文档库 最新最全的文档下载
当前位置:文档库 › 新高中数学2-2几种常见的平面变换2-2-4逆变换与逆矩阵旋转变换教学案苏教版选修4_2

新高中数学2-2几种常见的平面变换2-2-4逆变换与逆矩阵旋转变换教学案苏教版选修4_2

新高中数学2-2几种常见的平面变换2-2-4逆变换与逆矩阵旋转变换教学案苏教版选修4_2
新高中数学2-2几种常见的平面变换2-2-4逆变换与逆矩阵旋转变换教学案苏教版选修4_2

新高中数学2-2几种常见的平面变换2-2-4逆变换与逆矩阵旋转

变换教学案苏教版选修4_2

[对应学生用书P14]

1.旋转变换

将一个图形F 绕某个定点O 旋转角度θ所得图形F ′的变换称为旋转变换.其中点O 称为旋转中心,角度θ称为旋转角.

2.旋转变换矩阵

像????

??cos θ -sin θsin θ cos θ这样的矩阵,称为旋转变换矩阵. 旋转变换只改变几何图形的相对位置,不会改变几何图形的形状.

[对应学生用书P14]

[例1] 在直角坐标系xOy 内,将每个点绕原点O 按逆时针方向旋转135°的变换称为旋转角是135°的旋转变换.

(1)试写出这个旋转变换的坐标变换公式和相应的矩阵; (2)求点A (4,8)在这个旋转变换作用下的象A ′.

[思路点拨] 根据其坐标变换公式写出旋转变换对应的矩阵后求解. [精解详析] (1)该变换的坐标变换公式为:

?

??

??

x ′=x cos 135°-y sin 135°y ′=x sin 135°+y cos 135°,该变换对应的矩阵为:

??????cos 135° -sin 135°sin 135° cos 135°=

????????-22

-2

2 22 -

22. (2)由(1)知,当x =4,y =8时,

x ′=-62,y ′=-22,

所以点A (4,8)在这个旋转变换作用下的象为

A ′(-62,-22).

由旋转角θ的大小,写出旋转变换矩阵????

??

cos θ -sin θsin θ cos θ是解决这类问题的关键.

逆时针旋转时,θ为正值,顺时针方向旋转时,θ为负值.

1.求出△ABC 分别在M 1

=??????-1 0 0 -1,M 2

=??????0 -11 0,M 3

?????

?

??22 -2222 22对应的变换作用下的图形这里A (0,0),B (2,0),C (1,1).

解析:在M 1下,A →A ′(0,0),B →B ′(-2,0),C →C ′(-1,-1). 在M 2

下,A →A ″(0,0),B →B ″(0,2),C →C ″(-1,1). 在M 3下,A →A ,B →B

2

,2),C →C

,2).

图形分别为

2.在直角坐标系xOy 内,将每个点绕坐标原点O 按顺时针方向旋转60°的变换称为旋转角为-60°的旋转变换,求点A (-1,0)在这个旋转变换作用下得到的点A ′的坐标.

解:由题意得旋转变换矩阵为

?

?????

- --

=?????

??? 12

32-32 12,

故对应的坐标变换公式为???

??

x ′=12x +3

2

y y ′=-32x +1

2y .

令x =-1,y =0得???

?

?

x ′=-12y ′=3

2

.

所以所求的点A ′的坐标为? ????-1

2,32.

[例2] 已知曲线C :x 2

+y 2

=2,将曲线C 绕坐标原点逆时针旋转60°后,求得到的曲线C ′的方程.

[思路点拨] 先求出旋转变换矩阵,再根据变换公式求曲线方程. [精解详析] 旋转变换对应的矩阵

M =??????cos 60° -sin 60°sin 60° cos 60°=?????

?

??12

-3232 12, 设P (x 0,y 0)为曲线C 上任意的一点,它在矩阵M 对应的变换作用下变为P ′(x ′

0,y ′

0). 则有?????

???12 -3

232 12 ??????x 0y 0

=????

??x ′0

y ′0,

故?????

x 0=12x ′0+

3y ′

0,y 0

=1

2

y ′0-

3x ′0

因为点P (x 0,y 0)在曲线C :x 2+y 2

=2上, 所以x 2

0+y 2

0=2, 即 ??

????12x ′0+3y ′02+??????12y ′0-3x ′02=2, ∴x ′ 2

0+y ′ 20=2.

从而曲线C ′的方程为x 2

+y 2

2.

理解与掌握旋转变换对应的变换矩阵和坐标变换公式是解答该类问题的关键,对于特殊图形的旋转变换,也可根据数形结合直接得出,如本例中,曲线C 是以原点为圆心的圆,所以它不管旋转多少度,所得的图形仍是其自身.

3.将双曲线C :x 2

-y 2

=1上的点绕原点逆时针旋转45°,得到新图形C ′,试求C ′的方程.

解:根据题意,得旋转变换矩阵

M =??????cos 45° -sin 45°sin 45° cos 45°=?????

???22

-2

222

22, 任意选取双曲线x 2

-y 2

=1上的一点P (x 0,y 0),它在变换作用下变为P ′(x ,y ), 则有???

?? x =22x 0

-2

2y 0

,y =22x 0

+22y 0,

那么???

??

x 0=22x +y ,y 0

=22y -x ,

又因为点P 在曲线x 2-y 2

=1上, 所以x 2

0-y 2

0=1,

即有12(x +y )2-12(y -x )2

=1,

整理可得2xy =1,

所以所求C ′的方程为xy =12

.

4.已知椭圆Γ:x 24+y 2

3=1,试求该曲线绕逆时针方向旋转90°后所得到的曲线,画出

示意图.

解:设椭圆与坐标轴的交点分别为A (-2,0),B (0,-3),C (2,0),D (0,3)(如图所示).

因为绕原点逆时针旋转90°的变换所对应的矩阵为

M =??

????cos 90° -sin 90°sin 90° cos 90°=????

??

0 -11 0.

所以??????0 -11 0 ??????-2 0=?????? 0-2,

??????0 -11 0 ?????? 0-3=????

??3 0, ??????0 -11 0 ??????20=??????02,??????0 -11 0 ??????03=????

??-3 0. 故点A ,B ,C ,D 在旋转变换M 的作用下分别变为点A ′(0,-2),B ′(3,0),C ′(0,2),

D ′(-3,0),从而椭圆曲线Γ:x 24

+y 2

3

=1在逆时针旋转90°后所成的曲线为椭圆曲线

Γ ′:x 23+y 2

4

=1.

[对应学生用书P15]

1.若点A ? ????2

2,22在矩阵????

??cos α -sin αsin α cos α对应的变换作用下得到的点为(1,0),

求α.

解:由??????cos α -sin αsin α cos α

????????2

222=????

??

10, 得???

??

22cos α-22sin α=1,22sin α+2

2

cos α=0.

∴???

??

sin ?

????α-π4=-1,

sin ?

????α+π4=0.

∴????? α-π4=-π

2+2k π,α+π

4=k π.(k ∈Z )

∴?????

α=-π

4+2k π,α=-π

4

+k π.(k ∈Z )

∴α=-π

4

+2k π(k ∈Z ).

2.设点P 的坐标为(1,-2),T 是绕原点逆时针旋转

π

3

的旋转变换,求旋转变换T 对应的矩阵A ,并求点P 在旋转变换T 作用下得到的点P ′的坐标.

解:由题意知旋转变换矩阵 A =????????cos π3 -sin π3sin π3 cos π3=?????

???12 -3

232 12

设P ′(x ′,y ′),则?????

???12 -3

232 12 ?????? 1-2=??????x ′y ′ ∴???

??

x ′=1

2

+3,

y ′=3

2

-1.即P ′? ??

??1

2+3,32-1.

3.已知曲线C :xy =1.

(1)将曲线C 绕坐标原点逆时针方向旋转45°后,求得到的曲线C ′的方程; (2)求曲线C ′的焦点坐标和渐近线的方程. 解:(1)由题设知,

M =??????cos 45° -sin 45°sin 45° cos 45°=??????

??22

-2

222 22. 由??????x ′y ′=????????22

-2222

22 ??????x y =????????22x -22y 22x +22y ,

得???

??

x ′=2

2x -y ,y ′=2

2

x +y ,

解得???

??

x =2

2x ′+y ,

y =22

y ′-x

代入xy =1,

得曲线C ′的方程为y 2

-x 2

=2.

(2)由(1)知曲线C ′的焦点为(0,2),(0,-2),渐近线方程为y =±x . 4.求直线y =3x 绕原点逆时针旋转π

6

后所得的直线的方程.

解:直线y =3x 的倾斜角为π3,绕原点逆时针旋转π6后所得的直线的倾斜角为π

2,故

所求的直线方程为x =0.

5.将抛物线E :y 2

=4x 绕它的顶点逆时针旋转60°,得到曲线E ′.求曲线E ′的焦点坐标和准线方程.

解:已知抛物线y 2=4x 的焦点坐标为F (1,0),准线方程l :x =-1.旋转变换对应的矩

阵为?????

???12 -3

232 12. 设点P (x ,y )为变换前坐标系中任意一点,经变换后得到P ′(x ′,y ′),∴?????

x ′=12x -3

2y ,y ′=32x +12

y ,(1)

将x =1,y =0代入(1)式得???

??

x ′=1

2

,y ′=3

2

.

由(1)消去y ,并将x =-1代入,得x ′+3y ′=-2.

∴曲线E ′仍为抛物线,它的焦点坐标F ′? ????1

2,32,准线方程l ′:x +3y +2=0.

6.已知椭圆x 24+y 23=1经过矩阵M 对应的变换作用下变为椭圆x 23+y 2

4

=1,求变换矩阵

M .

解:将椭圆x 24+y 23=1变换为椭圆x 23+y 2

4=1,可以伸压变换,可以是反射变换(关于原点成中心反射或关于直线y =x 与y =-x 成轴对称),还可以是旋转变换(绕原点旋转90°),其中反射与旋转较为方便,所以矩阵M 可以是??

????

11

0或??????0 -11 0或?????? 0 -1-1 0或????

??

0 1-1

0等. 7.已知椭圆C :x 2+y 2

+xy =3,将曲线C 绕原点O 顺时针旋转π4,得到椭圆C ′.求:

(1)椭圆C ′的标准方程; (2)椭圆C 的焦点坐标.

解:(1)矩阵A =

?????

??? 22 22

-22

22, 设椭圆C 上的点P (x ,y )变换后为P ′(x ′,y ′),

?????

??? 22 22

-22

22 ???

???x y =??????x ′

y ′, 故???

?

?

x =2

2x ′-y ,

y =22

x ′+y

代入x 2

+y 2

+xy =3中,

得12(x ′-y ′)2+12(x ′+y ′)2+12(x ′2-y ′2

)=3. ∴椭圆C ′的方程为x 22+y 2

6=1.

(2)∵椭圆C ′的焦点坐标为(0,±2),

∴椭圆C 的焦点坐标为F 1(-2,2),F 2(2,-2).

8.已知点A (3,4),点A 绕原点逆时针旋转60°后得到的对应点为B ,求点B 的坐标,并求出线段OA 旋转过程中所扫描过的图形的面积.

解:由题意可得旋转变换矩阵为

M =??????cos 60° -sin 60°sin 60° cos 60°=??????

??12

-3232 12, 对应的坐标变换公式为???

??

x ′=12x -3

2

y ,y ′=32x +1

2y ,

可得???

??

x ′=12×3-32×4=3-43

2,y ′=32×3+12×4=33+4

2, 即点B 的坐标为?

????

3-432

,33+42,

由于线段OA 旋转过程中所扫描过的图形是半径为OA ,圆心角为π

3

的扇形,

而OA =32+42

=5,

所以相应的面积为S =12×π3×52

=256

π.

旋转矩阵公式法

旋转矩阵公式法!一,选11个号,中了5个号,100%能组合到4个号。假设你选了01、02、03、04、05、06、07、08、09、10、11,则可以组合成以下22注,需投入44元: (1)01、05、07、09、11 (2)01、05、06、08、10 (3)01、04、06、08、09 (4)01、04、05、07、10 (5)01、03、07、08、11 (6)01、03、04、09、10 (7)01、02、06、10、11 (8)01、02、04、08、11 (9)01、02、03、06、07 (10)01、02、03、05、09 (11)02、07、08、09、10 (12)02、05、06、07、08 (13)02、04、07、09、11 (14)02、04、05、06、09 (15)02、03、05、10、11 (16)02、03、04、08、10 (17)03、06、08、09、11 (18)03、06、07、09、10 (19)03、04、05、07、08 (20)03、04、05、06、11 (21)04、06、07、10、11 (22)05、08、09、10、11 二,选11个号,中了4个号,100%能组合到4个号。假设你选了01、02、03、04、05、06、07、08、09、10、11,则可以组合成以下66注,只要132元就能搞定: (1)01、07、08、09、10 (2)01、06、07、09、11 (3)01、05、08、09、11 (4)01、05、07、10、11 (5)01、05、06、08、10 (6)01、04、09、10、11 (7)01、04、06、08、11 (8)01、04、06、07、10 (9)01、04、05、07、08 (10)01、04、05、06、09 (11)01、03、08、10、11 (12)01、03、06、09、10 (13)01、03、06、07、08 (14)01、03、05、07、09 (15)01、03、05、06、11 (16)01、03、04、08、09 (17)01、03、04、07、11 (18)01、03、04、05、10

旋转变换(一)旋转矩阵

旋转变换(一)旋转矩阵 1. 简介 计算机图形学中的应用非常广泛的变换是一种称为仿射变换的特殊变换,在仿射变换中的基本变换包括平移、旋转、缩放、剪切这几种。本文以及接下来的几篇文章重点介绍一下关于旋转的变换,包括二维旋转变换、三维旋转变换以及它的一些表达方式(旋转矩阵、四元数、欧拉角等)。 2. 绕原点二维旋转 首先要明确旋转在二维中是绕着某一个点进行旋转,三维中是绕着某一个轴进行旋转。二维旋转中最简单的场景是绕着坐标原点进行的旋转,如下图所示: 如图所示点v 绕原点旋转θ角,得到点v’,假设v点的坐标是(x, y) ,那么可以推导得到v’点的坐标(x’, y’)(设原点到v的距离是r,原点到v点的向量与x轴的夹角是? ) x=rcos?y=rsin? x′=rcos(θ+?)y′=rsin(θ+?) 通过三角函数展开得到 x′=rcosθcos??rsinθsin? y′=rsinθcos?+rcosθsin? 带入x和y表达式得到 x′=xcosθ?ysinθ y′=xsinθ+ycosθ 写成矩阵的形式是: 尽管图示中仅仅表示的是旋转一个锐角θ的情形,但是我们推导中使用的是三角函数的基本定义来计算坐标的,因此当旋转的角度是任意角度(例如大于180度,导致v’点进入到第四象限)结论仍然是成立的。 3. 绕任意点的二维旋转 绕原点的旋转是二维旋转最基本的情况,当我们需要进行绕任意点旋转时,我们可以把这种情况转换到绕原点的旋转,思路如下: 1. 首先将旋转点移动到原点处 2. 执行如2所描述的绕原点的旋转 3. 再将旋转点移回到原来的位置

也就是说在处理绕任意点旋转的情况下需要执行两次平移的操作。假设平移的矩阵是T(x,y),也就是说我们需要得到的坐标v’=T(x,y)*R*T(-x,-y)(我们使用的是列坐标描述点的坐标,因此是左乘,首先执行T(-x,-y)) 在计算机图形学中,为了统一将平移、旋转、缩放等用矩阵表示,需要引入齐次坐标。(假设使用2x2的矩阵,是没有办法描述平移操作的,只有引入3x3矩阵形式,才能统一描述二维中的平移、旋转、缩放操作。同理必须使用4x4的矩阵才能统一描述三维的变换)。 对于二维平移,如下图所示,P点经过x和y方向的平移到P’点,可以得到: x′=x+tx y′=y+ty 由于引入了齐次坐标,在描述二维坐标的时候,使用(x,y,w)的方式(一般w=1),于是可以写成下面矩阵的形式 按矩阵乘法展开,正好得到上面的表达式。也就是说平移矩阵是 如果平移值是(-tx,-ty)那么很明显平移矩阵式 我们可以把2中描述的旋转矩阵也扩展到3x3的方式,变为:

高考数学1几种特殊的矩阵变换专题1

高考数学1几种特殊的矩阵变换专题1 2020.03 1,圆22 1x y +=在矩阵10102?????? ? ?对应的变换作用下的结果为 . 2,当兔子和狐狸处于同一栖息地时,忽略其他因素,只考虑兔子数量和狐狸数量的相互影响,为了简便起见,不妨做如下假设: (1)由于自然繁殖,兔子数每年增长10%,狐狸数每年减少15%; (2)由于狐狸吃兔子,兔子数每年减少狐狸数的0.15倍,狐狸数每年增加兔子数的0.1倍; (3)第n 年时,兔子数量n R 用表示,狐狸数量用n F 表示; (4)初始时刻(即第0年),兔子数量有1000=R 只,狐狸数量有300=F 只。 请用所学知识解决如下问题: (1)列出兔子与狐狸的生态模型; (2)求出n R 、n F 关于n 的关系式; (3)讨论当n 越来越大时,兔子与狐狸的数量是否能达到一个稳定的平衡状态,说明你的理由。 3,在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐.已知只有5发子弹备用,且首次命中只能使汽油流出,再次命 中才能引爆成功,每次射击命中率都是3 2 .,每次命中与否互相独立. (1) 求油罐被引爆的概率. (2) 如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望 4,在空间四边形ABCD 中, AC 和BD 为对角线,G 为ABC ?的重心,E 是BD

上一点,3BE ED =,以{ },,AB AC AD u u u r u u u r u u u r 为基底,则GE =u u u r ___ 5,设M 是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的 伸压变换. 求逆矩阵1M -以及椭圆22 149x y +=在1M -的作用下的新曲线的 方程. 6,已知变换A :平面上的点P (2,-1)、Q (-1,2)分别变换成点P 1(3,-4)、 Q 1(0,5) (1)求变换矩阵A ; (2)判断变换A 是否可逆,如果可逆,求矩阵A 的逆矩阵A -1;如不可逆,说明理由. 7,两个人射击,甲射击一次中靶概率是21,乙射击一次中靶概率是31 , (Ⅰ)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少? (Ⅱ)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少? (Ⅲ)两人各射击5次,是否有99%的把握断定他们至少中靶一次? 8,如图,正方体ABCD -A 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点. (Ⅰ)试确定点F 的位置,使得D 1E ⊥平面AB 1F ; (Ⅱ)当D 1E ⊥平面AB 1F 时,求二面角C 1―EF ―A 的余弦值以及BA 1与面C 1EF 所成的角的大小.

三维旋转矩阵的计算

三维旋转矩阵的计算 旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。 在三维空间中,旋转变换是最基本的变换类型之一,有多种描述方式,如Euler 角、旋转矩阵、旋转轴/旋转角度、四元数等。本文将介绍各种描述方式以及它们之间的转换。 1. 旋转矩阵 用一个3阶正交矩阵来表示旋转变换,是一种最常用的表示方法。容易证明,3阶正交阵的自由度为3。注意,它的行列式必须等于1,当等于-1的时候相当于还做了一个镜像变换。 2. Euler角 根据Euler定理,在三维空间中,任意一种旋转变换都可以归结为若干个沿着坐标轴旋转的组合,组合的个数不超过三个并且两个相邻的旋转必须沿着不同的坐标轴。因此,可以用三个沿着坐标轴旋转的角度来表示一个变换,称为Euler角。旋转变换是不可交换的,根据旋转顺序的不同,有12种表示方式,分别为:XYZ、XZY、XYX、XZX、YXZ、YZX、YXY、YZY、ZXY、ZYX、ZXZ、ZYZ,可以自由选择其中的一种。对于同一个变换,旋转顺序不同,Euler角也不同,在指定Euler角时应当首先约定旋转顺序。 2.1 Euler角转化为旋转矩阵 不妨设先绕Z轴旋转γ,再绕Y轴旋转β,最后绕X轴旋转α,即旋转顺序为XYZ,旋转矩阵

3. 旋转轴/旋转角度 用旋转轴的方向向量n和旋转角度θ来表示一个旋转,其中 θ>0表示逆时针旋转。 3.1 旋转轴/旋转角度转化为旋转矩阵 设v是任意一个向量,定义

《1.2.3 几类特殊的矩阵变换》教案新部编本1

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

《1.2.3 几类特殊的矩阵变换》教案1 教学目标 1. 理解可以用矩阵来表示平面中常见的几何变换,掌握恒等、伸压、反射、旋转、投影、 切变变换的矩阵表示及其几何意义 2.理解二阶矩阵对应的几何变换是线性变换,了解单位矩阵 3.了解恒等、伸压、反射、旋转、投影、切变变换这六个变换之间的关系 教学重难点 了解并掌握几种特殊的矩阵变换,可以简单的运用。 教学过程 1.理解可以用矩阵来表示平面中常见的几何变换,掌握恒等、伸压、反射、旋转、投影、切变变换的矩阵表示及其几何意义 (1)一般地,对于平面向量变换T ,如果变换规则为T :?? ? ???y x →??????''y x =??????++dy cx by ax ,那么根据二阶矩阵与平面列向量在乘法规则可以改写为T :??? ???y x →??????''y x =??? ? ??d c b a ?? ????y x 的矩阵形式,反之亦然(a 、b 、c 、d ∈R) 由矩阵M确定的变换,通常记为T M ,根据变换的定义,它是平面内点集到自身的一个映射,平面内的一个图形它在T M ,的作用下得到一个新的图形. 在本节中研究的变换包括恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换等六个变换. (2)由矩阵M=?? ? ???1001确定的变换T M 称为恒等变换,这时称矩阵M 为恒等变换矩 阵或单位矩阵,二阶单位矩阵一般记为E.平面是任何一点(向量)或图形,在恒等变换之下都把自己变为自己. (3)由矩阵M=??????100k 或M=?? ? ???k 001)0k (>确定的变换T M 称为(垂直)伸压变 换,这时称矩阵M=???? ??100k 或M=?? ????k 001伸压变换矩阵.

旋转矩阵

三维旋转矩阵 三维旋转特性 给定单位向量u和旋转角度φ,则R(φ,u)表示绕单位向量u旋转φ角度。 R(0,u)表示旋转零度。 R(φ,u)= R(?φ,?u)。 R(π+φ,u)= R(π?φ,?u)。 如果φ=0,则u为任意值。 如果0<φ<π,则u唯一确定。 如果φ= π,则符号不是很重要。因为- π和π是一致的,结果相同,动作不同。 由旋转矩阵求旋转角和旋转轴 每一个三维旋转都能有旋转轴和旋转角唯一确定,好多方法都可以从旋转矩阵求出旋转轴和旋转角,下面简单介绍用特征值和特征向量确定旋转轴和旋转角的方法。 将旋转矩阵作用在旋转轴上,则旋转轴还是原来的旋转轴,公式表示如下: Ru=u 转化得: Ru=Iu =>(R?I)u=0 可以确定的是u在R-I的零空间中,角度可有下面的公式求得,Tr表示矩阵的迹: Tr(R)=1+2cosθ 从旋转轴和旋转角求旋转矩阵 假设给定单位向量u=(u x,u y, u z) T ,并且u为单位向量即: u x2+u y2+u z2=1,给定绕u旋转的角度θ,可以得出旋转矩阵R: R=[cosθ+u x2(1?cosθ)u x u y(1?cosθ)?u z sinθu x u z(1?cosθ)+u y sinθ u y u x(1?cosθ)+u z sinθcosθ+u y2(1?cosθ)u y u z(1?cosθ)?u x sinθ u z u x(1?cosθ)?u y sinθu z u y(1?cosθ)+u x sinθcosθ+u z2(1?cosθ) ] 上面的公式等价于: R=cosθI+sinθ[u]×+(1?cosθ)u?u 其中[u]×是单位向量u的叉乘矩阵,?表示张量积,I是单位向量. 这是罗德里格斯旋转方程的矩阵表示。下面给出叉乘和张量积的公式:

几类特殊线性变换及其二阶矩阵优秀教学设计

几类特殊线性变换及其二阶矩阵 【教学目标】 1.了解二阶矩阵的概念,线性变换与二阶矩阵之间的关系。 2.熟练运用旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示解决具体问题。 3.亲历几类特殊线性变换的探索过程,体验分析归纳得出其二阶矩阵,进一步发展学生的探究、交流能力。 【教学重难点】 重点:掌握几类特殊线性变换及其二阶矩阵。 难点:旋转变换、反射变换、伸缩变换、投影变换、切变变换的实际应用。 【教学过程】 一、直接引入 师:今天这节课我们主要学习几类特殊线性变换及其二阶矩阵,这节课的主要内容有旋转变换、反射变换、伸缩变换、投影变换、切变变换,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。 二、讲授新课 (1)教师引导学生在预习的基础上了解线性变换与二阶矩阵内容,形成初步感知。 (2)首先,我们先来学习线性变换及其相关概念,它的具体内容是: 在平面直角坐标系xoy 内,很多几何变换都具有下列形式:x ax by y cx dy '=+??'=+? ③; 其中系数a ,b ,c ,d 均为常数,我们把形如③的几何变换叫做线性变换。 ③式叫做这个线性变换的坐标变换公式。 (,)P x y '''是(,)P x y 在这个线性变换作用下的像。 像这样,由4个数a ,b ,c ,d 排成的正方形表a b c d ?? ???称为二阶矩阵。数a ,b ,c ,d 称为矩阵的元素 元素全为0的二阶矩阵0000?? ???称为零矩阵,简记为0。

矩阵1001?? ??? 称为二阶单位矩阵,记为E 它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例:在直角坐标系xoy 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换。求点(1,0)A 在这个旋转变换作用下的像A '。 解析:教师板书。 (3)接着,我们再来看下旋转变换的概念,它的具体内容是: 在直角坐标系xOy 内的每个点绕原点O 按逆时针方向旋转α角的旋转变换(通常记为n R )的坐标变换公式:cos sin sin cos x x y y x y αααα'=-??'=+?,对应的二阶矩阵为:cos sin sin cos αααα-?? ??? 。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:例:在直角坐标系xoy 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换,写出这个旋转变化的表达式。 解析:教师板书。 (4)接着,我们再来看下反射变换内容,它的具体内容是: 一般地,我们把平面上的任意一点P 变成它关于直线l 的对称点P '的线性变换叫做关于l 的反射。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:在直角坐标系xoy 内,直线l 过原点,倾斜角为α。求关于直线l 的反射变换的坐标变换公式。 学生板书,教师纠正解答。 (5)接着,我们再来看下伸缩变换内容,它的具体内容是: 在直角坐标系xOy 内,将每个点的横坐标变为原来1k 倍,纵坐标变为原来的2k 倍,其中1k ,2k 均为非零常数,我们称这样的几何变换为伸缩变换。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:直角坐标系xOy 内,将每一点的纵坐标变为原来的2倍,横坐标保持不变。 (1)试确定该伸缩变换的坐标变换公式及其对应的二阶矩阵。 (2)求点A (1,1)-在该伸缩变换作用下的像A ' 教师请同学上讲台解答,并纠正总结。

旋转矩阵

性质 设是任何维的一般旋转矩阵: ?两个向量的点积(内积)在它们都被一个旋转矩阵操作之后保持不变: ?从而得出旋转矩阵的逆矩阵是它的转置矩阵: 这里的是单位矩阵。 ?一个矩阵是旋转矩阵,当且仅当它是正交矩阵并且它的行列式是单位一。正交矩阵的行列式是±1;如果行列式是?1,则它包含了一个反射而不是真旋转矩阵。 ?旋转矩阵是正交矩阵,如果它的列向量形成的一个正交基,就是说在任何两个列向量之间的标量积是零(正交性)而每个列向量的大小是单位一(单位向量)。 ?任何旋转向量可以表示为斜对称矩阵A的指数: 这里的指数是以泰勒级数定义的而是以矩阵乘法定义的。A矩阵叫做旋转的“生成元”。 旋转矩阵的李代数是它的生成元的代数,它就是斜对称矩阵的代数。生成元可以通过 M 的矩阵对数来找到。 二维空间 在二维空间中,旋转可以用一个单一的角定义。作为约定,正角表示逆时针旋转。把笛卡尔坐 标的列向量关于原点逆时针旋转的矩阵是: 三维空间 在三维空间中,旋转矩阵有一个等于单位1的实特征值。旋转矩阵指定关于对应的特征向量的旋转(欧拉旋转定理)。如果旋转角是θ,则旋转矩阵的另外两个(复数)特征值是 exp(iθ) 和 exp(-i θ)。从而得出 3 维旋转的迹数等于 1 + 2 cos(θ),这可用来快速的计算任何 3 维旋转的旋转角。

3 维旋转矩阵的生成元是三维斜对称矩阵。因为只需要三个实数来指定 3 维斜对称矩阵,得出只用三个是实数就可以指定一个 3 维旋转矩阵。 [编辑] Roll, Pitch 和 Yaw 主条目:Tait-Bryan角 生成旋转矩阵的一种简单方式是把它作为三个基本旋转的序列复合。关于右手笛卡尔坐标系的x-, y- 和z-轴的旋转分别叫做roll和pitch,yaw旋转。因为这些旋转被表达为关于一个轴的旋转,它们的生成元很容易表达。 ?绕x-轴的主动旋转定义为: 这里的是 roll 角。 ?绕y-轴的主动旋转定义为: 这里的是 pitch 角。 ?绕z-轴的主动旋转定义为: 这里的是 yaw 角。 在飞行动力学中,roll, pitch 和 yaw 角通常分别采用符号, , 和;但是为了避免混淆于 欧拉角这里使用符号, 和。 任何 3 维旋转矩阵都可以用这三个角, , 和来刻画,并且可以表示为roll, pitch 和 yaw 矩阵的乘积。

二阶矩阵和常见的平面变换

二阶矩阵和常见的平面变换 江苏省天一中学沈钰 一.教学目标 1.知识与技能: 通过这节课的复习,使学生进一步理解和掌握六种常见的平面变换的矩阵表示及其几何意义,及矩阵的一些相关知识,如行,列,零矩阵,会用矩阵表示一些问题 2.过程与方法: 通过以平面变换为载体的复习过程,培养学生从特殊到一般,从直观到抽象的学习过程,提高学生学习数学的能力 3.情感态度与价值观: 通过生动通俗的语言和丰富有趣的实例来循序渐进的展开教学过程,激发学生的兴趣与求知欲;通过师生互动的合作交流,营造和谐的教学氛围;通过设置思考或探究的问题,给学生创设思考与探究的空间。 二.教学手段 多媒体 三.教学过程 (一)情节创设 新的一年马上来临了,在上课之前首先播放了一段动画祝大家新年快乐。 〔问题〕:大家知道动画是运用什么知识形成的吗? 计算机动画是指用绘制程序生成的一系列景物画面,其中后一帧画面是对前一帧画面的部分修改,就是几何变换,在平面或空间中物体(图片)的移动就由相应的矩阵乘法来实现。而且每个动画过程背后都涉及数量惊人的矩阵运算,当然计算机的速度是动画的关键。不仅如此矩阵在图论、线性规划、大型工程的计算、信息安全加密等问题中都有重要的运用。为了使我们的生活更加美好,我们应该认真学习矩阵知识。 〔设计意图〕:通过贴近大家生活的动画演示,○1可以激发学生的求知欲,提高学生学习数学的兴趣,○2教师对学生的新年祝福增进了师生情感,○3让学生了解矩阵在现实生活的广泛运用,有利于增强学生的数学应用意识,○4使学生很自然的就进入了今天学习的主题。 (二)活动探究 例 1.已知变换 '32 '02 x x x y y y ???????? →= ???????? ???????? ,将它写成坐标变换的形式是 ___________________. 变式○1已知T,)(',') x y x y y x →= :(,将它写成矩阵乘法形式

历年高考数学真题汇编专题23 矩阵与变换(解析版)

历年高考数学真题汇编 专题23 矩阵与变换 1、(2019年江苏卷)已知矩阵3122?? =???? A (1)求A 2; (2)求矩阵A 的特征值. 【分析】 (1)利用矩阵的乘法运算法则计算2A 的值即可; (2)首先求得矩阵的特征多项式,然后利用特征多项式求解特征值即可. 【解析】(1)因为3122??=???? A , 所以2 31312222????=???????? A =3312311223222122?+??+???? ??+??+???=115106?? ?? ?? . (2)矩阵A 的特征多项式为 23 1 ()542 2 f λλλλλ--= =-+--. 令()0f λ=,解得A 的特征值121,4λλ==. 2、(2018年江苏卷) 已知矩阵. (1)求的逆矩阵 ; (2)若点P 在矩阵对应的变换作用下得到点 ,求点P 的坐标. 【解析】分析:(1)根据逆矩阵公式可得结果;(2)根据矩阵变换列方程解得P 点坐标. 详解:(1)因为 , ,所以A 可逆,

从而 . (2)设P (x ,y ),则 ,所以 , 因此,点P 的坐标为(3,–1). 点睛:本题考查矩阵的运算、线性变换等基础知识,考查运算求解能力. 3、(2017江苏卷)已知矩阵A =??????0110,B =???? ??1002. (1) 求AB ; (2) 若曲线C 1:x 28+y 2 2=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程. 规范解答:(1) 因为A =??????0110,B =???? ??1002, 所以AB =??????0110??????1002=???? ??0210. (2) 设Q (x 0,y 0)为曲线C 1上的任意一点,它在矩阵AB 对应的变换作用下变为P (x ,y ), 则??????0210??????x 0y 0=??????x y ,即??? ?? 2y 0=x ,x 0=y ,所以? ???? x 0=y ,y 0=x 2. 因为点Q (x 0,y 0)在曲线C 1上,所以x 208+y 20 2=1, 从而y 28+x 2 8 =1,即x 2+y 2=8. 因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8. 4、(2016年江苏卷)已知矩阵A =??????1 20-2,矩阵B 的逆矩阵B -1=????????1-120 2,求矩阵AB . 规范解答 设B =?? ?? ??a b c d , 则B -1B =?? ? ?? ???1-120 2 ??????a b c d =???? ??1001, 即????? ???a -12c b -12d 2c 2d =??????1001,

旋转矩阵、欧拉角、四元数

旋转矩阵、欧拉角、四元数比较 旋转矩阵、欧拉角、四元数主要用于: 向量的旋转、坐标系之间的转换、角位移计算、方位的平滑插值计算 各方法比较 任务/性质旋转矩阵欧拉角四元数 在坐标系间(物体和惯性)旋转点能不能(必须转换到矩 阵) 不能(必须转换到矩 阵) 连接或增量旋转能,但经常比四元数 慢,小心矩阵蠕变的情 况 不能能,比矩阵快 插值基本上不能能,但可能遭遇万向锁 或其他问题Slerp提供了平滑插值 易用程度难易难 在内存或文件中存储9个数3个数4个数 对给定方位的表达方式是否唯一是不是,对同一方位有无 数多种方法 不是,有两种方法,它 们互相为互 可能导致非法矩阵蠕变任意三个数都能构成 合法的欧拉角可能会出现误差积累,从而产生非法的四元数 不同的方位表示方法适用于不同的情况。下面是我们对合理选择格式的一些建议: l 欧拉角最容易使用。当需要为世界中的物体指定方位时,欧拉角能大大的简化人机交互, 包括直接的键盘输入方位、在代码中指定方位(如为渲染设定摄像机)、在调试中测试。这个优点不应该被忽视,不要以”优化”为名义而牺牲易用性,除非你去顶这种优化的确有效果。 2如果需要在坐标系之间转换响亮,那么就选择矩阵形式。当然,这并不意味着你就不能用其他格式来保存方位,并在需要的时候转换到矩阵格式。另一种方法是用欧拉角作为方位的”主拷贝”但同时维护一个旋转矩阵,当欧拉角发生改变时矩阵也要同时进行更新。

3 当需要大量保存方位数据(如:动画)时,就使用欧拉角或四元数。欧 拉角将少占用25%的内存,但它在转换到矩阵时要稍微慢一些。如果动画数据需要嵌套坐标系之间的连接,四元数可能是最好的选择。 4 平滑的插值只能用四元数完成。如果你用其他形式,也可以先转换 到四元数然后再插值,插值完毕后再转换回原来的形式。

旋转矩阵公式表

S=10—13的旋转矩阵公式一览 选10个号码,出7中6型旋转矩阵 A,B,C,D,E,F,G A,B,C,D,H,I,J A,B,C,E,F,H,J A,B,C,E,F,I,J A,B,D,E,F,H,J A,B,D,E,F,I,J A,B,E,F,G,H,I A,C,E,G,H,I,J B,D,F,G,H,I,J C,D,E,F,G,H,I C,D,E,F,G,H,J C,D,E,F,G,I,J 一、10个号码(选6中5 - 12注) 2 3 5 6 7 9 ,1 2 4 7 9 10, 3 4 6 7 8 10 3 4 5 6 9 10 ,1 3 5 6 7 10, 1 2 4 5 6 8 1 2 3 4 8 9 ,1 4 5 7 8 9, 2 3 5 7 8 10 1 2 6 8 9 10 ,1 2 3 4 5 10, 1 3 6 7 8 9 二、11个号码(选6中5 – 19注) 2 3 7 9 10 11,2 4 7 8 10 11,1 3 4 6 7 10

2 3 4 6 8 9,1 4 5 7 8 9,3 5 7 8 9 10 1 2 6 8 9 10,1 2 3 4 5 10,1 2 3 7 8 11 1 2 4 6 7 11,2 4 5 8 9 11,3 4 5 6 7 11 1 2 3 5 6 9,2 5 6 7 8 10,1 3 4 8 9 11 1 6 7 8 9 11, 三、12个号码(选6中5 – 33注) 2 3 9 10 11 12, 4 7 8 10 11 12,1 3 6 7 10 12 1 2 5 8 10 12, 1 5 7 9 11 12,3 5 6 8 11 12 2 3 4 6 8 10, 2 6 7 8 9 12,3 5 8 9 10 12 4 5 6 9 10 12, 1 3 4 5 10 11,2 3 7 8 10 11 1 2 4 7 9 10, 2 4 5 8 9 11,3 4 6 7 9 11 1 2 3 5 6 9, 2 5 6 7 10 11,1 3 4 8 9 12 1 6 8 9 10 11, 1 4 5 6 7 8,1 4 5 6 10 11 2 3 4 5 7 12, 1 3 4 8 11 12,1 2 3 5 7 11 1 3 7 8 9 11, 1 2 4 6 9 12,1 2 4 10 11 12 1 2 6 8 11 12, 1 2 3 4 7 8,2 4 6 7 11 12 1 2 3 6 9 11, 5 6 7 8 9 10,3 4 5 7 9 10 四、13个号码(选6中5 - 56注) 3 9 10 11 12 13, 4 7 8 10 12 13,1 3 6 7 12 13 1 2 5 6 7 10,1 2 5 7 12 13,5 6 8 11 12 13

20个号码中6保5旋转矩阵

20个号码中6保5旋转矩阵 共计:1073注(金额:¥2146元) 01,06,08,10,11,12 01,02,03,04,05,06 02,07,08,11,15,17 04,06,09,11,12,19 01,06,08,10,14,17 01,02,03,04,05,07 02,07,08,11,16,18 04,06,09,14,17,19 01,06,08,12,13,15 01,02,03,04,09,14 02,07,08,13,14,15 04,06,09,15,19,20 01,06,08,15,16,18 01,02,03,04,18,20 02,07,08,16,19,20 04,06,09,16,18,20 01,06,09,10,11,17 01,02,03,05,08,15 02,07,09,10,11,14 04,06,10,11,13,19 01,06,09,10,12,19 01,02,03,05,10,19 02,07,09,10,19,20 04,06,10,11,14,19 01,06,09,12,16,17 01,02,03,05,12,17 02,07,09,12,13,18 04,06,11,12,16,20 01,06,09,13,14,18 01,02,03,06,09,10 02,07,09,12,15,16 04,06,11,12,19,20 01,06,09,15,17,18 01,02,03,06,15,17 02,07,09,17,18,19 04,06,11,13,16,17 01,06,10,14,15,17 01,02,03,07,08,09 02,07,10,11,19,20 04,06,11,14,15,17 01,06,10,17,19,20 01,02,03,07,16,19 02,07,10,14,16,19 04,06,13,15,16,18 01,06,11,12,14,16 01,02,03,07,17,18 02,07,10,15,18,20 04,07,08,09,10,14 01,06,11,13,17,20 01,02,03,08,12,16 02,07,11,12,14,20 04,07,08,09,12,18 01,06,11,15,18,19 01,02,03,08,16,19 02,07,12,13,16,19 04,07,08,11,15,19 01,06,12,13,14,16 01,02,03,09,13,18 02,07,12,13,17,18 04,07,08,12,13,18 01,06,12,14,15,20 01,02,03,09,19,20 02,07,13,14,16,17 04,07,08,13,17,19 01,06,14,16,19,20 01,02,03,10,11,12 02,07,13,15,18,19 04,07,08,14,18,19 01,07,08,09,11,18 01,02,03,10,13,17 02,07,13,16,18,20 04,07,09,10,11,12 01,07,08,10,11,20 01,02,03,11,12,13 02,08,09,10,11,15 04,07,09,11,19,20 01,07,08,10,12,19 01,02,03,13,14,15 02,08,09,10,11,19 04,07,09,13,17,18 01,07,08,10,18,20 01,02,03,15,18,19 02,08,09,10,13,18 04,07,09,15,18,19 01,07,08,13,15,16 01,02,03,16,17,18 02,08,09,11,12,20 04,07,10,11,12,15 01,07,08,14,16,17 01,02,03,17,18,20 02,08,09,12,14,16 04,07,10,11,14,16 01,07,09,10,13,14 01,02,04,05,12,19 02,08,09,15,16,18 04,07,10,12,14,17 01,07,09,10,15,17 01,02,04,06,07,14 02,08,09,15,17,19 04,07,10,13,19,20 01,07,09,10,17,19 01,02,04,06,11,20 02,08,09,16,17,18 04,07,10,14,16,18 01,07,09,10,18,19 01,02,04,06,15,18 02,08,10,12,16,19 04,07,10,17,18,19 01,07,09,11,12,13 01,02,04,07,08,17 02,08,10,13,14,20 04,07,11,12,13,17 01,07,09,11,15,17 01,02,04,07,09,17 02,08,10,15,16,20 04,07,11,13,16,18 01,07,09,12,14,19 01,02,04,07,10,13 02,08,11,12,13,19 04,07,11,15,17,18 01,07,09,13,15,20 01,02,04,07,11,18 02,08,11,13,18,19 04,07,12,13,16,20 01,07,09,13,17,20 01,02,04,07,13,16 02,08,12,18,19,20 04,07,14,15,16,19 01,07,09,14,15,17 01,02,04,07,17,19 02,08,13,16,17,20 04,07,15,16,17,18 01,07,09,14,16,18 01,02,04,08,09,14 02,09,10,15,17,20 04,08,09,10,14,16 01,07,10,15,16,20 01,02,04,08,11,14 02,09,10,16,19,20 04,08,09,11,17,20 01,07,11,13,14,19 01,02,04,08,12,13 02,09,11,13,15,18 04,08,09,12,15,17 01,07,11,13,15,19 01,02,04,09,12,15 02,09,11,13,15,19 04,08,09,13,19,20 01,07,11,13,17,19 01,02,04,10,16,17 02,09,11,14,17,20 04,08,10,11,12,16 01,07,11,14,15,20 01,02,04,13,14,17 02,09,12,14,17,20 04,08,10,11,13,18 01,07,11,16,17,19 01,02,04,13,15,17 02,09,13,14,15,20 04,08,10,11,18,20 01,07,12,14,16,20 01,02,04,16,18,19 02,09,14,16,18,19 04,08,10,12,17,19 01,07,13,14,18,20 01,02,04,16,19,20 02,09,15,16,17,19 04,08,10,15,17,18 01,08,09,10,13,19 01,02,05,06,07,16 02,10,13,14,16,19 04,08,11,12,16,17 01,08,09,10,15,19 01,02,05,06,09,20 02,10,14,15,17,19 04,08,11,17,19,20 01,08,09,11,12,15 01,02,05,06,10,14 02,11,12,13,15,20 04,08,12,14,19,20 01,08,09,11,13,15 01,02,05,07,11,15 02,11,12,14,15,19 04,08,13,14,15,18 01,08,09,12,14,20 01,02,05,07,12,20 02,11,12,15,16,18 04,08,14,15,17,20 01,08,09,12,17,18 01,02,05,07,15,19 02,11,12,16,17,19 04,09,10,13,14,17 01,08,09,14,15,19 01,02,05,08,09,10 02,11,13,14,17,18 04,09,10,13,15,16 01,08,10,12,14,15 01,02,05,08,09,19 02,12,13,15,17,18 04,09,10,18,19,20

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA是可逆矩阵, 且 (E-A)1-= E + A + A2+…+A1-K 证明因为E 与A 可以交换, 所以 (E- A )(E+A + A2+…+ A1-K)= E-A K, 因A K= 0 ,于是得 (E-A)(E+A+A2+…+A1-K)=E, 同理可得(E + A + A2+…+A1-K)(E-A)=E, 因此E-A是可逆矩阵,且 (E-A)1-= E + A + A2+…+A1-K. 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A2+…+(-1)1-K A1-K. 由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.

例2 设 A =? ? ?? ? ???? ???000030000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证 A 2=???? ????? ???0000 000060000200, A 3=? ? ?? ? ? ? ?? ???0000 0000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3 =? ? ?? ? ???? ???1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.

矩阵的初等变换及其应用

线性代数 第一次讨论课 1.导语 2.讨论内容目录 3.正文 4.个人总结

导语: 矩阵是研究线性代数方程组和其他相关问题的有力工具,也是线性代数的主要研究啊、对象之一。它的理论和方法在自然科学、工程技术、社会科学等众多领域等都有极其广泛的应用。矩阵作为一些抽象数学的具体表现,在数学研究中占有极其重要的地位。本文从矩阵的概念讨论矩阵的运算及性质,进而讨论用途很广的矩阵的初等变换及其应用。 讨论内容目录 矩阵的初等变换及其应用 1.两个矩阵的等价 2.两个矩阵的乘积 3.将矩阵化为行阶梯型、行最简形、标准型 4.求矩阵的秩 5.求可逆矩阵的逆矩阵 6.求线性方程组的解 7.判断向量组的线性相关性 8.求向量组的秩与极大无关组 9.求矩阵的对角化矩阵(采用行列初等变换,对角线元素为特征值)

10.二次型化为标准形 正文 一、矩阵的等价 1.定义:若矩阵A经过一系列初等行变换化为B矩阵,则称A 与B行等价;若矩阵A经过一系列初等列变换化为B矩阵, 则称A与B列等价;若矩阵A经过一系列初等变换化为B 矩阵,则称A与B等价(相抵)。 2.矩阵的等价变换形式主要有如下几种: 1)矩阵的i行(列)与j行(列)的位置互换; 2)用一个非零常数k乘矩阵的第i行(列)的每个元; 3)将矩阵的第j行(列)的所有元得k倍加到第i行(列)的对应元上去; 即如果两个矩阵可通过有限次上述变换中的一个或几个的组合变为一样的,两个矩阵等价。 3.矩阵等价具有下列性质 (1)反身性任一矩阵A与自身等价; (2)对称性若A与B等价,则B与A等价; (3)传递性若A与B等价,B与C等价,则A与C等价; 注意:矩阵作初等变换是矩阵的一种运算,得到的是一个新矩阵,这

旋转矩阵原理

旋转矩阵原理 揭秘大乐透旋转矩阵原理及算法 (2014-08-07 13:16:36) 转载? 标分类: 艺眸原创教程 签: 股票 财经 彩票 旋转 矩阵 大乐 透 摘要:本研究针对乐透型彩票模型~采用的覆盖设计数学方法~并针对传统的“恰好全部至少有一次覆盖”的简单目标向“恰好全部覆盖一次的最少成本”的目标升级。此研究的理论依据并不是概率论~是纯粹的数据组合。算法可用于研究并不仅限于乐透型彩票的选号应用~可以拓展应用于医药测试、育种等等其他领域。算法的可靠度较强~算法的 测试结果接近最优解的100%~95%,算法仅供参考学习研究~请勿用于其他目的。 关键词:彩票,旋转矩阵,覆盖设计,算法。 一、绪论

改革开放30多年来~随着人们的精神生活日益丰富~公益彩票行业也激起了广大群众的参与热情~其中原由一是出于对公益事件的支持~二是受彩票巨额奖金的吸引。众所周知~彩票的开奖结果是随机性极强的~国家也大力支持开奖过程的透明化。然而毕竟受到诸多因素限制~即便结果接近“随机”~也呈现出一定规律。这种规律的研究方法很多~较于广大彩民接受的是统计法以及概率论。对于更高层的部分“技术彩民”而言~简单的统计与概率学分析已经无法满足对研究的准确性的要求~因为相对于开奖结果数量的千万种~现有的标本才几千个根本无法作出准确的判断~于是数据的组合运筹开始得到彩民的接受与青睐~因为这种方法可以“摆脱概率”。 在彩票数据的组合之中~有一种方法叫做“聪明组合”~其目标是提高中奖机会。这种所谓的“聪明组合”就是一种数学里面的覆盖设计~简单地讲就是把“可供用于选择的数据”最少地选择~要求是“牺牲最大的胃口能满足最佳的要求”。当然不同的覆盖设计具有不同的设计目标。网络上流 行的一些“中6保5”“中5保4”之类的就是“聪明组合”的应用。 为了更好地让读者理解后文所说的“恰好全部覆盖一次的最少成本”这一概念~先讲述一下所谓的“中M保N”到底是怎么回事。 举个实例:大乐透35选5,篮球12选2的研究此处略去,~如果选择8个数~这8个数里面如果有即将开奖的5个数~现在通过一个组合~要求不管怎样~这个组合都能保证至少有一组能满足中4个,也有可能中5个,。那么~我们称这个组合叫做“大乐透选8中5保4”的“聪明组合”。比如选择的是 {01,02,03,04,05,06,07,08}~开奖结果在这8个数内~下面的组合,5注,将保证能至少有一个中4个结果。 01,02,03,05,08 01,02,04,06,07

相关文档
相关文档 最新文档