文档库 最新最全的文档下载
当前位置:文档库 › 汽轮机凝汽器更换螺纹管

汽轮机凝汽器更换螺纹管

汽轮机凝汽器更换螺纹管
汽轮机凝汽器更换螺纹管

前言:

Preface:

汽轮机是火电厂的重要设备,通过汽轮机,蒸汽的热能转化为机械能,为发电机发电提供动力。凝汽器是汽轮机的附属设备,在凝汽器里汽轮机排汽转化为凝结水,体积缩小,压力降低,汽轮机进出蒸汽焓差增大,做功能力提高。凝汽器也为系统水汽循环提供了必要条件。凝汽器工作性能的好坏直接影响到系统的热经济性。衡量凝汽器工作性能的指标主要有端差和真空。

Turbine is an important equipment of thermal power plant. Through turbine,thermal energy of steam transforms into mechanical energy, to provide power for generator. Condenser is an accessory of turbine. Inside a condenser, exhaust steam of turbine transforms into condensed water, which reduces its volume and pressure. Then enthalpy difference between turbine inlet and outlet is increased, and working capacity is improved. Condenser also provides necessary condition for water & steam circulation of system. Working performance of condenser directly affects the heat economical efficiency of the system. Main indexes to measure working performance of condenser are terminal temperature difference and vacuum.

凝汽器是一个表面式换热器,在壳程里流动的是汽轮机排汽和凝结水,管程里流动的是冷却水。冷却水吸收蒸汽热量后,蒸汽凝结成水,冷却水温度升高后排出凝汽器。表面式换热器存在换热管结垢的问题,凝汽器也不例外。凝汽器铜管内壁结垢会严重影响换热效果,大大降低系统的热经济性。凝汽器结垢影响主要体现在端差升高和真空降低。在系统来说主要是发电汽耗增加,煤耗增加,经济效益下降。

Condenser is a surface type heat exchanger. What flows inside shell pass is exhaust steam and condensed water of turbine, while cooling water flows inside tube pass. After the heat is absorbed by cooling water, steam is condensed into water. Cooling water is discharged out of condenser after its temperature rise. Surface type heat exchanger has the problem of scaling on heat exchanging tube, so does condenser. Scaling on inner wall of condenser copper tube may seriously influence heat exchanging

effect, and largely reduce heat economical efficiency of the system. The effect of scaling in condenser is mainly reflected by increase of terminal temperature difference and decrease of vacuum. To the system, major effect is increase of steam rate and coal consumption, and drop of economical efficiency.

水垢的形成:

Formation of scale:

汽轮机组运行时必须有大量的冷却水通过凝汽器来冷却汽轮机排汽,循环冷却水的水温在15℃—35℃之间,适宜藻类和微生物繁殖。循环使用中,大量的水分被蒸发,而补充水中又含有杂质和盐类化合物,冷却水的盐类不断浓缩,水中的碳酸氢钙浓度越来越高,游离CO2-却不断挥发,使Ca(HCO3)2分解为CaCO3而析出形成水垢:

Ca(HCO3)2= CaCO3+CO2+H2O

During the operation of turbine unit, there must be large quantities of cooling water, to cool turbine exhaust steam through condenser. Temperature of circulating cooling water is 15℃to 35℃, which is suitable for reproduction of algae and microorganism. During recycle, much water is evaporated, and make-up water contains impurities and salt compound. So salt in cooling water is constantly concentrated and calcium bicarbonate concentration in water becomes higher, but free CO2 volatilizes constantly, which makes Ca(HCO3)2decompose into CaCO3.CaCO3 is finally separated out and becomes scale.

Ca(HCO

3)

2

= CaCO

3

+CO

2

+H

2

O

碳酸盐水垢的产生严重影响了金属的传热效果,循环水温又适合藻类和微生物繁殖生长,脱落下的藻类易发生粘垢,致使循环冷却水水质不断恶化。

Formation of carbonate scale seriously influences the heat exchanging effect of metal. What’s more, temperature of circulating water is suitable for the reproduction and growth of algae and microorganism, and the algae falling out is likely to form viscous aggregates, so quality of circulating cooling water deteriorates constantly.

循环水在凝汽器铜管内流动,吸收大量的热量,保证了汽轮机正常运行。根据流体力学原理,液体在管道内流动分为层流和紊流两种基本现象。层流边层是紧靠管壁的一层,流速和粘垢最易滞留在管内壁上,形成水垢。

很慢,水中的CaCO

3

Circulating water flows inside copper tube of condenser, absorbing lots of heat, which ensures normal operation of turbine. According the principle of fluid mechanics, flow of fluid inside tubes is divided into two basic types, namely laminar flow and turbulence flow. Boundary layer of laminar flow is close to tube wall, so the flow rate is low. Therefore, CaCO3 and viscous aggregate in water is likely to remain on inner wall of tube, and then becomes scale.

水垢的危害:

Harm of scale:

1、凝汽器铜管内壁形成水垢后,换热效果下降,导致真空下降,能耗上升,严重时要降低

发电负荷或停机清洗。据有关资料介绍,水冷设备换热器中水垢厚度为2.16mm时,传热系数平均下降51%,设备运行效率下降50%,而形成水垢的时间仅25天。如此短的积垢时间和低传热效率,导致凝汽器长期处在低效率中运行。

1. After scale forms on inner wall of condenser copper tube, heat exchanging effect will be reduced; this causes drop of vacuum and rise of energy consumption. In serious conditions, generating load should be reduced or the unit should be shut down for cleaning. According to relevant information, when thickness of scale in heat exchanger of cooling water device reaches

2.16mm, heat transfer coefficient drops 51% in average, and operation efficiency drops 50%. In that case, it needs only 25 days to form scale. Such short period and low heat transfer efficiency makes condenser operate in low efficiency for a long time.

2、增加了冷却循环水系统的水流阻力,降低了冷却水的流量,增加了循环水泵的能耗。2. It increases flow resistance of cooling circulating water system, reduces flow of cooling water, and increases energy consumption of circulating water pump.

3、由于水垢的热导率很低,因而急剧降低了凝汽器的传热系数,导致凝汽器真空降低,按照不同汽轮机的试验资料,真空度每降低1%,汽耗增加1~1.5%,当蒸汽流量不变,将降低汽轮机组的出力。据有关资料介绍,水冷设备换热器中水垢厚度为2.16mm时,传热系数平均下降51%,设备运行效率下降50%,而形成水垢的时间仅25天。

3. Due to low thermal conductivity of scale, there is a sharp drop in heat transfer coefficient of condenser, and a decrease in vacuum of condenser. According to testing data of different turbines, once vacuum degree drops 1%, steam rate increases by 1% ~ 1.5%. When steam flow is stable, output of turbine unit will be decreased. According to relevant information, when thickness of scale in heat exchanger of cooling water device reaches 2.16mm, heat transfer coefficient drops 51% in average, and operation efficiency drops 50%. In that case, it needs only 25 days to form scale.

凝汽器结垢对真空度的影响

Effect of scale in condenser on vacuum degree

机组容量

(Mw)

Unit capacity 水垢厚度(mm)

Scale

thickness

真空降低

(kpa)

Vacuum drop

真空度降低

(%)

Vacuum

degree drop

汽耗增加(%)

Steam rate

increase

100 1.2~2.0 26.7 ~ 33.3 3 ~ 5 3 ~ 7.5

50 0.8~1.2 20.0 ~ 40.0 2 ~ 4 2 ~ 6

注:真空度降低1%,汽耗增加1~1.5%,当蒸汽量不够,降低汽轮机出力1~2%。

Note: when vacuum degree drops 1%, steam rate increases by 1%~1.5%; when steam volume is in short, turbine output will be decreased by 1% ~ 2%.

4、水垢的附着,特别是粘泥的附着,会在附着物下部发生局部腐蚀甚至破裂和穿孔。水垢的附着凝汽器铜管会导致铜管堵塞,严重影响设备运行。

4. Sticking of scale, especially sticking of slime will cause local corrosion, or even crack and perforation on the lower part of the equipment.

Scale in copper tube of condenser will cause block in the tube, and seriously influence the operation of equipment.

5、凝汽器铜管的损坏会造成凝汽器的严重泄露,情况严重或处理不当会造成锅炉锅炉水冷壁管的爆破,严重危及锅炉的安全运行。

5. Damage of copper tube of condenser will cause serious leakage of condenser. If the condition is serious or treated improperly, it will cause explosion of boiler water wall tube, and severely endanger safe operation of boiler.

凝汽器铜管更换为螺纹管后,当汽轮机组运行时,无需外加动力,水的流动成为紊流现象,螺纹管改变了管内水的流动状态,强化换热。同时,破坏水垢和粘泥的形成机理,使水垢和粘泥不能在管壁上滞留,排除了结垢的可能。

After copper tubes of condenser are changed into screwed ones, there is no need to add external force during the operation of turbine. Water flow becomes turbulent flow, for screwed tube changes the flow condition of water inside the tube and strengthens heat exchange. In the mean time, it destroys the formation mechanism of scale and slime, and prevents them from remaining on the tube wall, finally ruling out the possibility of

scaling.

Laminar flow layer Viscous flow layer

High temperature

zone

Medium temperature

zone

Low temperature zone Laminar flow

Viscous flow

Heat exchange

汽轮机操作规程2010100601

汽轮机操作规程 第一章启动 第一节正常冷态启动 一、启动前的准备工作 1、确认安装或检修工作已全部结束; 2、清理现场,核对表计齐全、准确; 3、联系调度、锅炉、配电等相关岗位,送上操作信号,检查仪表电源等; 4、检查汽、水、油系统的阀门、开关是否都处于启动前的状态; 5、与公司调度室,锅炉、配电、仪表、热工等岗位做好联系工作; 6、进行启动前的各项试验,特别是保安装置的试验,确认各项试验均合格,具备启动条件。 二、疏水、暖管 机组启动前,主蒸汽管道、法兰、阀门均处于冷态。通过暖管逐渐提高温度,以避免管道突然被高温蒸汽加热产生过大的热应力,使管道产生变形裂纹。另外,暖管使管道预热到额定压力下的饱和温度,可以避免汽轮机冲动时发生水冲击事故。使用额定叁数蒸汽暖管,必须严格控制管道的温升速度,保证管道均匀加热膨胀。 1、开启从锅炉分汽缸到汽轮机主汽门前主蒸汽管道的所有疏水阀;

2、微开主蒸汽隔离阀旁路阀,使管道末端汽压维持在0.3MP a,温升控制在5℃/min进行低压暖管。低压暖管约20分钟,当管壁温升至低压暖管蒸汽压力所对的饱和气温时,低压暖管结束。 3、升压暖管阶段应逐渐升温升压,避免升温升压过快。一般允许管道温升速度为10℃/min;随着蒸汽温度和压力的升高,应逐渐关小疏水阀,当管道末端的蒸汽温度比额定蒸汽压力下的饱和温度高50~100℃时,打开主蒸汽隔离阀,准备冲转。 三、冲动转子、低速暖机 1、冲动要具备的条件:主蒸汽压力和温度符合规范要求;润滑油温度在25℃以上。 2、本机组采用自动主汽门冲转。启动辅助油泵,稍开主汽门,使转子转动,然后关小主汽门,使转子转速保持在600~900/min间进行低速暖机,时间大约为20分钟。低速暖机时要对机组进行听音、测胀等全面检查,只有确定机组无异常后,才能进行升速暖机。 四、升速 1、符合升速条件后,即可以300r/min的速度升速,当机组转速约(1800~2300r/min)时,停留几分钟进行中速暖机,视汽封冒汽管冒

背压式、抽背式及凝汽式汽轮机的区别

背压式、抽背式及凝汽式汽轮机的区别 1、背压式汽轮机 背压式汽轮机是将汽轮机的排汽供热用户运用的汽轮机。其排汽压力(背压)高于大气压力。背压式汽轮机排汽压力高,通流局部的级数少,构造简略,同时不用要巨大的凝汽器和冷却水编制,机组轻小,造价低。当它的排汽用于供热时,热能可得到充足使用,但这时汽轮机的功率与供热所需蒸汽量直接联系,因此不或许同时餍足热负荷和电(或动力)负荷变更的必要,这是背压式汽轮机用于供热时的部分性。 这种机组的主要特点是打算工况下的经济性好,节能结果昭着。其它,它的构造简略,投资省,运行可靠。主要缺点是发电量取决于供热量,不克独立调理来同时餍足热用户和电用户的必要。因此,背压式汽轮机多用于热负荷整年安稳的企业自备电厂或有安稳的根本热负荷的地区性热电厂。 2、抽汽背压式汽轮机 抽汽背压式汽轮机是从汽轮机的中间级抽取局部蒸汽,供必要较高压力品级的热用户,同时保留必定背压的排汽,供必要较低压力品级的热用户运用的汽轮机。这种机组的经济性与背压式机组相似,打算工况下的经济性较好,但对负荷改变的合适性差。 3、抽汽凝汽式汽轮机 抽汽凝汽式汽轮机是从汽轮机中间抽出局部蒸汽,供热用户运用的凝汽式汽轮机。抽汽凝汽式汽轮机从汽轮机中间级抽出具有必定压力的蒸汽提供热用户,平常又分为单抽汽和双抽汽两种。此中双抽汽汽轮机可提供热用户两种分别压力的蒸汽。 这种机组的主要特点是当热用户所需的蒸汽负荷猛然下降时,多余蒸汽可以通过汽轮机抽汽点以后的级持续扩张发电。这种机组的长处是灵敏性较大,也许在较大范畴内同时餍足热负荷和电负荷的必要。因此选用于负荷改变幅度较大,改变屡次的地区性热电厂中。它的缺点是热经济性比背压式机组的差,并且辅机较多,价钱较贵,编制也较庞杂。 背压式机组没有凝固器,凝气式汽轮机平常在复速机后设有抽气管道,用于产业用户运用。另一局部蒸汽持续做工,最后劳动完的乏汽排入凝固器、被冷却凝固成水然后使用凝固水泵把凝固水打到除氧器,除氧后提供汽锅用水。两者区别很大啊!凝气式的由于尚有真空,因此监盘时还要注意真空的境况。背压式的排气高于大气压。趁便简略说一下凝固器设置的作用:成立并维持汽轮机排气口的高度真空,使蒸汽在汽轮机内扩张到很低的压力,增大蒸汽的可用热焓降,从而使汽轮机有更多的热能转换为机械功,抬高热效果,收回汽轮机排气凝固水

汽轮机操作规程

枣庄薛能天然气有限公司70000Nm3/h焦炉煤气制液化天然气项目 汽轮机操作规程 编制: 审核: 批准: 山东潍焦集团 2015年3月

目录 一、岗位工作的任务及意义 (1) 二、工艺过程概述 (1) 1、汽轮机的工作原理 (1) 2、汽轮机的结构及型号概述 (1) 3、汽轮机规格及主要参数 (1) 4、汽轮机组的工艺流程 (2) 三、启动前的准备工作 (3) 四、汽轮机启动 (4) 五、汽轮机的停机 (9) 1、正常停车 (9) 2、紧急停车 (9) 四、事故预防及处理 (10) 六、安全注意事项 (11)

一、岗位工作的任务及意义 汽轮机岗位的任务:从合成工段产出和焦化二公司配送的中压蒸汽(压力为3.53MPa,温度为435℃)在汽轮机机体内经过中压低压气室将蒸汽内能化为叶轮的机械能为制冷剂压缩机提供动力。 二、工艺过程概述 1、汽轮机的工作原理 汽轮机是能将蒸汽内能转化为机械能的回转式机械,来自外界的蒸汽进入汽轮机后,依次经过一系列环形配置的喷嘴和动叶,将蒸汽的内能转化为汽轮机转子旋转的机械能。 2、汽轮机的结构及型号概述 1)汽轮机结构概述 N13-3.53型离心汽轮机由本汽轮机为单缸凝汽式汽轮机,本体主要由转子部分和静子部分组成。转子部分包括整锻转子、叶片、危急遮断器、盘车齿轮、联轴器等;静子部分包括汽缸、主汽门、蒸汽室、喷嘴组、调节级护套、隔板、汽封、轴承、轴承座、调节汽阀、盘车装置、公用底盘等。 2 3、汽轮机规格及主要参数 1)汽轮机设计工况: 第1 页共11 页受控文件,未经允许严禁拷贝

2 4、汽轮机组的工艺流程 1)汽体流程: 上游来的蒸汽绝大部分由主气门先后经过中、低压气室将本身内能化为机械能。而其温度也随之下降,此时经膨胀箱内扩容后,蒸汽由疏水膨胀箱顶部进入凝汽器顶部,凝结的疏水引入凝汽器底部进入凝汽器与冷却水换热降温凝结为水,汇集到底部的集水器由凝结水泵打回进一步循环利用。很少一部分进入射汽抽气器作为动力源,或者进入密封系统作为前后轴端的密封气体。 2)润滑油流程概述: 与制冷剂压缩机共用一个润滑油站,设有一主一副两台蜗杆油泵,当油压低于0.15Mpa

凝汽器安装使用说明书

330MW汽轮机组 双流程凝汽器安装使用说明书 NC17A.80.01SY 2006年7月

一、设计数据 凝汽器压力: 5.2 KPa 凝汽量: 675 t/h 冷却水进口温度: 21℃ 冷却背率: 54 冷却水量: 36112 t/h 冷却水管内流速: 2.2 m/s 流程数: 2 清洁系数: 0.9 冷却面积: 螺旋管19000 m 2 冷却管数: 16112 根 冷却管长: 12410mm 二、对外接口规格 循环水入口管径: Φ1820 mm 循环水出口管径: Φ1820 mm 空气排出口管径: Φ273 mm 凝结水出口管径: Φ630 mm 三、凝汽器主要部件重量 凝汽器尺寸: 17338x8300x12960mm 无水凝汽器总重: 306 t 凝汽器运行时水重: 265 t 汽室中全部充水时水重: 700 t 管子重: 84.73 t 共 17 页 第 1 页 凝汽器安装使用说明书 N C 17A.80.01S Y 北 京 重型电机厂 实 施 批 准 编 制 校 对 审 核 标准化审查 图 样 标 记

水室比后水室高)。 管板与壳体通过一过渡段连接在一起,过渡段长为:300 mm(见图HR155.80.01.90-1、HR155.80.01.100-1)。 每块隔板下面用三根圆钢支撑,隔板与管子间用工字钢及一对斜铁连接,以便于调整隔板安装尺寸。隔板底部在同一平面上(见图NC17A.80.01-1)。隔板间用三根钢管连接,隔板边与壳体侧板相焊,每一列隔板用三根圆钢拉焊住,圆钢两端与管板过渡段相焊(见图HR155.80.01.01-1)。 壳体与热井通过垫板直接相连,热井分左右两半制造。在热井中有工字钢、支撑圆管加强,刚度很好。热井底板上开有三个方孔,与凝结水出口装置相连。 凝结水出口装置上部设有网格板,可防止杂物进入凝结水管道,也可防止人进入热井后从此掉下。 在空冷区上方设置挡板,阻止汽气混合物直接进入空冷区。空气挡板两边与隔板密封焊。每列管束在其中三块挡板上开有方孔,用三根方管拼联成抽气管,以抽出不凝结气体及空气(见图HR155.80.01.120-1)。 弧形半球形水室具有水流均匀、不易产生涡流、冷却水管充水合理、换热效果良好的特点。水室侧板用25mm厚的钢板,水室法兰用60 mm厚的16MnR,与管板和壳体螺栓连接,衬O型橡胶圈作密封垫,保证水室的密封性。前水室中设水室隔板及进出水管,其中进水管在下部,出水管在侧部。在水室上有人孔,以便检修。为防止检修时人不小心掉入循环水管,在进出水管加设了一道网板,网板由不锈钢组成,既可保证安全,又不增加水阻。水室上有放气口、排水孔、手孔以及温度、压力测点(见图HR155.80.01.15-1、HR155.80.01.95-1、HR155.80.01.105-1、HR155.80.01.200-1)。水室壁涂环氧保护层,并有牺牲阳极保护,牺牲阳极保护的安装位置参照(HR155.80.01.10-1)执行。 在凝汽器最上一排管子之上300 mm处设有8个真空测点,测量点是在两块间隔30 mm的板,从板中间的接头上引出φ14×3的管至接颈八个测真空处进行真空测量。 凝汽器热井位于汽机房下,装于弹簧和底板上(见图HR155.80.01.06-1)。弹簧根据汽机允许力进行设计,考虑到弹簧摩擦角产生的水平力,78个弹簧采用一半左旋一半右旋,以使力平衡。 为防止运行时凝汽器移动,造成凝汽器、低压缸不同心,对低压缸不利。热井底板上焊固定板,使底板与弹簧基础上埋入的钢板贴合,这样凝汽器只能上下移动(见图HR155.80.01.205-1)。 五、安装程序 (1)在底板(HR155.80.01.205-1序1 N17.80.01.416)定位后,在底板上安装弹簧支座板(HR68.80.01.39-1序1 N17.80.01.222)、弹簧,并调节弹簧位置,使处于标高之下。 (2)吊起凝汽器热井,安装热井底部的弹簧支座板(见图N17.80.01.111-1)

换热器GB151

1、固定式管板换热器两相物流温度差大于60℃时应该设置膨胀节,两相物流温度不能超过120℃。 2、冷却器:板式传热效率高,传热面积大,但是使用温度在150以下,压力也较小,且压力降大,管式温度压力适用高 且投资费用少。 板翅式换热器适用于气体的冷却,但是对结垢严重的物料不适用。 3、加热器:对于有少量颗粒物料的加热,考虑用套管式或者螺旋板式。 4、换热面积:管外径与长度之积,U型管不包括U型部分。 5、命名方式:3字母(前盖+筒体+后盖代号)+DN+压力(管/壳)+换热面积+管长/管外径+管程/壳程数+管子类型(Ⅰ 或Ⅱ) 6、铝、铜(200℃)、钛(300℃)换热管的好处?? 7、在有分程隔板的情况下要注意其厚度是否满足要求。最小:内径600→8(低)6(高),1200→10(低)8(高),2000 →14(低)10(高),大于10mm的分程隔板在连接处应该削减至10mm以下。大直径必要时采用双层隔板。 8、400mm以下采用钢管制圆筒。大于400的有最小厚度要求,固定式6(低、碳)逐次递增2(分级→ 400~700~1000~1500~2000~2600),浮头U型式的比前固定式的每个都大2,3.5~4.5~6~8~10~12(高)(分级→400~500~700~1000~1500~2000~2600) 9、U型管弯曲半径大于2倍的换热管外径。U型管弯曲段的最小半径为δ(1+d/4R) 10、对于胀接换热管管板,其最小厚度(不包括腐蚀余量)取决与换热管外径,条件苛刻(易燃、有毒等)环境大于d, 一般情况(0.75d→25,0.7→25~50,0.65→50~),对于焊接管板最小厚度大于12mm且满足设计)。 11、中心距大于1.25管外径,如20→26,分程隔板夹的为40mm。16的为22,35 12、固定式、U型式换热管离管板边缘≥0.25d,且≥8mm, 13、壳程进出口管径大小应该尽量考虑到于壳程流通面积相当。 14、管板厚度设计涉及到其径向应力(中心处,布管区周边处,外缘处)、换热管的轴向应力和换热管的拉脱力,均应 满足要求。两法兰中间夹压型管板不需要考虑其径向应力。 15、换热管与管板的连接包括:强度胀(密封性能和抗拉脱强度),贴胀(密封性能)、强度焊(密封性能和抗拉脱强度)、 密封焊(密封性能)。换热管材料的硬度要小于管板材料的硬度。 16、折流板的间距一般大于圆筒内径的1/5,且大于50mm,19的管子最大跨距1500,25的为1850。U型管的支撑A+B+C 不能超过直管的最大跨距。卧式换热器、冷凝器和重沸器物料如果是汽液共存或者含固体物料则折流板的缺口应左右垂直布置,并在下方设排液口。 17、拉杆定距管在换热管大于19mm采用与管板焊接或者螺纹连接,14mm及以下采用与折流板点焊。拉杆在DN400 的情况下,不能少于4根直径不能小于10mm,大于DN400时,增加根数或直径,且不同直径的拉杆定距管根数也不同,大而少,在同DN情况下保持总横截面不变。定距管的直径小于换热管直径。 18、对于定距管在管板处的深度也有规定,其倒角为45度螺纹。 19、管程:当采用轴向入口或者流速达到3m/s时,要采用防冲档板。这能说明轴向入口比径向入口差?? 20、壳程:无腐蚀无磨蚀单相流体其ρv2>2230时,设置防冲板或导流筒。 其他液体ρv2>740时,设置防冲板或导流筒。 腐蚀性气体、蒸汽及汽液混合物设置防冲板。 当壳程进口距离管板较远时,采用导流筒减少流体在壳程的停滞时间,增加换热管有效换热长度。

C汽轮机操作规程

C汽轮机操作规程 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

编号:ZKJTBCMK-2014 版本号:2014-01 淄矿集团埠村煤矿矸石热电厂 汽轮机 操作规程 淄博矿业集团公司埠村煤矿

2014年4月颁布2014年4月实施 淄矿集团埠村煤矿矸石热电厂 《汽轮机操作规程》编委 主任:郑汝琳 副主任:张玉亮 编辑:马永淮张德军夏乃波 审核:孙志强司志富

发布令 各车间、部室: 为使运行人员了解设备、熟悉设备 ,为设备运行、操作和事故处理作出必要的指导和提供工作法则,也为各级领导和调度在生产和事故处理中指挥提供参考依据,根据《国家电网公司电力安全工作规程(变电站和发电厂电气部分)》、《国家电网公司电力安全工作规程(火电厂动力部分)》、设备规范和使用数明书等相关资料,对全厂设备运行操作、维护保养、注意事项做出了规定,要求运行人员必须掌握本规程,并严格执行,确保我厂安全、经济、稳定运行,满足供电和供热需要。 埠村煤矿矿长:

年月日 《汽轮机操作规程》 目录 第一章设备规范 (4) 第一节汽轮发电机组设备规范 (4) 第二节油系统设备规范 (5) 第三节调节系统及盘车装置规范 (6) 第四节辅属设备规范 (7) 第五节调节、保安、油路系统 (10) 第二章汽轮机的启动、运行中的维护和停止 (13) 第一节启动前的准备工作和检查 (13) 第二节汽轮机的启动与带负荷 (25) 第三节汽轮机运行中的维护和检查 (21) 第四节设备切换与试验 (23) 第五节汽轮机的停止 (25) 第六节汽轮机备用中的维护 (26)

最详细汽轮机岗位操作规程

最详细汽轮机岗位操作规程 1、岗位职责、范围 1.1岗位任务: 本岗位主要是接受干熄焦锅炉来的高压蒸汽进行发电,发电后的背压汽供热用户使用。并确保本岗位生产、安全、环保、质量、节能等各项工作符合要求。 1.2职责范围: 1.2.1负责本岗位重要环境因素的控制。 1.2.2在值班长领导下,负责本岗位的生产操作及设备维护。 1.2.3岗位员工应熟悉本岗位设备的构造及工作原理。 1.2.4掌握正常运行和开、停车操作。 1.2.5发现异常情况,能采取应急措施处理。同时汇报值班长或车间生产主任。 1.2.6搞好本岗位责任区的环境卫生。 2、巡回检查路线及检查内容 2.1巡检路线: 为保证安全生产,及时发现问题,避免事故发生,本岗位操作工每小时按下述路线进行巡回检查一次。 汽轮机、发电机→汽封加热器、滤油器→冷油器、空冷器。 2.2巡检内容: 2.2.1检查推力瓦、1、2、3、4瓦温度,发电机进出口风温。 2.2.2检查汽封加热器压力、滤油器前后压差、油箱油位。 2.2.3冷油器进、出口油温,空冷器进、出口温度。 3、工艺流程、生产原理简述及主要设备构造原理 3.1工艺流程 自干熄焦锅炉来的蒸汽经电动主汽门、自动主汽门、高压调节阀进入汽轮机,经一个双列复速级和三个压力级做功,做功后的背压汽供热用户使用。机组的调节用油及润滑油均由主油泵供给。高压油分为两部分:一部分经逆止阀后再分为三路:第一路去保安系统,第二路经冷油器后又分为二股,一股通往注油器,作为喷射压力油,一股经三通逆止 阀、润滑油压调整阀、滤油器去润滑系统,第三路经错油门去油动机;另一部分至压力变换器,并分出一小支经节流孔至脉冲油路。 3.2工作原理 由主蒸汽母管送来蒸汽进入汽轮机,蒸汽在喷嘴内降压增速后,进入汽轮机动叶片,带动汽轮机转动,由动能变成机械能,汽轮机带动发电机,由机械能再转化为电能,向电网输电。 4、工艺指标及技术要求 4.1工艺指标 额定进汽量:42.7 t/h 额定转速时振动值:≤0.03 mm(全振幅) 临界转速时振动值:≤0.15 mm(全振幅) 额定进汽压力: 3.43 +0.196 -0.294MPa(绝对) 额定排汽压力:0.785 +0.196 -0.294MPa(绝对) 额定进汽温度:435 +10-15℃ 额定工况排汽温度:282 ℃ 额定转速:3000 r/min 临界转速:1870r/min

汽轮机安装方案全解

目录 一、概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 二、编制依据。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 三、施工准备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 四、汽轮机安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 五、调节保安系统安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 六、发电机安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 七、质量保证措施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 八、安全文明施工。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 九、环境保护措施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 十、环境因素、危险辨识评价记录表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 一、概述

1、汽轮机主要技术参数 本汽轮机由洛阳中重发电设备有限责任公司制造,单缸、低压冲动空气冷却式汽轮机发电机,用于中广核青海太阳能热发电技术试验项目汽轮发电机组土建、安装及调试项目,以提供电力供应。 1.1主汽门前蒸汽参数及其允许变化范围: 正常: 2.6MPa/ 375℃ 最高: 2.8MPa/ 380℃ 最低: 2.4MPa/375℃ 1.2汽轮机额定功率:1500KW 1.3汽轮机额定转速:5600r/min 1.4汽轮机临界转速:3359r/min 1.5汽轮机旋转方向:顺气流方向看,汽轮机的转向为顺时针方向。 1.6排汽压力:在额定负荷时:(绝)0.015Mpa 1.7汽机本体主要件重量: 汽轮机全量25.1 t 转子 1.122 t 汽轮机上半重量(即检修时最大起重量): 3.1 t 1.8汽轮机本体外形尺寸(mm): 长×宽×高4451×3770×2715 1.9汽轮机中心高(距运转平台):1050mm。 2、调节系统参数 2.1 汽轮机在稳定负荷及连续运转情况下,转速变化的不均匀度为4.5+0.5%。 2.2 汽轮机调整器调速范围,能将正常运行转速作-4%--6%的改变。 2.3汽轮机突然抛全负荷时,最大升速不超过危急遮断器的动作转速。 2.4调节系统的迟缓率小于0.5% 。 2.5危急遮断器的动作转速6104~6216r/min,危急遮断器动作至主汽门关闭。 2.6汽轮机转子轴向位移小于0.7mm。 2.7润滑系统油压力0.0588~0.0784MPa。 3、汽机结构说明

概述国内外套管换热器现状及前景

苏州方圆换热器有限公司 文杰 空气源热泵与水源热泵特点 目前空调的热源有两种模式:一种是以空气为热源,包 括集中式空气源,而另一大类则是以各种水源(如地下 水、江水、湖水、河水、海水等地表水及废水等)为热 源。和空气热源相比,水源热源相对比较稳定,比如, 北京地区的地下水常年稳定在14-16℃之间,不论是 夏季还是冬季,而空气的温度夏季最高在38℃以上, 冬季可低至零下15℃;再如青岛、烟台一带的海水温 度(水下5米处)在夏季7、8月份一般在22—26℃之 间,冬季12、1月份一般在10-5℃之间,而且水越深, 温度越恒定,而夏季该地区的气温最高可达35℃以上, 冬季最低可到零下10℃左右。 空气源热泵有着悠久的历史,而且其安装和使用 都很方便,应用较广泛。但由于地区空气温度的差别, 在我国典型应用范围是长江以南地区。在华北地区,冬 季平均气温低于零摄氏度,空气源热泵不仅运行条件恶 劣,稳定性差,而且因为存在结霜问题,效率低下。 利用水作冷热源的热泵,称之为水源热泵。水是一种 优良的热源,其热容量大,传热性能好。很多水源的温 度不受环境的限制,因此得到越来越多的广泛应用。这 导致水源热泵空调的能效比(COP值)高于常规空气源 空调,由于水源热泵自身的环保、高效、节能、应用范 围广,得到了国家大力推广和扶助,市场前景广阔。 当前欧美应用地源/水源热泵的现状 及趋势 在国外,关于水源热泵的研究分属于两种热泵系统:一 种为地源热泵,一种为海水热泵。其中地源热泵真正意 义的商业应用也只有近十几年的历史,但发展相当迅 速。如美国,截止1985年全国共有14,000台地源热泵, 而1997年就安装了45,000台,到目前为止已安装了400,000台,而且每年以10%的速度稳步增长。1998年美国商业建筑中地源热泵系统已占空调总保有量的19%,其中新建筑中占30%。美国地源热泵工业已经成立了由美国能源环境研究中心(Energy & Environmental Research Center)、美国地下水资源联合会(National Ground Water Association)、爱迪生电力研究所(Edison Electric Institute)及众多地源热泵制造设计销售公司以及政府机构和建筑商等146家成员组成的美国地源热泵协会,该协会在近年中将投入一亿美元从事开发、研究和

工业拖动型汽轮机操作规程修改讲解

汽动鼓风机操作运行规程 一、概述 本厂炉前鼓风机用汽轮机采用单级双支点背压式汽轮机,汽轮机排出的常压蒸汽经管道引入除氧头对锅炉进水进行加温除氧。 该汽轮机由下列主要部件组成:自动主汽阀、调节气阀、汽轮机本体、轴承座、保安调速系统、底盘、冷却水管道等。 汽轮机本体与炉前风机的电动机采用用膜片联轴器传动,调速系统采用3610L直行程阀门驱动执行器驱动调节汽阀,调速器的转速控制是通过调整转速给定旋钮,用就地或远程调整汽轮机转速的给定值。 二、技术规范及结构介绍 1.技术规范 型号B0.22-1.7/0.1 额定功率kw 220 额定转速r/min 3000 额定进汽压力MPa 1.7(绝压) 额定进汽温度℃205℃饱和蒸汽排汽压力MPa 0.1(绝压) 汽机额定进气量:t/h ~3.9 排汽温度℃~160 调节范围r/min 1000-3000 额定转速振动值mm ≤0.03 汽机转向顺汽轮机方向为顺时针

2、技术限额数据表 序号名称单位正常最高最低 1 进汽压力MPa 1.7 2.35 0.785 2 进汽温度℃205 350 3 排汽压力MPa <0.1 4 排汽温度℃~160 5 轴承振动mm ≤0.05 6 汽轮机转速r/min 1000-3000 3150 7 冷却水温℃20-30 8 汽轮机润滑油牌号L-TSA32 9 轴承温度℃55 65报警75停车 10 冷却水压Mpa 正常0.18Mpa 0.05Mpa报警 13 轴承油位正常距轴承座中分面50mm-70mm 停机距轴承座中分面90mm 14 转速保护定值r/min 3000报警 超速跳车转速:3150r/min 3.热力系统 来自锅炉的饱和蒸汽通过汽水分离器分离饱和水后,经隔离阀至汽轮机汽阀总成(包括手动主汽阀<又称“速关汽门”和调节阀),并通过它进入汽缸,经喷嘴组,冲动叶轮做功后,排入除氧器、低加、热水站。 从汽阀总成及汽缸中来的凝结疏水、汽轮机前后汽封漏汽经疏水管引入收集水槽,泵进软水槽加以利用。 4.调节系统 本系统由调速器、调节汽阀万向节、汽阀总成等部件,通过它们能使运行中的汽轮机的转速或负荷起自动调节和控制作用。

冷凝式汽轮机运行操作规程分析

冷凝式汽轮发电机组 运行操作规程淄博泓铭动力设备有限公司

一、适用范围:本操作法适用于750KW-3000KW冷凝式汽轮机。 二、启动前的准备工作: 1、仔细检查汽轮机、发电机及各辅助设备,肯定安装(或检修)工作已全部结束。 2、准备好各种仪器、仪表及工具,并做好与主控室、锅炉、电气的联系工作。 3、都油系统进行下列检查: 1)油管路及油系统内所有设备处于完好状态,油系统无漏油现象。 2)油箱内油位正常,油质良好、无积水。 3)冷油器的进出油门开启,并应有防止误操作的措施。 4)油箱及冷油器的放油门关闭严密。 5)为清洗管路在每一轴前所加的临时滤网或堵板在启动前必须拆 除。 4、对汽水系统进行下列检查: 1)主汽门应关闭。 2)汽轮机全部疏水门应开启。 3)通往汽封蒸汽管道阀门应关闭。 4)冷油器进水门关闭,出水门开启。 5、检查机组滑销系统,应保证汽机本体能自由膨胀,在冷态下侧量各膨胀间隙并记录。各蒸汽管路应能自由膨胀。 6、检查所有仪表、保安信号装置。 7、各项检查合格后,通知锅炉分厂供汽暖管。 三、暖管(到隔离阀前)

1.隔离阀前主蒸汽管路到汽轮油泵蒸汽管路、抽汽器蒸汽管路同时 暖管,逐渐提升管道压到0.1961—0.294Mpa(表)。暖管20-30分钟后,按每分增加0.0981—0.147Mpa(表)速度,将压力提升到正常压力,汽温提升速度应不超过5℃/min。 2.暖管过程中,当发现阀门冒汽时,应检查关严隔离阀及旁路门, 严防暖管时蒸汽漏入汽缸。 3.管道压力升到正常压力时,应逐渐将隔离阀前的总汽门开大,直 至全开。 4.在升压过程中,应根据压力升高程度适当关小直流疏水门,并检 查管道膨涨和吊支情况 四、启动电动油泵进行盘车,在静态下对调节保安系统和保护装置进行检查。 1.使电动油泵油压符合要求,润滑油压保持在0.05—0.10Mpa 2.检查油路系统各管道是否严密,确定无漏油之处。 3.检查轴承回油口,确定各轴承均有油流过。 4.手动盘车,测听声音。 5.在做调节保安系统测试时,会有蒸汽窜入,为防止转子弯曲,试 验中要不断进行盘车。 6.检查合格后,将保安系统挂闸。 7.开启主汽门1/3行程后,分别使各保安装置工作,检查主汽门调 节气阀是否快速关闭。 8.一切正常后,将各保安系统挂闸,接通高压油路。 9.将同步器摇到下限位置。

螺纹管换热器技术说明

空气预热器技术说明

空气换热器 1、前言 冶金行业是国家能源消耗大户,同时也是环境污染的主要制造者之一。国家制订的可持续发展的长期目标,其重要保证条件就是降低冶金行业能耗,提高能源利用率,减少污染排放,实现和谐发展。 冶金行业要降低能耗,除了改善生产工艺和条件,另外的一个重要途径就是充分利用排放掉的能源,从而提高能源利用效率。利用排放掉能源的主要设备就是换热器。 管壳式换热器是一种常见的换热设备,已经有近百年的历史。目前已经已经有非常多的种类,广泛应用于各种行业。管壳式换热器的特点是:换热空间是管束以及管束外面的壳体与管束形成的空间。一种流体走管内,另外的流体走管与壳之间。两种流体通过管壁进行换热。管壳换热器的优点是应用广泛,可以耐高温高压,可以大型化,它的缺点是传热系数比较低,单位换热面积消耗的金属材料比较多。为了解决这个问题,人们采取了很多方法来改善管壳换热器的传热条件。 2、螺纹管 螺纹管是上世纪末出现的一种异形传热管,它通过对光滑钢管进行压力加工,使其发生螺纹状形变,表面形成螺纹凹槽而成。螺纹管同光滑管比有非常明显的性能增强: ①由于螺纹凹槽的形成,可以使管内气流形成旋流,增强了紊流 状态下的对流传热能力;

②螺纹凹槽使得管子表面变得粗糙,破坏了气流边界层,使得在 层流状态下气体对流传热有明显提高; ③螺纹凹槽可使管子传热表面积有所增加; ④螺纹管比光滑管的固有频率提高,降低了换热器的振动。 但是螺纹管的阻力比光滑管大,管子刚度也比光滑管小,这是螺纹管存在的缺点。 AA2机组空气预热器的换热元件就采用单程轧槽螺纹管。 3、换热器结构 换热器采用高温列管式,风箱为方形,烟气走管外行程,空气走管内行程。整个换热器嵌入烟气通道内,没有外壳。烟气经过换热管外换热后直接排放掉,为一个行程。空气经过四个管行程被烟气加热,管束用风箱和连接管连接,连接管高温端有膨胀节。空气流与烟气流呈逆差流的流动分布。 4、换热器参数 4.1烟气参数: 入口温度:850℃出口温度:393℃ 烟气量:9636m3/h2℃阻力损失:62Pa 烟气放出热量:1.4053106kcal/h 4.2空气参数: 入口温度:20℃出口温度:550℃

背压式汽轮机运行故障分析

背压式汽轮机运行故障分析 李雨枫,姜志国 (南阳石蜡精细化工厂,南阳 473132) 摘 要:南阳石蜡精细化工厂动力站的B3-3.43/0.981型背压式汽轮机,先后出现了轴承振动,推力盘、轴径刮伤等故障。文章通过故障原因分析,找到了解决问题的办法,为同类机组的检修与维护提供了有价值的参考。 关键词:背压式汽轮机;运行;故障 中图分类号:T E974 文献标识码:B 文章编号:1006-8805(2006)01-0032-04 青岛汽轮机厂生产的B3-3.43/0.981型汽轮机,安装于南阳石蜡精细化工厂动力站,与新建65t/h 中压蒸汽锅炉配套,是热电联产的中温、中 压、冲动、背压式汽轮机。自1998年底投用以来,连续5年未出现大的问题。但在2003年底发现汽轮机出力效能下降,于是在2004年5月进行了投用以来的第一次解体大修。 2004年大修以后却先后发生了推力盘表面划伤、4号轴承及轴径损坏、机组严重振动等故障。在处理事故的过程中积累了一些经验,这里进行简要的分析和总结,以期为同类机组的运行与维护提供参考。1 机组结构及技术参数 (1)机组轴系结构 如图1所示,汽轮机与发电机通过刚性联轴 器连接。 图1 机组轴系结构 (2)有关技术参数 介质:蒸汽; 额定转速;3000r/m in; 临界转速:1855r/m in; 汽轮机前轴承(1号轴承为椭圆与推力联合轴承)几何尺寸:内径130m m,宽110mm ; 汽轮机后轴承(2号轴承为椭圆轴承)几何尺寸:内径140mm,宽110m m; 额定进汽量:47.8t/h; 额定排汽压力:0.785~1.275MPa;额定转速时振动值(全振幅): 30 m;临界转速时振动值(全振幅): 150 m 。2 问题分析及处理 2.1 2号、3号轴承振动 机组于2004年5月进行第一次解体大修,目的是处理出力效能下降的问题(实现3000kW h 的发电量,正常时需要48t/h 蒸汽负荷,目前则需要52t/h)。解体后发现约有连续1/3的二级叶片的出口存在不同程度的内凹,确认为颗粒高速撞击产生的。因生产厂家事先未预测到这方面的问题,修复必然需要相当长的时间,所以决定本次大修暂不更换受损叶片。考虑到大修一次工作量较大,顺便更换了部分气封和油封。其他未见异常,也未进行任何变动和修理。 5月21日开机试运行,随着转速的升高,2号、3号轴承的水平、垂直方向振动值不断增加,当达到额定转速时,3号轴承水平方向振动值达到124 m (见表1),停机查找原因。2.1.1 振动原因分析 对有可能造成机组2号、3号轴承振动值超标的原因逐一进行了分析。 (1)汽轮机转子与发电机转子对中不好[1]。在查看检修记录时,联轴器找正值全部在允差范围内,并没有超标。 收稿日期:2005-08-17。 作者简介:李雨枫(1957-),男,甘肃人。1981年毕业于兰州石油学校炼油机械专业,现任南阳石蜡精细化工厂副总机械师,工程师,已发表论文4篇。 动设备 石油化工设备技术,2006,27(1) 32 Petro -Chemical Equipment T echnolog y

汽轮机安装施工方案

汽轮机工艺安装施工方案 姓名: 班级: 指导老师:

目录 一、编制说明..................................................................... 错误!未定义书签。 二、工程概况..................................................................... 错误!未定义书签。 三、汽轮机的基本工作原理 (9) 四、汽轮机安装施工工序 (10) 五、施工进度计划 (29) 六、主要劳动力和机具计划 (29) 七、质量保障措施 (30) 八、安全措施 (30) 九、质量管理目标 (32)

一、编制说明: 本施工方案主要针对汽轮机组的安装而编制,编制依据如下: 1.制造厂提供的本体图纸及说明书; 2.<电力建设施工及验收技术规范—汽轮机组篇>(DL5011-92)3.<机械设备安装工程施工及验收通用规范> (CB 50231-98)。 二、工程概况: 1.工程简介: 建设单位青岛金海热电有限公司位于山东省青岛市城阳区,为区内唯一一家热电联产企业。锅炉制造厂家为无锡华光锅炉股份有限公司,一期工程的第一阶段主要由两台UG—75/5.3—M26型循环硫化床锅炉及C12—4.90/0.98-13型抽汽式汽轮机组构成. 2.主要工程量:

3.汽轮机结构、性能及主要参数: C12—4.90/0.981-13型汽轮机为抽汽式,功率12MW,与QF—J6—2型发电机组成汽轮机发电机组。 1).结构及性能: 汽轮机转子由一级复速级和十三级压力级组成,除末两级叶片为扭叶片外,其余压力级叶片均为新型直叶片。其中第四级压力级采用可调通流面积的旋转隔板结构。 转向导叶环在顶部和底部与汽缸之间采用“工”形键固定,在拆导叶环体时必须先拆去“工”形键后方可起吊。 装于前汽缸上端蒸气室内的配汽机构是提板式调节汽阀,借助机械杠杆与调速器油动机相连,调节汽阀的结构为群阀提板式,由六只汽门组成。在汽轮机前轴承座的前端装有测速装置,在座内有油泵组,危急遮断装置,轴向位移发送器,推力轴承前轴承及调节系统的一些有关部套。前轴承座与前汽缸用“猫爪”相连,在横向和垂直方向均有定位的膨胀滑键,以保证轴承座在膨胀时中心不致变动。在前座架上装有热胀传感器,以反映汽轮机静子部分的热膨胀情况。 汽轮机通过一副刚性联轴器与发电机相连,转子盘车装置装于后轴承盖上,由电动机驱动,通过涡轮蜗杆副及齿轮减速达到所需要的盘车速度。当转子的转速高于盘车速度时,盘车装置能自动退出工作位置。在无电源

汽轮机安全操作规程

汽轮机安全操作规程 1 目的 为了保证安全生产,使岗位操作制度化、标准化,规范化。 2 适用范围 余热发电汽轮机岗位 3 引用标准 全国地方小型火力发电厂汽轮机组运行规程(试行)标准 SD 251-1988 水利电力部《发电厂厂用电动机运行规程》水利电力部《电业安全工作规程》(热力和机械部分)《电力建设施工及验收技术规范汽轮机组篇》 DL5011—92 杭州中能汽轮动力有限公司《N4.5-1.25型凝汽式汽轮机安装使用说明书》 4 所在岗位存在的职业健康安全风险 触电、噪声伤害、机械伤害、高处坠落、摔伤、碰伤、撞伤、刺伤、割伤、烫伤、爆炸、淹溺(冷却塔作业) 5 安全技术要求: 5.1.上岗人员必须正确穿戴好劳动保护用品,禁止带病或酒后上岗; 5.2.上岗人员应熟悉设备的工作原理及工艺流程、操作规程及运行参数; 5.3.汽轮机油系统起动后在确认各位置油压建立的情况下,且通过各观察孔确认各润滑部位润滑油的流量后,投入盘车装置运行带动汽轮机进入盘车状态; 5.4.在锅炉起动各参数达到要求后,进行蒸汽管道的暖管,同时需将各蒸汽管道上的疏水阀打开排水,以上工作与中控需保持密切联系,汽轮机辅机均启动正常运转后,汽轮机即可开始冲转,冲转后要保证足够的暖机时间,同时并应严格按照汽轮机升速要求进行升速,升速时需密切注意汽轮机和发电机的振动,严禁在振动超标的情况下强行升速; 5.5.汽轮机升速完成并保持稳定后,即可与中控和各专业人员联系准备发电机并网,发电机并网过程中应严密监视汽轮机及各辅机的运行状况,并网后的升负荷操作需缓慢进行,避免急剧的负荷升降造成整个系统工况的失调; 5.6.汽轮机正常运行过程中,应定时、定位、定量对汽轮机及其辅机进行巡检,检查各部位的温度、压力、振幅、热膨胀量差、各润滑部位润滑油流量以及是否有异常声响,异常振动和异常气味等,发现异常情况时应立即与中控联系确认并及时向上级领导汇报,汇报时需详细描述出现异常情况时伴随的现象,以便为查找问题根源提供依据; 5.7.保证汽轮机油系统正常运行,杜绝“跑、冒、滴、漏”,停机检修时需对各油过滤器进行清洗,运行时应对油管路进行检查,运行时油路出现微量渗漏时,要及时向技术人员报告并确认无危害情况发生,并采取相应措施予以解决后方可保持汽轮机正常运行。润滑油过滤器、调速器油用过滤器、油冷却器在运行过程中切换时,应先打开两单元之间的平衡阀进行油压平衡后方可进行切换操作; 5.8.汽轮机出现紧急异常情况时操作手动停机,其后确认辅助油泵或紧急油泵启动,并严密监视转子惰走情况,及时投入盘车装置,中控要严格保证凝汽器的真空度和水位,防止汽轮机进水等严重事故; 5.9.运行过程中应防止负荷的急剧升降,正常停机时应缓慢地将负荷下调,发电机解列后重复第9项操作,若停机时间较长,根据盘车规定进行盘车,盘车装置一定要在油系统正常运行状态下投入;

凝汽式汽轮机操作规程

汽轮机岗位操作法 1.0工艺流程简述 1.1工艺原理 利用蒸汽流过汽轮机喷咀时,将热能转化为蒸汽高速流动的动能。高速汽流流过工作叶片时,将蒸汽动能转化成汽轮机转子旋转的机械功。 1.2工艺流程简述 来自中压锅炉的新蒸汽经过隔离阀至主汽门,经调节阀进入汽机。经过调节级后,抽出的蒸汽供给2#精硫池保温。再经过两个压力级做功后,小部分蒸汽抽出供除氧器加热除氧用;其余蒸汽继续作功,然后进入凝汽器凝结成水,再由凝结水泵打入除氧器中。 1.3工艺流程简图

3.0主要设备一览表 所属设备一览表 4.0岗位操作步骤 4.1开车前的检查与准备 4.1.1确认安装和检修工作完毕 4.1.2清出现场杂物以及易燃易爆物品,保持现场整洁,表计齐全、准确。 4.1.3联系有关单位及岗位送上信号表计及电动机等的电源。 4.1.4检查各系统的阀门,使其全部关闭。 4.1.5准备好启动中使用的各种工具及表计(盘车板手、听音棒、振动表、运行规程、记录本等)。 4.1.6做好启动前的各项实验,可在暖管中投入凝汽器时作实验。 4.1.7检查汽轮机组的完整性,各可动部件动作是否灵活,各紧固件是否松动,并以盘车手柄转动转子,仔细检查有无不正常状况或磨擦声。 4.1.8调节系统中同步器手轮退到顶端,主汽门手轮应在关闭位置,并检查主汽门是否灵活、危急遮断器油门处于脱扣状态。 4.2开车 4.2.1汽轮机在额定参数下的冷态启动 4.2.1.1暖管 4.2.1.1.1打开主汽门前的各疏水阀,用隔离汽阀的旁路阀控制汽量,进行低压暧管(压力0.144-0.193MPa、升温速度50℃/min、时间约20-30min)。 4.2.1.1.2当管内壁温度上升到120-130℃后或排出无色蒸汽时,就可按0.098- 0.196MPa/min速度升压,升压期间应逐步关小管道疏水阀至额定压力时升压完毕。带10-15%额定负荷时方可全关疏水阀,升压暖管时间15分钟左右。 4.2.1.2辅助设备的投入 为了缩短机组启动时间并保证启动正常,在一切运转正常时,暖管过程中应 进行下列工作。 4.2.1.2.1投入电动油泵:打开电动油泵出口压力约为0.49MPa,油温控制在25℃以上。

螺旋螺纹管换热器的应用

螺旋螺纹管换热器的应用 工艺装备室陈金辉 【摘要】 中国原料药发展迅速,已经成为世界制药原料药第一大生产和出口国。我国现有医药企业6700多家,通过GMP的医药生产企业4000多家。在日益成熟的市场竞争中,先进的技术就显得尤为重要。而提高原料药生产车间溶媒回收率是各企业增强企业竞争力最直接有效的体现。本文介绍的螺旋螺纹管换热器,采用全不锈钢材质及先进的换热技术,在原料药行业的应用,大大的提高了溶媒回收率,提高了生产效率,有效地增强了企业的竞争力。 【关键词】:节能、换热器、原料药 众所周知换热器已经广泛的应用于各行各业,它是决定企业能耗水平的主 导性因素之一,也是行业节能挖潜的关键设备。 传热现象是由温度差引起的能量转移,即以温度差为动力而产生的能量由高 温向低温进行传递的过程。螺旋螺纹管换热器是管壳式换热器之一。综合其设计 理论依据,结构特点,性能分析,它同时具有安全、高效节能、体积小、表面光 洁维护费用低、使用寿命长等特点,相对于传统换热器它是具有划时代意义的 节能产品。本文将通过国内各行业的应用实例,来展现螺旋螺纹管换热器在节 能减排中起到的重要作用。 一.设计依据: 螺旋螺纹管换热器较传统换热器,依据国际先进设计理论,计算准确,设计合理。 1.螺旋螺纹管设计,双侧强化传热设计。 2.利用欧文(OWEN)湍流抖振频率准则原理,消除换热器湍流抖振现象,热应力自消除。 3.利用声共鸣许用准则(Eisinger准则和Bevins准则),抑制声驻波,降低运行噪音。 4.利用CFD(计算流体力学技术),FEM(有限元技术),提高计算精度。 二.独特设计及机理: 传热系数是传热设备的一个重要技术指标,强化换热表面对流传热是提高传热系数的有效措施。螺旋螺纹管换热器通过独特的结构设计,显著提高换热系数,实现高效节能。 1.材质: 螺旋螺纹管换热器,换热管为不锈钢316L材质,壳程为不锈钢316材质,以满足不同复杂物料的换热要求。最高耐温400℃,最高耐压1.6Mpa。 2.螺纹管束: 螺旋螺纹管换热器采用高效不锈钢双螺纹管。该管束表面设计周期变化的环形螺纹,当

相关文档