干细胞在细胞疗法中的多功能应用,并对神经干细胞临床应用前景做出了展望。 关键词:神经干细胞细胞疗法多向分化潜能转分化性 1、神经干细胞的分布 大量研究表明成年哺乳动物的脑室下区、海马、纹状体、大脑皮质等区域均有NSCs存在,其中侧脑室壁的脑室下层(sub ventricular zone,SVZ)和海马齿状回的颗粒下层(sub granular zone,SGZ)是神经干细胞的两个主要脑区。另外,研究者们还在成年哺乳动物脑内的其他部位发现了神经干细胞的存在,例如在黑质内发现了新生的多巴胺能神经元。 2、神经干细胞在细胞疗法中的多功能应用 2.1细胞替代治疗中外源性NSCs的使用 NSCs可以用来代替因为损伤或神经系统退行性病变而缺失的组织。理想的是重建组织适宜的结构并整合人周围组织;重要的是在这种治疗方案中,几种细胞类型需替代。在移植入成年啮齿动物脑内前,首先需从人胚胎干细胞或胎儿脑内分离出NSCs,并在体外诱导分化为神经元、星形胶质细胞和少突胶质细胞。值得注意的是NSCs整合入室管下区的微环境,促成嗅球的神经发生。在海马,移植的神经祖细胞分化为特定区域的神经细胞亚型,并功能性整合入周围的环路。NSCs移植入疾病或损伤的啮齿动物模型中取得了预期的效果。移植入的存活的NSCs首先迁移到病变部位并分化。成年鼠的NSCs移植入多发性硬化大鼠模型后可观察到少突胶质细胞祖细胞、宿主和移植来源的成熟细胞数量增加,病情明显好转。在大鼠脑梗死模型中,移植的NSCs迁移到损伤部位并大部分分化为神经元。在脑出血模型中,由静脉移植的NSCs在损伤部位分化成神经元和星形胶质细胞,并引起了功能的恢复。将富有多巴胺神经元的胚胎腹侧中脑移植入去神经的帕金森鼠中,结果移植物中的多巴胺神经元修复了损害引起的功能缺损。神经干细胞植入大鼠亨廷顿病模型脑内能保护维持运动习惯的能力,受损的运动习性也可重新恢复,表明植入的细胞在体内形成了功能性连接。Mcdona等给胸髓损伤大鼠分别注入单纯培养基、成年小鼠皮层神经元和胚胎干细胞,2周后发现植入干细胞者后肢恢复部分负重与协调能力,明显优于前二者。田增明等报道了人胚胎神经干细胞治疗21例小脑萎缩患者,发现移植后临床症状有改善。 2.2脑损伤激发内源性NSCs 近年研究表明多种神经系统损伤均可激发内源性神经细胞再生。追踪巢蛋白阳性的神经祖细胞定殖在成年脊髓损伤区,可以观察到这种祖细胞扩增并在损伤区分化为神经元;在脊髓挤压伤、局灶性脑缺血中,在有正常神经发生的大脑皮质和海马可观察到NSCs的增生,并可以被外源性神经营养因子所加强。但在病理状态下这种内源性干细胞的修复反应很显然是不够的,大量实验已证实哺乳动

神经干细胞研究进展

神经干细胞研究进展 一、引言 神经干细胞(neural stem cell,NSC)是指存在于神经系统中,具有分化为神经神经元、星形胶质细胞和少突胶质细胞的潜能,从而能够产生大量脑细胞组织,并能进行自我更新,并足以提供大量脑组织细胞的细胞群[1]。狭义的神经干细胞是指成体神经干细胞,指的是分布于胚胎及成人中枢及周围神经系统的干细胞。简单的说,就是在成年哺乳动物的大脑中分离出来的具有分化潜能和自我更新能力的母细胞,它可以分化各类神经细胞,包括神经元、星形胶质细胞和少突胶质细胞。我们所讲的神经干细胞指的就是成体中存在于脑中的中枢神经干细胞,其实在外周也有一些“神经干细胞”称为“神经嵴干细胞”,可以分化成外周神经细胞、神经内分泌细胞和施旺细胞,还可横向分化成色素细胞和平滑肌细胞[2]。 神经干细胞具有以下特征:(1)有增殖能力;(2)由于自我维持和自我更新能力,对称分裂后形成的两个子细胞为干细胞,不对称分裂后形成的两个自细胞中的一个为干细胞,另一个为祖细胞,祖细胞在特定条件下可以分化为多种神经细胞;(3)具有多向分化潜能,在不同因子下,可以分化为不同类型的神经细胞,损伤或疾病可以刺激神经干细胞分化,自我更新能力和多向分化潜能是神经干细胞的两个基本特征[3]。 需要注意的是,在脑脊髓等所有神经组织中,不同的神经干细胞类型产生的子代细胞种类不同,分布也不同。神经干细胞的治疗机理是:(1)患病部位组织损伤后释放各种趋化因子,可以吸引神经干细胞聚集到损伤部位,并在局部微环境的作用下分化为不同种类的细胞,修复及补充损伤的神经细胞。由于缺血、缺氧导致的血管内皮细胞、胶质细胞的损伤,使局部通透性增加,另外在多种黏附分子的作用下,神经干细胞可以透过血脑屏障,高浓度的聚集在损伤部位;(2)神经干细胞可以分泌多种神经营养因子,促进损伤细胞的修复;(3)神经干细胞可以增强神经突触之间的联系,建立新的神经环路[4]。 二、研究现状

干细胞研究进展及应用前景展望

干细胞研究进展及应用前景展望 摘要: 干细胞是一类具有自我更新能力的多向分化潜能细胞,在一定条件下可以分化为多种功能的组织和器官,具有重要的理论研究意义和临床应用价值。近年来的研究成果不仅揭示了许多有关细胞生长发育的基础理论难题,也在创伤修复、神经再生、抵抗衰老、糖尿病、帕金森氏症、老年痴呆、白血病、肿瘤等疾病的治疗方面显示了巨大的应用潜力,是应用生物学进入一个崭新的领域。 关键词: 干细胞;分化;诱导性多能干细胞;糖尿病;肿瘤;伦理争议; 正文: 1.干细胞 在人类生命形成的开始,单个受精卵可以分裂发育形成不同的组织和器官,并通过进一步分裂分化,形成生命个体。在成体细胞中,大部分高度分化的细胞则失去了再分化的能力,而特定组织正常的生理代谢或病理损伤也会引起组织或器官的修复再生,这种具有在分化能力的细胞,即为干细胞。 干细胞(Stem Cells,SC)是一类具有自我更新能力的多向分化潜能细胞,在一定的条件下,它可以分化成多种功能的器官组织。这些细胞呈圆形或椭圆形,体积较小,核质比大,具有较强的端粒酶活性,因此具有较强的增殖能力。 干细胞是一种未充分分化、尚不成熟的细胞,其再生各种组织器官和人体的潜在功能,吸引着越来越多人的眼球。 2.干细胞的研究历史 干细胞的研究被认为起始于二十世纪六十年代,加拿大科学家James E. Till和Ernest A.McCulloch发现并命名造血干细胞之后。 60年代,几个近亲种系的小鼠睾丸畸胎瘤的研究表明,其来源于胚胎干细胞,确立了胚胎癌细胞是一种干细胞; 1968年,Edwards 和Bavister 在体外获得了第一个人卵子; 1978年,第一个试管婴儿Louise Brown 在英国诞生。 1981年,Evan, Kaufman 和Martin从小鼠胚泡内细胞群分离出小鼠ES细胞,建立了小鼠干细胞体外培养条件,将干细胞注入上鼠,能诱导形成畸胎瘤。 1984-1988年,Anderews 等人从人睾丸畸胎瘤细胞系Tera-2中产生出多能的、克隆化的胚胎癌细胞,克隆的干细胞在视黄酸的作用下分化形成神经元细胞和其他类型的细胞。 1992年,Reynolds和Richards先后在成年鼠的纹状体和海马中分离出神经干细胞。

激活内源性神经干细胞治疗阿尔茨海默病的研究进展

作者:张华晏勇孟涛代政伟 【关键词】内源性神经干细胞;阿尔海茨默病 阿尔茨海默病(alzheimer′s disease,ad)的病因较多、发病机制复杂,目前尚无特效治疗方法。ad的传统治疗药物包括胆碱酯酶抑制剂、n 甲基 d 天冬氨酸(nmda)受体拮抗剂、抗β 淀粉样蛋白(aβ)药物、神经生长因子、非甾体类抗炎药物等。这些药物能相对减轻ad的症状,但都不能阻止病情的进展,因而疗效有限。近年来兴起的干细胞移植治疗ad研究已显示出可喜的前景,但目前还存在关键技术突破、伦理及免疫等诸多问题〔1〕。随着神经发育学尤其是神经发生(neurogenesis)研究的深入,已揭示在成年个体中枢神经系统中存在神经干细胞(neural stem cells,nscs)等前体细胞,在个体出现疾病时这些内源性nscs 可以少量增殖、迁移、分化成相应组织细胞(如神经细胞、胶质细胞等)以修复病变组织及改善机体功能。此重要发现改变了上世纪初确立并持续了近一个世纪的“神经细胞不能再生”的理论,为中枢神经系统疾病的治疗提供了新的途径〔2〕。然而这种具修复功能的nscs活化随着年龄老化而减少,因此,寻求激活内源性nscs进而促进神经发生的方法或药物,以治疗神经变性疾病特别是ad已成为研究的热点〔3〕。 1 内源性nscs的存在部位及来源 凡生物个体自身存在而非从外界导入的nscs即称为内源性nscs。成人的nscs主要存在于侧脑室下区(svz)、海马齿状回颗粒下层(sgz)、大脑皮质、第四脑室和脊髓中央管等部位〔4〕。这些部位的nscs在多种病变或某些因素刺激下被激活,在损伤原位或异位增生后,由某些趋化因子引导向损伤部位迁移和分化。此外在神经系统的某些病理状态下,成熟神经细胞逆向分化、发生细胞骨架的胚胎回复,出现胚胎神经上皮细胞特性的再表达。这类细胞可能为星型胶质细胞或少突胶质细胞的前体细胞。成体神经发生包括内源性nscs/神经祖细胞(npcs)增生、迁移、分化为成熟神经元并将其功能整合入成活的神经网络中〔5〕,神经发生仅见于svz/嗅球系统和海马齿状回两个区域〔6〕。 2 ad病理情况下的内源性nscs 在ad病理情况下,脑部可有内源性nscs增殖。jin等〔7〕研究了ad病变与nscs增殖活化之间的关系,发现在ad患者的海马组织中,与nscs增殖分化相关的蛋白标志物双皮质素、多唾液酸一神经元黏附分子和微管相关蛋白等均呈现高表达,新的神经元在ca1区增加。随后他们又发现在转基因小鼠ad模型中nscs集中的两个区域(即svz和sgz)均有nscs活化与增殖〔8〕。同时,ziabreva等〔9〕的病例对照研究发现在ad患者svz区nestin(为nscs 特异性标记物)免疫反应性细胞明显增多。另外,gan等〔10〕发现在ad转基因小鼠中aβ斑块形成早期阶段海马区npcs数轻微增加,而在aβ斑块出现及进展阶段npcs数明显增加。金国华等〔11〕以切断穹隆 海马伞制作ad模型,结果表明在术后第7天时微管相关蛋白阳性神经元较多,第14天时细胞进一步迁移及成熟;正常组第7天时仅见少量微管相关蛋白阳性神经元,第14天时细胞稍增多;对照组第7天时未见微管相关蛋白阳性神经元,第14天时仅有少量微管相关蛋白阳性神经元。而且,穹隆 海马伞切割侧的海马提取液可以明显促进nscs分化为神经元和胆碱能神经元。但rodríguez等〔12〕在ad转基因小鼠模型中发现雄性小鼠在9月龄时新的神经元生成减少73%,12月龄时没有新神经元生成。而雌性小鼠较早出现神经发生减少,在4月龄时即减少63%,在12月龄时几乎没有神经发生出现。这些研究结果提示ad本身能够一定程度诱导内源性nscs的活化,以实现机体功能的代偿恢复,同时也说明随着病程的延长及年龄的逐渐增长,内源性nscs活化逐渐减少。因此,通过外源性手段刺激内源性nscs活化成为治疗ad所必须。 3 利用内源性nscs治疗ad的优势及意义 由于内源性nscs可针对环境的变化调整增殖与分化的速度,而且这种潜力不局限于正在进行神经组织生成的区域.因此可以用各种干预因素对其加以调整和改善,以期通过综合利用

相关文档