文档库 最新最全的文档下载
当前位置:文档库 › 台湾海峡海底铁路隧道建设方案(王梦恕)

台湾海峡海底铁路隧道建设方案(王梦恕)

台湾海峡海底铁路

隧道建设方案

中国工程院院士

王梦恕

为了沟通海峡两岸,加强经济、文化联系,

方便老百姓,修建海底隧道十分必要。

、台湾海峡海底隧道采用铁路隧道

一、台湾海峡海底隧道采用铁路隧道

方案是合理的

当今世界上已修建了许多海峡隧道,正在

当今世界上已修建了许多海峡隧道正在

筹建的也很多。其中重点介绍已建的6座隧道。

1、1940年日本在关门最早用盾构法修建

11940年日本在关门最早用盾构法修建了世界上海底铁路隧道,其长度3.6km。

2、1975年日本用钻爆法在关门又建成了长的第座海峡铁路隧道。

长18.7km的第二座海峡铁路隧道。

3、1988年日本在津轻海峡用钻爆法建成了至今世界上最长的海峡铁路隧道青函了至今世界上最长的海峡铁路隧道——青函隧道。其长度是54km。是目前正在论证的台湾海峡铁路隧道长度的一半。

湾海峡铁路隧道长度的半

图1 日本青函隧道纵断面图图2 日本青函隧道横断面图

图3 建成后的日本青函隧道

4、1994年,英法两国用盾构和TBM硬岩掘进机法建成了英法海底铁路隧道其长度为机法建成了英法海底铁路隧道,其长度为50.5km,是世界第二长的海底铁路隧道。

图4英吉利海峡隧道平面位置图图4 英吉利海峡隧道平面位置图

图5 开敞式TBM

图6 英法海峡隧道

图7 英法海峡隧道地质剖面及布置图

图8 英法海底铁路隧道

51991年丹麦斯多贝尔修建的海峡公路隧5、1991年丹麦斯多贝尔修建的海峡公路隧

道长7.9km,总造价约40亿元,盾构法施工长浅埋暗挖法施长度

长7.26km,浅埋暗挖法施工长度0.64km,

盾构直径8.782m ,管片厚40c m 。

图9 盾构机

图10 剖面图

日本东京湾海底公路隧道

6、日本东京湾海底公路隧道

1986年开工,1996年8月建成,10年工期,

工程全长151km,其中海底盾构隧道长912

工程全长15.1km,其中海底盾构隧道长9.12km,是世界上最长的海底公路隧道,进、出口和2个

竖井共8个工作面同时施工,8台泥水加压盾构,竖井共8个工作面同时施工8台泥水加压盾构

直径14.14m,双向6车道,采用复合式衬砌结构,管片厚65cm,二次衬砌钢筋混凝土厚35cm。

管片厚次衬凝厚

薄管片薄管片++二次模筑二次模筑==复合衬砌结构复合衬砌结构,,该型式耐久性好,强度高,适于铁路隧道或重要通道。

二次模筑

薄管片

图11 隧道断面图

上述六座海底隧道成功建成,凸显了世

界各国对修建海底隧道的高度重视和极大热情,界各国对修建海底隧道的高度重视和极大热情

也说明了海底隧道的设计技术、施工技术和施

工工艺等已基本成熟,只要我们进一步在隧道

埋深、结构耐久性和运营通风与防灾等方面加

以研究,修建台湾海峡海底隧道方案是可行的

和合理的。

和合理的

同时,基于国内外海底隧道修建的成功经

验,一般隧道长度大于20km以上的均采用铁路验般隧道长度大于20k以上的均采用铁路

隧道,电力牵引,这样可长距离不设通风竖井、

运营安全、风险小、运营费低;海底公路隧道

设计长度不能超过至于台湾海峡公路运设计长度不能超过10km。至于台湾海峡公路运输问题,原则是汽车坐火车跨越海峡。

二、台湾海峡海底特长铁路隧道断面设计1、长大隧道必须采用双洞单线,以利

、台湾海峡海底特长铁路隧道断面设计

长大隧道须采用双洞单线以利于施工通风;通风采用巷道式射流通风。2出渣运输采用大容量电力机车牵引;2、出渣运输采用大容量电力机车牵引;也可采用连续皮带机输送。

1)其连续皮带机相对有轨运输的优点如下:

(1)后配套系统设计可缩短;

所需通机功率将大为降低

(2)所需通风机功率将大为降低;

(3)减少机车车辆翻车机及洞外轨(3)减少机车、车辆、翻车机及洞外轨

道调度系统,运行管理简单;

(4)安全性提高;

(5)仰拱结构可简单

(5)仰拱结构可简单。

2)连续皮带机的应用

(1)美国80%长大隧道工程项目采用连

续皮带机出渣;

(2)欧洲近些年来长大隧道也大多采用

连续皮带机出渣;

(3)中间驱动技术、控制技术的发展使

连续皮带机技术趋于成熟已具有较高可连续皮带机技术趋于成熟,已具有较高可

靠性;

(4)理论上连续皮带机可以无限延伸(4)理论上,连续皮带机可以无限延伸,

但目前的技术水平为15km.

(5)国内大伙房输水工程采用连续皮带

机出碴,最长运距达11.25km。

3、铁路运营速度采用200km/h是最优速度。

4、隧道有效内净空面积:国内单线断面为

隧道有效内净空面积国内单线断面为

60m2左右;双线断面为90m2左右。

1)隧道净空面积的影响因素主要有以下几方面:

(1)隧道建筑限界线的间距;

(2)应预留的空间:安全空间、救援通道、

()应预留的空间安全空间救援通道

工程技术作业空间、内部配件空间等;

工程技术作业空间内部配件空间等

(3)考虑空气动力学影响所需的空间。

图12大伙房皮带输送机图12 大伙房皮带输送机

图13 出碴设备

2)空气动力学效应

图14 隧道微气压波的发生

3)高速列车在隧道内运行引起的问题

高速列车进入隧道时,会在隧道出口产

生微气压波使附近房屋震动发出轰鸣生微气压波,使附近房屋震动,发出轰鸣

声,引起扰民问题。

4)不同运行速度国内外高速铁路隧道内净

空断面设计情况如下表1、2所示。

表1 国内外高速铁路隧道内净空面积表

国线别运营速度(/)断面积(家

运营速度(km/h)断面积(m 2)日本

新干线240~30061~64法国大西洋线30071北方线、东南延伸线300

100地中海线350

100汉诺威~维尔茨堡德国汉诺威维尔茨堡曼海姆~斯图加特汉诺威~柏林250

82汉诺威柏林科隆~法兰克福300

92西班牙马德里~塞维利亚270

75韩国汉城~釜山350

107台北高雄

中国台湾台北~高雄35090

云平台建设方案

云平台建设方案 1、配置满足当前(2014)年度,硬件投入需求 2、一定的扩展能力,10台4路,10台2路可迁移系统 3、应用包括(DB、中间件;开发、测试、验收和上线环境)移动平台 1、规则引擎数据库、 中间件 健康险平台2、统计分析中间件 能力提升年,提高信息系统支持能力;影像系统3、OA中间件、数据库 1、计算投资管理系统 2、存储稽核审计系统 3、网络GPS查勘调度系统 资金管理系统 方案对比:费控系统 硬件对比人力资源系统 软件对比:vmware、Huawei FusionCompute 河南农户电子 档案 非车险承保理赔系统改造 第一类系统(即短时间中断会造成重大社会影 响或影响保险机构关键业务功能,并造成重大 经济损失的信息系统)包括核心系统及相关子 系统。具体有:核心业务(含影像资料)、规 则引擎、农险电子档案、保协车险共享平台、 广域网络专线和96999客服专线。 第二类系统(即短时间中断会造成较大社会影 响或影响保险机构部分关键业务功能,并造成 较大经济损失的信息系统)包括核心业务系统 支撑平台。具体有:统计分析、精友车型数据、 保单自助查询、短信平台。 第三类系统(即间接支持关键业务功能或保险 机构对系统中断具有一定容忍度的信息系统) 包括OA办公自动化、邮件、网站、GIS系统、 移动查勘等。 云平台建设方案 (讨论稿) 信息化经历了T-S模式(终端-主机)、C-S模式(PC时代客户机-服务器)、B-S模式(互联网时代浏览器-服务器);新时代以服务的方式被发布和访问的“云计算”模式;为响应国家节能减排的号召,

减少公司信息化硬件重复投资,增强数据中心的运维和安全管理,构建高可用的新一代数据中心,我们将云平台建设纳入议事日程。 201X年公司面临再一次的职场搬迁,有了2012年职场搬迁网络实现无缝切换的经验,我部将以新职场中心机房建设为契机,构建云计算架构的数据中心,在保障业务平滑迁移的基础上,以实现IT 资源的大整合、数据中心的大集中。 根据私有云建设的规律,我们将云平台建设分三个阶段: 第一阶段:落地云设备,实现计算资源虚拟化、存储资源虚拟化和网络资源虚拟化,建设周期2~3个月; 第二阶段:落地云平台,对现有业务环境进行梳理,在云平台上部署轻量级数据库、中间件环境,实现部分业务系统的迁移,建设周期1~2个月; 第三阶段:建设云平台的灾备系统,具体建设时间根据新职场搬迁计划等实际情况待定。 本次建设方案为第一二阶段。 第一阶段:落地云设备 实现计算资源虚拟化、存储资源虚拟化和网络资源虚拟化 第二阶段:落地云平台 对现有业务环境进行梳理,在云平台上部署轻量级数据库、中间件环境,实现部分业务系统的迁移

盾构工法

第五章盾构法施工 第一节概述 盾构法是暗挖隧道的专用机械在地面以下建造隧道的一种施工方法。盾构是与隧道形状一致的盾构外壳内,装备着推进机构、挡土机构、出土运输机构、安装衬砌机构等部件的隧道开挖专用机械。采用此法建造隧道,其埋设深度可以很深而不受地面建筑物和交通的限制。近年来由于盾构法在施工技术上的不断改进,机械化程度越来越强,对地层的适应性也越来越好。城市市区建筑公用设施密集,交通繁忙,明挖隧道施工对城市生活干扰严重,特别在市中心,若隧道埋深较大,地质又复杂时,用明挖法建造隧道则很难实现。而盾构法施工城市地下铁道、上下水道、电力通讯、市政公用设施等各种隧道具有明显优点。此外,在建造水下公路和铁路隧道或水工隧道中,盾构法也往往以其经济合理而得到采用。 盾构法是一项综合性的施工技术。盾构法施工的概貌如图5-1所示。构成盾构法的主要内容是:先在隧道某段的一端建造竖井或基坑,以供盾构安装就位。盾构从竖井或基坑的墙壁预留孔处出发,在地层中沿着设计轴线,向另一竖井或基坑的设计预留孔洞推进。盾构推进中所受到的地层阻力,通过盾构千斤顶传至盾构尾部已拼装的预制衬砌,再传到竖井或基坑的后靠壁上。盾构是一个能支承地层压力,又能在地层中推进的圆形、矩形、马蹄形及其他特殊形状的钢筒结构,其直径稍大于隧道衬砌的直径,在钢筒的前面设置各种类型的支撑和开挖土体的装置,在钢筒中段周圈内安装顶进所需的千斤顶,钢筒尾部是具有一定空间的壳体,在盾尾内可以安置数环拼成的隧道衬砌环。盾构每推进一环距离,就在盾尾支护下拼装一环衬砌,并及时向盾尾后面的衬砌环外周的空隙中压注浆体,以防止隧道及地面下沉,在盾构推进过程中不断从开挖面排出适量的土方。 盾构是进行土方开挖正面支护和隧道衬砌结构安装的施工机具,它还需要其它施工技术密切配合才能顺利施工。主要有:地下水的降低;稳定地层、防止隧道及地面沉陷的土壤加固措施;隧道衬砌结构的制造;地层的开挖;隧道内的运输;衬砌与地层间的充填;衬砌的防水与堵漏;开挖土方的运输及处理方法;配合施工的测量、监测技术;合理的施工布置等。此外,采用气压法施工时,还涉及到医学上的一些问题和防护措施等。

拌和站施工方案【详细版】

目录 1 编制依据原则及范围 (2) 1.1 编制依据 (2) 1.2 编制原则 (3) 1.3 编制范围 (3) 2 工程概况 (3) 2.1 项目简介 (3) 2.2 主要工程数量 (3) 2.3 主要技术标准 (3) 3 施工组织机构 (3) 3.1 组织机构 (3) 3.2 主要管理人员配备及分工 (4) 4 资源配置 (4) 4.1 人员机械配置 (4) 4.2 主要材料配置及调配计划 (5) 5 施工准备 (5) 5.1 施工人员及机械设备进场 (5) 5.2 物资准备工作 (5) 5.3 技术准备工作 (5) 6 工程进度计划 (5) 7 拌和站施工方案 (6) 7.1拌和站概况 (6) 7.2施工机具 (6) 7.3施工工艺流程图 (6) 7.4 场地施工 (6) 7.5 拌和站基础施工 (7) 7.6 料仓建设 (7) 7.7 主机安装 (8) 7.8 生活区建设 (12) 8 质量和工期的保证措施 (12) 8.1 质量保证 (12) 8.2 工期保证 (14) 9 安全保证体系及措施 (14) 9.1 安全管理组织机构 (14) 9.2 安全保证体系 (14) 9.3 安全生产保证措施 (16) 10 文明施工 (17) 1 编制依据原则及范围 1.1 编制依据 ⑴现行的国家有关方针政策,以及国家和铁道部有关法律、规范、验标、施工指南和铁道部最新 规章制度等; ⑵沪昆铁路有限责任公司《关于进一步加强大型临时设施施工质量安全控制的通知》; ⑸宁安铁路有限责任公司《关于做好2010年一季度重点工作的通知》(宁安综发[2010]24号)及

上海铁路局颁发的工厂化生产指导意见(上铁建函[2010]170号); ⑹ 2010年1月份现场调查资料、与相关部门签订的协议及工作成果; ⑺中国路桥宁安铁路实施性施工组织设计 ⑻宁安铁路有限责任公司工程部审批的三分部大临规划方案 1.2 编制原则 ⑴符合性原则。必须满足建设单位的建设工期和工程质量标准,符合施工安全、文明施工等要求。 ⑵科学、经济、合理的原则。树立系统工程的理念,统筹分配安排施工便道大临工程的工期,组织均衡、连续生产,管理目标明确,指标量化、措施具体、针对性强。 ⑶引进、创新、发展的原则。积极采用、利用沿线可用资源,提高工程技术和施工水平,保证施工便道大临工程的施工安全和工程质量,加快施工进度,降低工程成本。 1.3 编制范围 中国路桥宁安铁路3-1#拌和站建设工程。 2 工程概况 2.1 项目简介 新建宁安铁路第三项目分部的施工管段为DK113+000—DK133+909.35,全长20909.35m。桥梁12366.8m,占线路总长的58.89%,其中特大桥4座,大桥3座、框架桥(立交桥)5座。路基长度8347.2m,占线路总长的39.75%,其中含繁昌西站及涵洞39座。隧道长度286m,占线路总长的1.36%,为明挖隧道。公跨铁立交桥2座。全线跨321省道两次,跨芜铜铁路既有线一次,跨军事专用铁路线一次。施工线路长,便道建设标准高,所经地段塘多,地下水丰富,都为施工便道的建设造成很大的难度。 拌和站拟建在DK119+100附近,在主线右侧,临近321省道,距321省道约100m,距离施工便道约2.5Km,平均运距7Km,混凝土最大运距17Km,占地面积约44亩。我管段混凝土总量约为28万立方米,我管段日最大混凝土需求达600立方。我拌和站拟准备装三台HZS120型机组,以便满足施工时混凝土最大需求量。 2.2 主要工程数量 2.3 ⑴拌和站以满足建设单位要求为准, ⑵合理的规划拌和站用地, ⑶站内道路满足重型车行走要求, ⑷布置一定比例的绿化, ⑸设置足够的消防设施。 3 施工组织机构 3.1 组织机构 根据大型临时工程施工管理的需要,结合宁安城际铁路工程施工的实际情况,我们单独成立了“大临工程”施工组织机构,负责管段的临时工程施工,同样管理拌和站工程。 详见:中国路桥宁安铁路第三项目分部大临工程组织机构 中国路桥宁安铁路第三项目分部大临工程 管理组织机构

混凝土拌合站建设方案详细

混凝土拌和站建设方案 1.工程概况 XXX拌和站位于XX里程线路左侧30米,承担作业队结构物砼拌和任务,主要供应xx地方砼,砼总量约8万立方米。混凝土类型为普通混凝土,等级有C20、C25、C30、C35混凝土。拌合站占地约5亩。拌合站的建设分基础、设备安装、调试、验收和试运行五个阶段。 2.拌和站设备型号及生产能力 根据实际生产需要拌和站设HZS35拌和机2套,按日工作12h计算,日生产能力约800m3。 拌和站配置六个储存罐,其中40m3水泥罐四个, 40m3粉煤灰罐2个;配置碎石仓4个(5-10mm碎石仓两个,10-20mm碎石仓两个),细骨料仓2个。拌合站场地全部硬化处理。 拌和站附属设施配置见下表: 拌和站附属设施配置表 注:砂石料仓位置见《拌和站平面布置图》 另配备有: ①拌和站附近设置有一长10m宽10m深2m的蓄水池,总计可蓄水约200m3。 3.基础施工 3.1平面布置 拌和站的平面位置详见《施工总平面布置图》,具体位置由测量人员实地放线确定。 3.2扩大基础施工 待测量人员将拌合站各基础位置放样后进行扩大基础开挖。水泥罐、拌和楼等基础平面布置及开挖尺寸应满足厂家提供的基础施工图纸,按照地基承载力验算结果确定。 3.3场地硬化

拌和站场地进行硬化处理。施工前将地表浮土清除后,进行碾压,要求压实度>95%,基底承载力不小于100kpa;面层采用20cm厚C20混凝土。 4.拌和站安装方案 4.1平面布置 拌和站平面布置见《第一拌和站平面布置图》 4.2安装准备 4.2.1现场人员的配置 4.2.2机械设备配置;配置2台25t汽车吊相互配合进行拌和站安装。并配备揽风绳8根。 4.2.3安装前对设备进行全面的检查;选用的电气设备及电器元件符合拌合站的工作性能和工作环境,并有合格证。金属构件的成套性和完好性。 4.2.3检查预埋件的位置、数量符合要求。 4.2.4基础的位置和及承载能力符合要求。 4.2.5准备电焊机2台、气焊装置2套、电工工具1套。 4.3安装 4.3.1安装顺序: 设备基础施工—控制房安装—搅拌主机安装—皮带输送系统的安装—配料站的安装—粉罐安装—水泥输送系统安装—电气系统安装—施工排污水沟—水池、沉淀池及外加剂池施工—拌合站围护—地面硬化处理—上料台施工 4.3.2安装注意事项 ○1主机基础及配料站安装需用水平仪校正 ○2各节点的螺栓必须紧固,不得漏装。 ○3搅拌主楼基础位置误差小于2㎜,混凝土硬化后才能安装主楼及粉罐。 ○4搅拌站设置专用接地网,与粉罐有可靠的电气连接,其接地电阻不小于10Ω;

水下盾构隧道纵向抗震性能分析及SMA柔性减震节点研究

水下盾构隧道纵向抗震性能分析及SMA柔性减震节点研究 随着城市建设的发展和地下空间的开发,大型水下盾构隧道正朝着超长、大 断面、高水压和地质条件复杂的方向发展,这对盾构隧道的抗震研究提出了更高 的要求和挑战。然而,过去人们普遍认为,地下结构受周围土体约束,较难受到地震灾害的影响,导致地下结构的抗震研究严重滞后于地上结构。 盾构隧道作为地下结构的重要组成部分,其整体纵向抗震的研究相对较少,且大型盾构法隧道结构系统尚未真正经受强震作用的考验。为保障高烈度区大型盾构法隧道的安全,探索新型有效的隧道抗震、减震措施十分有必要。 本文依托某大型水下盾构隧道工程,结合盾构隧道纵向抗震相关理论,建立能反映盾构隧道整体纵向受力特性的有限元模型,分析结构在地震作用下的动力 响应;针对隧道沿纵向土层变换处,环缝接头张开量超过防水限值的情况,提出了一种“哑铃式”形状记忆合金(SMA)柔性减震节点,布置于盾构隧道管环薄弱位置,并开展一系列不同SMA材料形式的力学性能试验,探讨SMA柔性减震节点用于隧道的可行性。具体研究内容如下:(1)归纳、总结盾构隧道纵向抗震计算常见的分 析模型和分析方法,对不同分析模型和分析方法优缺点、适用条件进行对比,并给出隧道接头弹簧参数的计算方法;通过总结地震动参数确定方法和人工合成地震 波相关理论,以及ANSYS/LS-DYNA的无反射边界理论,确定可以采用时域法生成 谱拟合人工地震波及得到粘性人工边界,为后续隧道纵向抗震奠定理论基础。 (2)依托某大型水下盾构隧道工程,采用梁-弹簧模型理论,利用ABAQUS软件,建立盾构隧道整体纵向有限元模型;基于经典广义反应位移法及无反射边界 (non-reflecting boundary)理论,利用ANSYS/LS-DYNA软件,建立隧道位置处土体三维有限元模型,分析得到土体的位移时程响应,并将该位移响应通过地层弹

隧道爆破设计方法

隧道爆破设计方案 (台阶法) 一、工程概述 本合同段有四座隧道。隧道区域处于构造剥蚀丘陵—低山地貌区,主要出第四系全新统残坡积碎石土、中元古武当山群片岩和上元古界震旦系上统灯组片岩。本段内短隧道为Ⅳ、Ⅴ级围岩,中长隧道为Ⅲ、Ⅳ、Ⅴ级围岩,其中Ⅳ级围岩采用台阶法爆破开挖(Ⅴ级围岩主要采取人工配合机械开挖,不需要爆破)、锚、喷、格栅、网、初期支护,全断面复合式衬砌。爆破方法采用光面爆破。 二、光面爆破的特点 光面爆破施工,可以减少对围岩的扰动,增强围岩的自承能力,特别是在不良地质条件下效果更为显著,不仅可以减少危石和支护的工程量,而且保证了施工的安全;由于光面爆破使开挖面平整,岩石无破碎,减少了裂隙,这样可以大大减少超欠挖量。据有关资料统计,光面爆破与普通爆破相比,超挖量由原来的15%~20%降低到4%~7%,不但减少出碴量,而且还很大程度的减少了支护的工作量,从而降低的成本,加快了施工进度。根据公路隧道“新奥法”施工的需要和工程地质条件,结合施工现场实际情况,我标段的四座隧道中的Ⅲ、Ⅳ级围岩决定采用光面爆破施 工。 三、光面爆破方案的确定 目前,大断面隧道光面爆破施工有2种方法:一是预留光爆层法;二是全断面一次性开挖法。 根据施工现场的实际条件及围岩情况,本段隧道采用全断面一次性开挖法。 四、台阶法(Ⅳ级围岩)光面爆破设计方案(结合前文内容) 1.光面爆破不偶合系数、装药直径 公式: /k i D d d == 式中 D 一不偶合系数; dk —炮眼直径,mm; di —炸药直径,mm; a —爆生气体分子余容系数; P —爆生气体初始压力;

—岩石的三轴抗压强度; c r—绝热指数,; 在实际操作过程中,对于周边眼的药卷,我们采取将标准φ32mm的2号岩石乳化炸药沿轴线 对半切(相当于φ20mm)。这个数值与理论计算值相近,则实际周边眼不偶合系数 D=dk/di =42/20=,符合规范中软岩装药不耦合系数D=的要求。 式中: dk炸药—炸药直径; di炮眼—炮眼直径。 2.确定周边眼间距(E)、最小抵抗线(W)和相对距系数(K)最小抵抗线与开挖的隧道断面大小有关。在断面跨度大,光爆眼所受到的夹制作用小,岩石 比较容易崩落,最小抵抗线可以大些,断面小,光爆眼所受到的夹制作用大,最小抵抗线可以小 些,最小抵抗线与岩石的性质和地质构造也有关,坚硬岩石最小抵抗线可小些,松软破碎的岩石 最小抵抗线可大些。我标段四座隧道岩质主要为软岩,故确定最小抵抗线(V)为~。 相对距系数是周边眼间距(E)与最小抵抗线(V)的比值,是影响爆破效果的重要因素。 K= E/V 式中, E为周边炮眼间距,cm;V为最小抵抗线,cm; K值总是小于1,当d=38~46mm,E=30~50cm, V=40~60cm时,K=~。 考虑到权爆区岩石节理较发育,并参照规范周边眼间距取值范围30cm-50cm, 对周边眼间距 取45cm,最小抵抗线值取60cm,K=E/V=。 3、炮眼装药系数 周边眼的装药集中度采用规范取值范围~0.15kg.m-1,取0.14kg/m,其它炮眼的填充系数选 用见下表: 4、循环Array进尺 综合考虑 各项因 素,取L=1.5m

铁路拌和站建设方案20140225

中铁十局龙烟铁路ZQ-III标段 2#拌和站建设实施方案 1.工程概况 中铁十局龙烟铁路ZQ-III标段三分部途径烟台市经济技术开发区、福山区、芝罘区至珠玑站,新建正线西起福山区福新大杨家,起点里程GDK100+300,线路终点里程GDK112+879.27;福山联络线起点北皂线路所,起点里程GDK111+022.4,并行龙烟正线,线路与龙烟正线分开后,上跨沈海高速,在GHDK112+345并行烟大轮渡线,下穿龙烟正线、蓝烟下行线接入烟大轮渡线,线路终点里程GHDK113+351.55,联络线全长2.329km。 2.拌和站的选址及总体规划 龙烟铁路ZQ-III标段2#拌和站位于福山区福新路以西柳行居委会旁边,线路里程103+000处右侧,距离线路垂直距离75米左右,此位置交通方便,紧邻柳子河。本拌和站占地约19亩,主要供应龙烟铁路ZQ-III标段三分部结构混凝土,混凝土总量约29万立方米。 依据现场实际地形进行合理规划,采用砖砌围墙进行全封闭管理。拌和站内分出生活区、搅拌作业区、材料存放区及运输车辆存放区等,材料存放区分为待检区和合格区。(详见《龙烟三标2#拌和站平面布置图》) 3.拌和站机械设备及材料的配置 本拌和站配置2台HZS120大型自动计量搅拌机(每台含4个200T水泥罐,2个100T粉煤灰罐,1个100T备用罐,一台三级配的配料机,提升斗上料);两台装载机,一台砂子筛洗机,一台碎石冲洗机,12台混凝土运输车,安装一台400KVA变压器,

备用一台250KVA发电机,一台150T地磅。 本拌和站配备试验检测设备主要有: 施工高峰期间现场混凝土需求量约1000m3/日,根据规范对混凝土拌和时间要求(每盘搅拌时间不低于120s),并考虑上料和出料时间,每台HZS120型搅拌机实际最大生产能力为40m3/h,两台搅拌机同时作业,每天工作15小时,最大生产混凝土量为1200m3,满足高峰期混凝土的需求。 4.拌和站建设施工

拌和站建设方案

武汉城市圈环线高速公路仙桃段 第二合同段 混凝土拌和站标准化建设方案 编制:______________ 复核:______________ 审批:______________ 武汉城市圈环线高速仙桃段第二合同段 中建五局项目经理部 2013年3月

目录 一、工程概述 (3) 二、选址情况 (3) 三、拌合站建设方案 (4) 3.1拌和站规划 (4) 3.2设备选型 (4) 3.3人员配置 (7) 3.4场地建设 (8) 3.5临时用电、消防布置…………………………………………………………… 15 3.6排水设计与施工 (16) 3.7场区标识、标牌施工…………………………………………………………… 16

混凝土拌和站标准化建设 一、工程概述 本合同段属于仙桃市西流河镇、沙湖镇范围内,起于仙桃市西流河镇金桥村,止于沙湖镇滩湖村,起点与武汉城市圈环线高速公路仙桃段1标段对接,终点与武汉城市圈环线高速公路荆州段对接,桩号为K153+000~K175+938,全长22.938Km。 本合同段共有特大桥4座:苟美湖特大桥、沙湖中心沟大桥、沙湖特大桥、东荆河特大桥;大桥2座:连接线电排河桥、沙湖互通A匝道桥;小桥1座:连接线红土堰沟桥;盖板涵5道,通道8道。共有C30混凝土约42.5万方,C50混凝土约25.4万方。根据施工总体进度计划,主体混凝土需要在21个月内浇筑完成,通过生产能力核算,为便于项目组织生产,和三个分部有效管理站场,项目部决定在全线布置三座混凝土拌和站。分别由三个分部进行调度管理。 1号拌和站主要负责供应苟美湖特大桥砼供应,其中C30砼9.865万方,C40、C50砼6.3837万方。 2号沙湖中心沟大桥以及全线范围内小桥、涵洞、通道的混凝土,其中C30混凝土约8.083万方,C40、C50混凝土约5.043万方。 3号拌合站主要负责供应沙湖特大桥、东荆河特大桥的混凝土,其中C30混凝土约24万方,C50混凝土约13.8万方。

盾构隧道排水通风具体内容

盾构隧道排水通风具体内容 采用盾构为施工机具,在地层中修建隧道和大型管道的一种暗挖式施工方法。施工时在盾构前端切口环的掩护下开挖土体,在盾尾的掩护下拼装衬砌(管片或砌块)。在挖去盾构前面土体后,用盾构千斤顶顶住拼装好衬砌,将盾构推进到挖去土体空间内,在盾构推进距离达到一环衬砌宽度后,缩回盾构千斤顶活塞杆,然后进行衬砌拼装,再将开挖面挖至新的进程。如此循环交替,逐步延伸而建成隧道。 采用盾构为施工机具,在地层中修建隧道和大型管道的一种暗挖式施工方法。施工时在盾构前端切口环的掩护下开挖土体,在盾尾的掩护下拼装衬砌(管片或砌块)。在挖去盾构前面土体后,用盾构千斤顶顶住拼装好衬砌,将盾构推进到挖去土体空间内,在盾构推进距离达到一环衬砌宽度后,缩回盾构千斤顶活塞杆,然后进行衬砌拼装,再将开挖面挖至新的进程。如此循环交替,逐步延伸而建成隧道。 历史和发展 用盾构法修建隧道已有150余年的历史。最早进行研究的是法国工程师M.I.布律内尔,他由观察船蛆在船的木头中钻洞,并从体内排出一种粘液加固洞穴的现象得到启发,在1818年开始研究盾构法施工,并于1825年在英国伦敦泰晤士河下,用一个矩形盾构建造世

界上第一条水底隧道(宽11.4米、高6.8米)。在修建过程中遇到很大的困难,两次被河水淹没,直至1835年,使用了改良后的盾构,才于1843年完工。其后P.W.巴洛于1865年在泰晤士河底,用一个直径2.2米的圆形盾构建造隧道。1847年在英国伦敦地下铁道城南线施工中,英国人J.H.格雷特黑德第一次在粘土层和含水砂层中采用气压盾构法施工,并第一次在衬砌背后压浆来填补盾尾和衬砌之间的空隙,创造了比较完整的气压盾构法施工工艺,为现代化盾构法施工奠定了基础,促进了盾构法施工的发展。20世纪30~40年代,仅美国纽约就采用气压盾构法成功地建造了19条水底的道路隧道、地下铁道隧道、煤气管道和给水排水管道等。从1897~1980年,在世界范围内用盾构法修建的水底道路隧道已有21条。德、日、法、苏等国把盾构法广泛使用于地下铁道和各种大型地下管道的施工。1969年起,在英、日和西欧各国开始发展一种微型盾构施工法,盾构直径最小的只有1米左右,适用于城市给水排水管道、煤气管道、电力和通信电缆等管道的施工。 中国于第一个五年计划期间,首先在辽宁阜新煤矿,用直径 2.6米的手掘式盾构进行了疏水巷道的施工。中国自行设计、制造的盾构,直径最大为11.26米,最小为3.0米。正在修建的第二条黄浦江水底道路隧道,水下段和部分岸边深埋段也采用盾构法施工,盾构的千斤顶总推力为108兆牛,采用水力机械开挖掘进。在上海地区用盾构法修建的隧道,除水底道路隧道外,还有地铁区间隧道、通向河海的排

隧道爆破设计计算

Ⅳ级围岩爆破设计 工程概况 大瑶山隧道位于广东省乐昌市的庆云镇至两江镇的九峰河,隧道全长 10331m,隧道以碳酸盐岩和碎屑岩为主,隧道内考虑到断裂带、部分浅埋段岩体 2风化、破碎等,隧道围岩多为Ⅳ级。隧道穿越地区有断裂构造,围岩较为破碎, 裂缝较发育,断裂带附近易富水,岩溶水赋水性为中等,碎屑岩及浅变质岩属含 水丰富的基岩裂隙水含水层,所以地下水较发育。隧道断面设计为马蹄型,跨度 B=,高为H=。 爆破方案选择 为了保证隧道的开挖质量,又能加快施工速度,缩短工期,故IV级围岩实 施爆破区段采用上、中、下三台阶开挖的光面爆破方案,由于围岩较为破碎,所 以采用段台阶法,实现及早支护封闭。由于采用三台阶的开挖方法,所以每循坏 进尺的爆破工作都要分成三部分完成的。对于一个开挖断面,先对上台阶进行爆 破开挖、出渣,当上台阶向前开挖推进一定距离后,再对中、下进行爆破作业,应尽量减少相邻两个工作面之间施工相互干扰。每月施工28天,采用2班循环 掘进平行作业,月掘进计划进尺为120m。 爆破参数选择 (一)上台阶参数计算 (1)炮眼数N 断面炮眼数是受多个因素限制,它和爆破作业面积、围岩等级等因素有关。炮眼 数目N可根据式(4-1)计算得出: (4-1) 式中,q—炸药消耗量,一般取~ 实际根据表4-1选取:

,,,。 S—爆破作业的面积,由开挖断面图可知,IV 级围岩开挖断面 , 上台阶断面积为,中台阶断面积,下台阶断面积;仰拱断面积。 —系数,根据表4-3取值,选取时要综合考虑各类炮眼,上台阶取; —药卷的炸药质量,2号岩石铵梯炸药的每米质量见表4-2;本工程中取; 根据上式计算得出,上台阶炮眼数为N1109个,中台阶炮眼数为N2102个,下台阶炮眼数为N394个,仰拱炮眼数为N425个。 表4-1 隧道爆破单位耗药量() 开挖部位和掘进断面积/围岩类别 ⅣⅤⅢⅣⅡⅢI 单自由面 4—6 7—9 10—12 13—15 16—20 40—43 多自由面扩大挖底 表4—2 2号岩石铵梯炸药每米质量值 药卷直径32353840444550 (kg/m)

云平台建设方案

云平台建设原则 1、标准化 当前云服务在整个信息产业中还不够成熟,相关的标准还没有完善。为保障方案前瞻性,在设备选型上力求充分考虑对云服务相关标准的扩展支持能力,保证良好的先进性,以适应未来的信息产业化发展。 2、高可用 为保证数据业务网的核心业务的不中断运行,在网络整体设计和设备配置上都是按照双备份要求设计的。在网络连接上消除单点故障,提供关键设备的故障切换。关键设备之间的物理链路采用双路冗余连接,按照负载均衡方式或active-active方式工作。关键主机可采用双路网卡来增加可靠性。全冗余的方式使系统达到电信级可靠性。要求网络具有设备/链中故障毫秒的保护倒换能力。 具有良好扩展性,网络建设完毕并网后应可以进行大规模改造、服务器集群、软件功能模块应可以不断扩展。 良好的易用性。简化系统结构,降低维护量。对突发数据吸附,缓解端口拥塞压力,能保证业务的流畅性等。 3、增强二级网络 云平台下,虚拟机迁移与集群式两种典型的应用模型,这两种模型均需要二层网络支持。随着云计算资源池的不断扩大,二层网络的范围正在逐步扩大,甚至扩展到多个数据中心内,大规模部署二层网络则带来一个必然的问题就是二层环路问题。采用传统的STP+VRRP技术部署二层网络时会带来部署复杂、链路利用率低、网络收敛时间慢等诸多问题,因此网络方案的设计需要重点考虑增强二级网络技术(如IRF/VSS、TRILL等)的应用,以解决传统技术带来的问题。 4、虚拟化 虚拟资源池化是网络发展的重要趋势,将可以大大提高资源利用率,降低运营成本。 应有效开展服务器、存储的虚拟资源池技术建设,网络设备的虚拟化也应进行设计实现。 服务器、存储器、网络及安全设备应具备虚拟化功能。 5、高性能 由于云服务网络中的流量模型发生了变化,随着整个云平台相关业务的开展,业务

拌和站施工方案【详细版】

目录 1 编制依据原则及范围 (3) 1.1编制依据 (3) 1.2编制原则 (3) 1.3编制范围 (4) 2工程概况 (4) 2.1项目简介 (4) 2.2 主要工程数量 (4) 2.3主要技术标准 (4) 3施工组织机构 (5) 3.1组织机构 (5) 3.2主要管理人员配备及分工 (5) 4资源配置 (7) 4.1人员机械配置 (7) 4.2主要材料配置及调配计划 (7) 5施工准备 (8) 5.1 施工人员及机械设备进场 (8) 5.2 物资准备工作 (8) 5.3 技术准备工作 (8) 6工程进度计划 (8) 7拌和站施工方案 (9) 7.1拌和站概况 (9) 7.2施工机具 (10) 7.3施工工艺流程图 (10) 7.4 场地施工 (10) 7.5 拌和站基础施工 (12) 7.6 料仓建设 (12) 7.7 主机安装 (13) 7.8 生活区建设 (17) 8质量和工期的保证措施 (17) 8.1质量保证 (17) 8.2工期保证 (19) 9安全保证体系及措施 (20) 9.1安全管理组织机构 (20) 9.2安全保证体系 (21) 9.3安全生产保证措施 (23)

10 文明施工 (26) 1 编制依据原则及范围 1.1 编制依据 ⑴现行的国家有关方针政策,以及国家和铁道部有关法律、规范、验标、施 工指南和铁道部最新规章制度等; ⑵沪昆铁路有限责任公司《关于进一步加强大型临时设施施工质量安全控制的通知》; ⑸宁安铁路有限责任公司《关于做好2010年一季度重点工作的通知》(宁安综发[2010]24号)及上海铁路局颁发的工厂化生产指导意见(上铁建函[2010]170号); ⑹ 2010年1月份现场调查资料、与相关部门签订的协议及工作成果; ⑺中国路桥宁安铁路实施性施工组织设计 ⑻宁安铁路有限责任公司工程部审批的三分部大临规划方案 1.2 编制原则 ⑴符合性原则。必须满足建设单位的建设工期和工程质量标准,符合施工安全、文明施工等要求。 ⑵科学、经济、合理的原则。树立系统工程的理念,统筹分配安排施工便道大临工程的工期,组织均衡、连续生产,管理目标明确,指标量化、措施具体、针对性强。 ⑶引进、创新、发展的原则。积极采用、利用沿线可用资源,提高工程技术和施工水平,保证施工便道大临工程的施工安全和工程质量,加快施工进度,降低工程成本。

搅拌站建设方案

如意城搅拌站建设方案 根据项目施工内容需要建设一座商混搅拌站,搅拌站占地面积 6 亩,搅拌站由搅拌楼、骨料场地、运输车间及附属工程(如蓄水池、生活办公房、配电室等)。 本站采用JS1500型搅拌机,配有相应设备皮带输送机、集料皮带机、配料机(四仓),搅拌站里还配有仓库和外加剂,储水池以及搅拌楼,每小时可生产混凝土80M3 左右,满足施工要求,搅拌机后设有 4 个粉罐,分别是 1 个粉煤灰、 2 个水泥罐、一个外加剂罐,罐内必须储存7 天左右用量,为应急备用一辆散装水泥罐车,在骨料场地分别建设有4200M2 的砂、石堆料储存场地,配有 2 台装载机进行堆料及向搅拌机骨料仓装料,外加剂等材料建立专属材料库,以便存放和管理;有 4 台混凝土搅拌输送车运输混凝土,可确保工程砼的输送。本站的用电,建议使用电力专线,安装一台变压器,为防止电网停电,专门配备一台315KW 发电机,是搅拌站自备电源。 搅拌站四周用砖砌墙,可以在墙外栽种些许花草、树木。 搅拌站必须满足一下要求: ①设立自动计量的搅拌系统,每个配料系统必须满足二级碎石级配的要求, 所有的计量仪器必须经过标定。 ②搅拌站按全封闭设置,防止灰尘污染空气。 ③砂和碎石堆放场地必须全面硬化,隔墙的高度要满足不同材料能够彻底 隔离的要求。 ④砂、碎石堆要有标牌:标明材料名称、产地、进场时间、数量、级配范 围(碎石)、细度模数(砂)、检验日期和结果、可使用于何类混凝土结 构物等内容;进料、检验、用料台账记录齐全。 ⑤水泥或粉煤灰罐必须安装避雷设施。 ⑥上料斗之间加设隔板,避免上料时混杂,上料斗必须搭设遮雨棚。 ⑦ 冬季施工时,应有水加温设备,夏季砂石料场搭设遮阳棚、配备制冷设 备。 精品文档1

隧道爆破拆除方案

爆破方案设计 一、工程概况 茶叶沟隧道位于甘井子区革镇堡新机场建设区域内,为双向四车道公路隧道。双向隧道分别为405m、350m,间距为30m。该隧道高11m、宽12m,净高7.5m。初期衬砌厚度0.25m,二次衬砌厚度为0.5m。隧道拱顶上部岩体高度为18~20m不等,洞口两端岩体高度为2.5m~5m 不等,见图1。隧道周边环境较好,东、西、南、北均为新机场采石场地,隧道南侧800m以远有一高压线。 爆区平面示意图 图1 茶叶沟隧道断面示意图

新机场建设工程,该隧道失去存在意义,因此要对隧道进行爆破拆除。根据相关要求,隧道内部路面和敷设于电缆沟内的光缆必须安全保留,确保通讯畅通。由此本工程需要对茶叶沟隧道进行有限的保护性拆除。 二、拆除方案的选择 1、机械拆除 经查阅相关技术资料,该隧道建设期间采用了小导管超前预注浆预加固处理,并且采用了钢拱、钢筋网锚喷混凝土支护形式。无论是油锤破除,还是无齿锯切除钢拱、钢筋等钢体结构,都需要对隧道周边岩土进行爆破清运,同时还要清除超前注浆小导管。经过这些预处理后方可进行机械拆除。 机械拆除的优点是安全可靠。但浅孔爆破拆除的钻孔数量过大,预计约为10万余孔,这样势必会造成工期大幅度延长,因此该方案不予考虑。 2、爆破拆除 中深孔爆破拆除的优点是施工进度较快,缩短了工期。可以借助周边围岩爆破时炸药的爆炸能量,完成隧道的破碎拆除。但因隧道是一个双心圆的整体结构,整体爆破拆除势必会造成既有光缆和路面不同程度的破坏,因此需要对路面和光缆沟采取一些保护措施,即该隧道的爆破拆除为一项有限的保护性拆除工程。 三、具体方案 1、预处理方法 为了保护光缆的安全,任何拆除工法均需要在光缆上部1.0~1.5m 处将隧道的二次衬砌结构切断,即为预处理。切断具体位置为拱腰处最佳,因为拱腰处受力最薄弱。切断二次衬砌的方法有多种:(1)射孔弹法:在二次衬砌预处理位置布设两排射孔弹,排距250mm,孔间距为250mm,采用导爆索连接。起爆后,射孔弹可将二次衬砌射成一个个孔径10mm、深度350~400mm的小孔。然后将外露的钢筋切断,见图2。

盾构法隧道结构防水

盾构法隧道结构防水 8.1.1 (原规范6.1.1,修改条文) 原条文对盾构法隧道防水作了总体规定,故予以保留。其中“工程处于侵蚀性介质时,应采用……耐侵蚀性附加防水层”一句,因这种防水层为涂于管片外背面的防水涂料而非防水卷材、防水砂浆类材料,故明确地改写为“外防水涂料”。 8.1.2 (增加条文) 针对不同防水等级的盾构隧道确定相应的防水措施。表8.1.2主要依据国内多年盾构隧道防水的实践总结,同时参照了盾 构隧道建设实践较多的上海市的市标“盾构法隧道防水技术规程”而制定;考虑到“阴极保护与金属埋露件防腐”等主要是关于防腐蚀措施,“回填注浆”措施主要是控制盾构推进,防止地面沉降,它们虽与防水也有关系,但不直接影响防水等级,故不予列入。 对嵌缝密封的意义与功效国内外评价不尽相同,因此即使防水等级为一级的工程也不要求“必选”,而用“应选”。混凝土内衬往往也是加强初次衬砌的防水措施,它可以按要求全断面或局部(如底部)采用,但考虑到造价、工期等因素,对防水等级为一级的工程用“宜选”,二级的工程为“局部宜选”。应该指出的是,随着盾构法施工技术的发展,除了二次衬砌(内衬)在减少,嵌缝作业也有减少的趋势。 外防水涂料采用与否,虽然由地层中是否有侵蚀性介质为主要确定因素,隧道防水等级为次要因素。但外防水涂料不仅有防腐蚀作用,也能起到防渗作用,故仍列入。在一级防水等级中用“宜选”,在二、三级防水等级中,因并非隧道经过的全部地段都有侵蚀性介质,并且各地段埋深差异也可能很大,因而要求也不尽相同,故规定“部分区段宜选”。 8.1.3 (原规范6.1.2,修改条文) 管片的精度直接影响拼装后隧道衬砌接缝缝隙的防水,应予列入。考虑到精度不高的砌块可用于防水等级4级的隧道工程, 因此,原6.1.2条对管片尺寸精度规定为“不应大于1.5mm”,就欠妥当了。本条对钢筋混凝土管片的制作钢模及管片本身的尺寸误差作了相应规定,以保证管片拼装后隧道衬砌接缝缝隙的防水性能。

拌和站规划方案汇总

拌和站规划方案 1编制依据 1.1深茂铁路业主标准化文件; 1.2现场调查所获得的有关资料、数据及现场情况; 1.3国家有关方针政策和国家、铁道部有关标准等; 1.4我单位类似工程的施工经验。 2规划原则 按照“安全适用、经济合理、节能环保、方便施工管理”的原则,合理布局,科学选点,进行地质灾害调查,有效避开存在地质灾害隐患的地点,并且尽量避开林地、少占农田,利用荒地,和结合新农村建设进行选点;应“节约用地、保护耕地、因地制宜、综合利用”的原则进行复垦。 3选址说明 拌和站位置选址在白沙镇里边村,位于S274公路旁,在线路里程DK175+300右侧90~240m,占地面积为17052m2,计划用地约25.6亩,主要为荒地。 3.1交通:选址处位于既有公路旁,交通便利,临近本区段的重点工程台城河特大桥与凤阳特大桥,便于重点工程混凝土需求量的供应。 3.2地貌:该地段属丘陵地貌,地段临近S274公路,交通便捷,便于统一规划、布置及展开施工。通过现场踏勘、调查了解,确认没有崩塌、泥石流、滑坡等地质灾害隐患存在。远离高山深谷和水库,属安全地带。 3.3施工:场区地势较为平坦,先用机械将现场场地整平,然后对表层淤泥部分挖除并用附近路基范围内的山体土进行换填,压路机分层碾压夯实,尤其注意在水泥罐及搅拌机基础位置处,开挖时需挖至硬层,深度较大时采取加深混凝土基础。将拌合站生活办公区及试验站布置料仓右侧,高差5m,边坡按1:1坡度施放。 3.4水电:搅拌用水及驻地生活用水采用接入自来水取水解决。由于搅拌站用电荷载较大,在拌和站与凤阳特大桥桥尾中间安装一台630KVA变压器,做为拌和站的电源供应,同时配备发电机作为备用电源。 3.5人员配置:拌和站计划32人,实行架子队管理模式,站内设试验站,须按要求配齐各类工作人员,确保拌和站生产及试验检测等各项工作顺利进展。 4场地规划及布置

隧道爆破设计方案样本

隧道爆破设计方案 一、编制说明 1、编制依据 ( 1) 根据洛栾高速公路洛嵩段No.9标段施工图、设计文件。 ( 2) 根据河南省交通规划勘察设计院《招标文件》、《初步工程地质勘察报告》、《施工图设计资料》。 ( 3) 根据国家现行的有关公路工程的施工规范、标准等: ( 4) 经过现场踏勘所掌握的有关情况和资料及本企业的施工技术管理水平和已完工的类似工程成功的施工经验。 2、编制原则 ( 1) 本方案遵守招标文件、合同条款及业主的各项规定, 严格按照公路路基施工技术规范、验收标准中各项规定和设计文件、施工图的各项要求进行编制。 ( 2) 从我项目部现有的技术设备水平和能力出发, 积极引进、采用新技术、新工艺、新材料、新设备, 采用科学合理的施工工艺、方案, 规范化施工, 程序化作业。 二、工程简介 玉皇庙公路隧道采用上下行分离设置的隧道, 为小净距隧道+独立双洞隧道, 小净距段设计线最小间距为15.2m。右线隧道长809m( K59+970~ K60+779) , 其中Ⅳ级围岩段长121m, Ⅲ级围岩段长688m, 沿线路方向设计纵坡为-2.5%/350m、 -3.0%/459m; 左线隧道长815m( F2K59+968~F2K60+783) , 其中Ⅳ级围岩段长112m,

Ⅲ级围岩段长703m, 设计纵坡为-2.7%/347.42m、 -3.0%/467.58m。 三、围岩级别 隧道所在山体顶部被第四系地层所覆盖, 两侧沟边及半坡有基岩裸露, 岩体完整性好, 局部破碎, 以坚硬岩为主, 山体围岩级别为Ⅲ级, 局部破碎带为Ⅳ级。沿线路方向表层为褐红色粉质粘土, 无基岩出露。进口: 0-3.5m为红褐色夹灰褐色安山岩, 强风化; 3.5-20m为红褐色夹灰褐色安山岩, 中风化; 出口: 0-1.0m耕植土, 黄褐色, 夹风化岩屑, 1-4.5m为红褐色夹灰褐色安山岩, 强风化, 4.5-20m为红褐色夹灰褐色安山岩, 中风化。隧道围岩分级见下表: 围岩级别分类表 四、施工组织机构 为保证玉皇庙隧道爆破施工的顺利进行, 保证工程的安全和质量, 项目部成立”隧道爆破施工领导小组”, 技术、施工、材料、机械、质检全面配合, 统一协调, 坚决保证爆破的顺利进行, 领导小组对内指挥生产, 对外负责履行合同。小组成员及分工如下: 组长: 魏跃东负责隧道的整体计划、协调;

云平台建设方案

云平台建设方案

云平台 云平台建设原则 1、标准化 当前云服务在整个信息产业中还不够成熟,相关的标准还没有完善。为保障方案的前瞻性,在设备选型上力求充分考虑对云服务相关标准的扩展支持能力,保证良好的先进性,以适应未来的信息产业化发展。 2、高可用 为保证数据业务网的核心业务的不中断运行,在网络整体设计和设备配置上都是按照双备份要求设计的。在网络连接上消除单点故障,提供关键设备的故障切换。关键设备之间的物理链路采用双路冗余连接,按照负载均衡方式或active-active方式工作。关键主机可采用双路网卡来增加可靠性。全冗余的方式使系统达到电信级可靠性。要求网络具有设备/链中故障毫秒的保护倒换能力。 具有良好扩展性,网络建设完毕并网后应能够进行大规模改造、服务器集群、软件功能模块应能够不断扩展。 良好的易用性。简化系统结构,降低维护量。对突发数据的吸附,缓解端口拥塞压力,能保证业务的流畅性等。 3、增强二级网络 云平台下,虚拟机迁移与集群式两种典型的应用模型,这

两种模型均需要二层网络支持。随着云计算资源池的不断扩大,二层网络的范围正在逐步扩大,甚至扩展到多个数据中心内,大规模部署二层网络则带来一个必然的问题就是二层环路问题。采用传统的STP+VRRP技术部署二层网络时会带来部署复杂、链路利用率低、网络收敛时间慢等诸多问题,因此网络方案的设计需要重点考虑增强二级网络技术(如IRF/VSS、TRILL等)的应用,以解决传统技术带来的问题。 4、虚拟化 虚拟资源池化是网络发展的重要趋势,将能够大大提高资源利用率,降低运营成本。应有效开展服务器、存储的虚拟资源池技术建设,网络设备的虚拟化也应进行设计实现。服务器、存储器、网络及安全设备应具备虚拟化功能。 5、高性能 由于云服务网络中的流量模型发生了变化,随着整个云平台相关业务的开展,业务都分布在各个服务器上,流量模型从纵向流量转换成复杂的多维度混合的方式,整个系统具有较高的吞吐能力和处理能力,满足PB级别的数据处理请求,具备对突发流量的承受能力。 6、开放接口 为保证服务器、存储、网络等资源能够被云平台良好的调度与管理,要求系统提供开放的API接口,云计算运行管理平台能够经过API接口、命令行脚本实现对设备的配置与策略下发。

水下交通隧道的设计与施工(王梦恕)

[收稿日期] 2009-03-16 [作者简介] 王梦恕(1938-),男,河南温县人,中国工程院院士,北京交通大学教授,博士生导师、研究方向为隧道及地下工程设计、施工新 技术;E-mail:wms3273@263.net 水下交通隧道的设计与施工 王梦恕 (北京交通大学,北京100044) [摘要] 综合论述了水下隧道在穿越江河湖海时所有的优势,介绍了水下交通隧道的设计与施工概况,讨论了水下隧道勘察设计、施工的几项关键技术,详细介绍了水下隧道施工的常用方法。[关键词] 水下隧道;设计;施工 [中图分类号] U459.5 [文献标识码] A [文章编号] 1009-1742(2009)07-0004-07 就跨越江河湖海的可选方式而言,目前主要有 轮渡、水下隧道与桥梁。轮渡方式虽然投资少,但由于其受交通运输量小、等候时间长、气候影响大等不利因素的限制,与现代城市快节奏交通运输不相适应,所以现在选用较少。跨越江河湖海的方式越来越多地在水下隧道与桥梁之间做出选择。 1 水下隧道穿越江河湖海的综合优势 选择水下隧道还是选择桥梁,主要依据航运、水文、地质、生态环境以及工程成本等具体建设条件进行全面的比较、论证而定。经过论证得出水下隧道与桥梁相比有以下几项显而易见的优势。a.很强的抵抗战争破坏和自然灾害的能力。b.不侵占航道净空,不影响航运,不干扰岸上航务设施。c.水下隧道能全天候越江通车,不受气候变化的影响,有稳定、畅通无阻的通行能力。d.具有很强的超载能力,不像桥梁通行车辆载重受设计荷载的限制。e.结构耐久性好,维护保养费用比桥梁低很多。f.建设时钢用量比桥梁少,且只需普通建筑钢,比桥梁造价更低。g.在建设时能做到不拆迁或少拆迁,占地少,不破坏环境,从而降低建设成本。h.设计可以做到一洞多用,可以把城市供水、供电、供气和通讯等设施安排在比较安全稳定的环境中。i.对生态环境影响小,能避免噪声尘土对周围环境的影响。 近20年来,国外有优先考虑采用水下隧道作 为跨越江河湖海方式的趋势。随着我国经济的高速发展、隧道修建技术的日臻完善以及人们环保意识的不断增强,水下隧道也逐渐被国人所接受,并付诸建设。 2 国内外水下隧道技术发展现状 据不完全统计,国外近百年来已建的跨海和海峡交通隧道已逾百座,其中挪威所建跨海隧道占大多数。国外著名的跨海隧道有:日本青函海峡隧道、英吉利海峡隧道、日本东京湾水下隧道、丹麦斯特贝尔海峡隧道、挪威的莱尔多隧道等。这些已建的跨海隧道对我国类似工程的建设具有很好的参考作用。 我国建成的水下隧道有很多条,但跨海隧道只有6条,均集中在港澳台地区,大陆建成的水下隧道均为跨越江域的水下隧道,它们主要集中在上海、南京、武汉及厦门等地,有多条隧道穿越黄浦江、长江。建设中的水下隧道有:厦门翔安海底隧道(中国大陆第一条跨海隧道)、胶州湾湾口海底隧道以及广州生物岛———大学城隧道等。拟建的水下隧道有:琼州海峡跨海工程、渤海湾(大连—蓬莱)跨海工程(含隧道和海中悬浮隧道桥方案)、杭州湾(上海—宁波)外海工程、大连湾水下隧道、台湾海峡跨海隧道(实施尚有待时日)等。表1至表4为部分国内外建成、在建、拟建的水下隧道一览表。 4 中国工程科学

相关文档
相关文档 最新文档