文档库 最新最全的文档下载
当前位置:文档库 › Peck法计算的盾构隧道地面沉降量及沉陷槽计算公式

Peck法计算的盾构隧道地面沉降量及沉陷槽计算公式

Peck法计算的盾构隧道地面沉降量及沉陷槽计算公式
Peck法计算的盾构隧道地面沉降量及沉陷槽计算公式

8.1.4 地层变形预测与分析

通常设计阶段的地面沉降预测方法可分为两类,一是根据实测数据的统计方法—Peck 公式是其典型代表:二是采用有限元和边界元的数值方法。

采用Peck 法计算的盾构隧道地面沉降量及沉陷槽计算公式如下式;其沉陷槽横向分布见图。

exp(max )(S x S =-22

2i

x ) ??? ?

?Φ-?=2452tg Z i π

式中:V—地层损失(地表沉降容积);

i—沉降槽曲线反弯点;

z—隧道中心埋深

根据本标段的地质条件和埋深等,得i=6.9m,由此根据以往的工程实践及经验公式,沉陷槽宽度B≈5i,可得单个隧道盾构推进引起的地表横向沉陷槽宽度约为35m,两座隧道盾构推进引起的地表横向沉陷曲线叠加后其沉陷槽宽度约为50m,并且沉陷槽的主要范围在隧道轴线两侧6m范围内,离轴线3m的沉降量约为最大沉降量的60%~70%,离轴线6m的沉降量约为最大沉降量的25%。

地层损失V值主要是由盾尾空隙引起的土体损失量,它与盾构机盾壳厚度、盾构推进时粘附在盾构上的土体厚度及注浆量等有关,即

V=V尾+V粘-V浆

盾构推进时粘附在盾构钢板上的土体厚度约为20~40mm,盾壳厚度为70mm,则:V=V尾+V粘-V浆=1.36+0.58α-(1.36+0.58)β

α为折减系数,

β为同步注浆的充填系数。

取α=0.6 β=0.5 得V=0.73m2

由此可得地表最大沉陷值:Smax=23.4mm

最大斜率:Qmax=0.0013

以上分析值主要是在以往工程经验基础上结合本地铁盾构标段的实际情况,隧道埋深16m左右情况下得出的,最大沉降量满足规范和标书要求。

虽然地表沉降形态是大体相同或相似的,但其最大沉降量总是随着施工工况和地质条件的改变而千差万别,目前控制沉降的主要手段是同步注浆和二次注浆,而注浆的环节常有各种各样的问题发生,如缺量、过量、滞后、漏浆等等,不同的沉降情况常是施工工况和工作状态的反映,同时不同的地质条件沉降亦有所不同,如粉砂土较粘土隆降起量要少,沉降速率要快,淤泥质粘土后期固结沉降则要大点。以上这些都要求盾构施工时要加强监测工作,以随时了解地面沉降信息,以便及时采取有效措施,以达到控制沉降和减少损失的目的。

8.2 理论分析

施工引起的地面沉降和围岩变形,理论分析通过地层—结构模型模拟计算,本次计算采用有限元单元法,利用2D-σ计算程序模拟计算。

8.2.1 计算模型

因隧道是一个狭长的建筑物,纵向很长,横向相对尺寸较小。隧道计算可以取中间每延米隧道,作为平面应变问题来近似处理。隧道模拟计算模型采用平面应变模型,计算范围上取至地面,下部和横向取隧道洞径的5倍左右为计算域。

计算采用2D-σ程序进行模拟计算分析。

计算结构模型和单元网格图如下图所示。

计算工况选取区间DK19+700.000地段, 隧道埋深16.7m ,区间盾构穿越的地层为

中、粗砂层及圆砾层。

M M M M M

M

M M

8.2.2 屈服准则 有限元法用于求解岩土工程问题主要有两点特殊的地方,一是采用的破坏准则不同,一是对施工过程的模拟。对岩土工程材料,可以近似看作Mohr ——Coulomb 体,因此在计算中采用主应力空间下的Mohr ——Coulomb 屈服准则:

τσφf n c tg =+ (a )

其物理意义是,当岩土体中一点在某个面上的剪应力达到c+σntg φ时,该点将发生剪切破坏。用主应力表示,则可写为

()cos ()sin σσσσφ13132-=?++c (b )

在编制程序时,为与其它屈服准则统一起来,可将它以不变量的形式表示出来,即 0cos sin sin 3cos sin 32=?--

+=?θ?θφσc J J F m (c )

σm ——三个正应力的平均值;

J2、J3——应力偏量的第二、第三不变量。

8.2.3 有限元数值分析结果

最终变形状态见下“位移网格图”,最大沉降量为11.mm,双洞施工后沉降槽宽度为42m,沉降槽曲线最大坡度为1.14‰。

8.3 控制地层变形保护建筑物的措施

根据投标书的要求,沉降量一般控制在+10/-30mm之间,施工中可采取以下措施。

1)盾构前方的隆陷控制

地表隆起的主要原因是盾构正面对土体的推应力大于原始侧向地应力,因此在实时监测的情况下可以根据地表隆起状况调整推进速度及出土量,降低正面土仓压力达到降低地表隆起的目的。地表沉降过大则是由于开挖面推力小于原始应力而引起的,应通过调整推进速度及减少出土量,提高正面土仓压力方式来控制沉降。

2)盾构通过时的沉降控制

这一沉降是无法避免的,但是如果沉降超限可以采取控制掘进速度和出土量,调整土仓压力,控制同步注浆的压力及注浆量,从而达到有效控制地层的弹塑性变形。

保持盾构开挖面的稳定,防止地层失水。主要通过掘进速度和出土量等参数的控制,保证工作面的合适压力,施工中要避免地层失水,尤其在断层破碎带应通过向工作面加注澎闰土浆或泡沫保持好土压平衡,防止在敞开、半敞开状态下出现涌水突泥发生,必

要时可加气压施工。

3)固结沉降的控制

盾构通过后,由于应力松弛影响,地层还会发生固结沉降,为此应根据地面实时监测结果进行实时控制,在管片衬砌背后实施二次注浆,尤其对拱部120°范围进行地层固结注浆是非常重要的。主要控制参数为注浆量和注浆压力。二次(或多次)压浆是弥补同步注浆不足,减少地表沉降的有效辅助手段,可使盾构在穿越建筑物、道路、地下管线时,大大降低地面沉降。

4)信息化管理

本标段区间隧道穿越地上建筑物较复杂,建筑物的基础型式、埋深等情况无具体资料。为保证地面建筑物的安全,如我单位中标后将对沿线建筑物基础进行深入调查,避免工程的不可预见性。

在建筑物设置系统的观测网,进行变形监测并及时反馈信息,作到信息化施工。

根据建筑物的结构类型及对沉降的敏感程度、沉降的允许值,制定建筑物及地面变形警界值。根据反馈信息,及时进行跟踪注浆或补充注浆。

5)其它措施

盾构在曲线推进、纠偏、抬头或叩头推进过程中,实际开挖断面不是圆形而是椭圆,从而会引起附加变形,此时应调整掘进速度与正面土压,达到减少对地层的扰动度和减少超挖的效果,从而减少地层的变形。盾构暂停推进时,可能会引起盾构后退,而使开挖面松弛造成地表沉陷,此时应作好防止盾构后退措施,并对开挖面及盾尾采取封闭措施。加强机械检修养护,建筑物下进行快速匀速掘进。防止螺旋输送机喷涌砂,盾尾和铰接部位漏砂等,造成地层损失,加大沉降。在曲线地段施工时,减少超挖。

地面沉降现状调查

5 地面沉降现状调查 5.1 主要任务 5.1.1了解地面沉降灾害区的地质背景(地层岩性、地质构造、水文地质、工程地质特征等); 5.1.2查明或基本查明地面沉降灾害的分布范围、分布规律、危害程度;开展航片和卫片的地面沉降解译,实地验证航片、卫片的解译情况; 5.1.3分析地面沉降灾害的影响因素(自然因素及人为因素)、形成条件及其成因机理。 5.2 调查范围 依据地质环境条件、地下液态资源开发利用现状和规划、地面沉降灾害发育程度以及社会经济发展重要程度等综合因素,确定地面沉降调查范围。 5.2.1对发生过如井口抬升、桥洞净空减少、房屋开裂等地面沉降现象较集中的区域展开重点调查; 5.2.2要根据工作的需要,适当地扩大到已知地面沉降范围以外的区域。 5.2.3在有采矿活动、农田灌溉活动、大量抽汲地下水的地段,必须在现场通过访问、调查,查明是否曾经发生过地面沉降现象,并详细记录,标记在图上。 5.3 调查内容 5.3.1地面沉降区地下水动态调查 调查与监测的内容包括地下水水位、水量资料;与地下水有密切联系的地表水体的观测资料;重点调查地下水水位下降漏斗的形成特点、分布范围、发展趋势及其对已有建筑物的影响。 5.3.2 建筑物破坏情况调查 首先查看地下水开采量强度大、地下水位降深幅度也大的地段的开采井泵房(地面、墙壁有无裂缝、井管较地面有无上升、房屋有无变形等),然后逐渐向四周扩展,查看地面建筑物有无损坏,并调查建筑物年限。 5.3.3 地下管道破裂调查 对供水管线应查看地面是否潮湿、冒水;冬季是否常年结冰;煤气管道破裂

调查用感官嗅其气味是否正常,调查居民用气量是否充足。 5.3.4 雨季淹没调查 调查淹没损失、淹没设施名称、淹没面积、淹没水深,对比分析本次降水量大小及历史同等降水量淹没情况和相应的地面变形情况(有无阻水建筑物修建)。若在相同的降水、风力、风向及排水条件下出现洼地积水,河水越堤、海水淹没码头、工厂等,应属于地面沉降所致。 5.3.5 风暴潮调查 在发生过风暴潮的地区开展风暴潮的频率、潮位和经济损失调查,在有条件的地区开展经济损失评估;开展河堤、桥梁等的变化调查。 5.3.6 相关调查与资料分析 调查第四纪松散堆积物的岩性、厚度和埋藏条件, 收集和分析不同地区地下水埋藏深度和承压性,各含水层之间及其与地表水之间的水力联系资料。 5.3.7 地面沉降灾害和对环境的影响调查 采用现场踏勘和访问的方法,对建筑设施的变形、倾斜、裂缝的发生时间和发展过程及规模程度等详细记录,同时了解被破坏建筑设施附近水源井的分布、抽水量及地面沉降的情况。 5.3.8 调查记录 每次调查均应有详细记录。 5.4 资料收集与分析 在开展调查与监测的过程中应进行有关资料的收集,包括城市1:10000或1:50000比例尺交通图和地形图、沉降区水文地质工程地质勘查资料、水资源管理方面的资料、市政规划现状及远景资料、沉降区内国家水准网点资料、城市测量网点资料、井、泉点的历史记录及历史水准点资料、研究沉降区水文地质工程地质条件、历年水资源开采情况、已有的监测情况、地面沉降类型及沉降程度。分析地面沉降的原因、沉降机制,估算地面沉降的速率,划分出沉降范围及沉降中心,尽可能编制出地面沉降现状图。作为监测网点布设的原则依据。 在资料相对缺乏的沉降区,可布置适当的调查与勘查工作量,以达到布设监测网络的要求为准则。

挖土方计算公式

基坑土方V=[A*B+a*b+(A+a)*(B+b)]*h/6; 上口:A,B 下口:a,b 土方:凡平整场地厚度在30cm以上,坑底宽度在3m以上及坑底面积在20m2以上的挖土为挖土方。 地槽:凡槽底宽度在3m以内,且槽长大于槽宽三倍的为地槽。 地坑:凡图示底面积在20m2以内的挖土为挖地坑。 放坡起点,混凝土垫层由垫层底面开始放坡,灰土垫层由垫层上表面开始放坡,无垫层的由底面开始放坡。 土建工程中挖土方,挖地坑公式为: V=[(A+kH1)*H1+A*H2]*L, 挖地槽公式为: V=A*B*H+(A+B)*k*H1*H1+4/3*k*k*H1*H1*H1, 其中:A--基槽(坑)的宽度;B--基坑的长度;H1--基槽(坑)的垫层顶面至室外地坪的高度;H2--基槽(坑)的垫层厚度;k--放坡系数;L--基槽的长度;有放坡,都从垫层上表面(顶面)开始放坡的。 钢筋工程量计算篇 钢筋工程量计算常用公式(2009-10-11 13:33:44)转载标签:杂谈分类:工程造价资料 一、梁 (1)框架梁 一、首跨钢筋的计算 1、上部贯通筋 上部贯通筋(上通长筋1)长度=通跨净跨长+首尾端支座锚固值 2、端支座负筋 端支座负筋长度:第一排为Ln/3+端支座锚固值; 第二排为Ln/4+端支座锚固值 3、下部钢筋 下部钢筋长度=净跨长+左右支座锚固值 以上三类钢筋中均涉及到支座锚固问题,那么总结一下以上三类钢筋的支座锚固判断问题: 支座宽≥Lae且≥0.5Hc+5d,为直锚,取Max{Lae,0.5Hc+5d }。 钢筋的端支座锚固值=支座宽≤Lae或≤0.5Hc+5d,为弯锚,取Max{Lae,支座宽度-保护层+15d }。 钢筋的中间支座锚固值=Max{Lae,0.5Hc+5d } 4、腰筋 构造钢筋:构造钢筋长度=净跨长+2×15d 抗扭钢筋:算法同贯通钢筋 5、拉筋

地表沉降监测作业指导书

沉降监测作业指导书 1 目的和适用范围及标准 测定建筑场地沉降、基坑回弹、地基土分层沉降以及基础和上部结构沉降。操作方法执行标准《工程测量规范》(GB50026-2007)、《建筑变形测量规范》(JGJ 8-2007)。 2 仪器设备 水准仪全站仪 3 沉降控制点布设 特级沉降观测的高程基准点数不应少于4个;其他级别沉降观测的高程基准点数不应少于3个。高程工作基点可根据需要设置。基准点和工作基点应形成闭合环或形成由附合路线构成的结点网。 高程基准点和工作基点位置的选择应符合下列规定: 1)高程基准点和工作基点应避开交通干道主路、地下管线、仓库堆栈、水源地、河岸、松软填土、滑坡地段、机器振动区以及其他可能使标石、标志易遭腐蚀和破坏的地方; 2)高程基准点应选设在变形影响范围以外且稳定、易于长期保存的地方。在建筑区内,其点位与邻近建筑的距离应大于建筑基础最大宽度的2倍,其标石埋深应大于邻近建筑基础的深度。高程基准点也可选择在基础深且稳定的建筑上; 3)高程基准点、工作基点之间宜便于进行水准测量。当使用电磁波测距三角高程测量方法进行观测时,宜使各点周围的地形条件一致。当使用静力水准测量方法进行沉降观测时,用于联测观测点的

工作基点宜与沉降观测点设在同一高程面上,偏差不应超过±1cm。当不能满足这一要求时,应设置上下高程不同但位置垂直对应的辅助点传递高程。 沉降监测点的布设应位于建(构)筑物体上。高程基准点和工作基点标石、标志的选型及埋设应符合有关规范规定。 4 沉降观测 沉降观测分为:定期对高程控制网进行复测以确定控制网的稳定性,同时对沉降观测标进行观测。 基准点应设置在变形区域以外、位置稳定、易于长期保存的地方,并应定期复测。复测周期应视基准点所在位置的稳定情况确定,在建筑施工过程中宜1~2月复测一次,点位稳定后宜每季度或每半年复测一次。当观测点变形测量成果出现异常,或当测区受到地震、洪水、爆破等外界因素影响时,应及时进行复测,并按《建筑变形测量规范JGJ 8-2007》规定对其稳定性进行分析。 有工作基点时,每期变形观测时均应将其与基准点进行联测,然后再对观测点进行观测。 沉降观测标的精度、观测仪器、观测方式均应达到相应等级的水准测量规范要求,沉降观测标必须位于水准观测线路中,不得使用碎步点方式对沉降观测标进行测量。 5 观测周期 按照《工程测量规范GB50026-2007》、《建筑变形测量规范JGJ 8-2007》中的技术要求,确定相应等级的观测周期。

Peck法计算的盾构隧道地面沉降量及沉陷槽计算公式

8.1.4 地层变形预测与分析 通常设计阶段的地面沉降预测方法可分为两类,一是根据实测数据的统计方法—Peck 公式是其典型代表:二是采用有限元和边界元的数值方法。 采用Peck 法计算的盾构隧道地面沉降量及沉陷槽计算公式如下式;其沉陷槽横向分布见图。 exp(max )(S x S -22 2i x )

? ?? ? ? Φ-?= 2452tg Z i π 式中:V —地层损失(地表沉降容积); i —沉降槽曲线反弯点; z —隧道中心埋深 根据本标段的地质条件和埋深等,得i=6.9m ,由此根据以往的工程实践及经验公式,沉陷槽宽度B ≈5i ,可得单个隧道盾构推进引起的地表横向沉陷槽宽度约为35m ,两座隧道盾构推进引起的地表横向沉陷曲线叠加后其沉陷槽宽度约为50m ,并且沉陷槽的主要围在隧道轴线两侧6m 围,离轴线3m 的沉降量约为最大沉降量的60%~70%,离轴线6m 的沉降量约为最大沉降量的25%。 地层损失V 值主要是由盾尾空隙引起的土体损失量,它与盾构机盾壳厚度、盾构推进时粘附在盾构上的土体厚度及注浆量等有关,即 V=V 尾+V 粘-V 浆 盾构推进时粘附在盾构钢板上的土体厚度约为20~40mm ,盾壳厚度为70mm ,则:V=V 尾+V 粘-V 浆=1.36+0.58α-(1.36+0.58)β α为折减系数, β为同步注浆的充填系数。 取α=0.6 β=0.5 得 V=0.73m2 由此可得地表最大沉陷值:Smax=23.4mm 最大斜率:Qmax=0.0013 以上分析值主要是在以往工程经验基础上结合本地铁盾构标段的实际情况,隧道埋深16m 左右情况下得出的,最大沉降量满足规和标书要求。 虽然地表沉降形态是大体相同或相似的,但其最大沉降量总是随着施工工况和地质条件的改变而千差万别,目前控制沉降的主要手段是同步注浆和二次注浆,而注浆的环节常有各种各样的问题发生,如缺量、过量、滞后、漏浆等等,不同的沉降情况常是施工工况和工作状态的反映,同时不同的地质条件沉降亦有所不同,如粉砂土较粘土隆降起量要少,沉降速率要快,淤泥质粘土后期固结沉降则要大点。以上这些都要求盾构施工时要加强监测工作,以随时了解地面沉降信息,以便及时采取有效措施,以达到控制沉降和减少损失的目的。 8.2 理论分析

浅析地面沉降的危害

浅析地面沉降的危害、发生机理及其预防措施 (内蒙古第五地质矿产勘查开发院吴文平任国文) 一、地面沉降的定义及其特点 广义地讲,地面沉降是指地壳表面一切自然力或人类活动影响下所发生的区域性地面下降,就工程意义而言地面沉降是指某一区域内由于开采地下水或其他地下流体(如石油、天然气)导致的地表浅层第四纪松散堆积物压密或进一步固结引起的地面标高下降的现象。地面沉降的特点:①波及范围广,下沉速率缓慢,难以察觉,一旦发生了地面沉降,即使不考虑产生的原因,沉降了的地面也是可能完全复原的;②在同一沉降区域内存在一处或多处沉降中心,沉降中心的位置和沉降量与地下流体开采点的分布和开采量密切相关。 二、地面沉降的危害 地面沉降所造成的破坏和影响是多方面的。主要为区域性地面标高的损失而引起环境恶化给工农业生产、交通运输、城市建设和人民生活造成危害和严重的经济损失,其具体环境灾害表现如下: 1、在滨江或滨海区域易受河水或海水的侵袭,引起潮水、江水倒灌,给城市、农田造成严重经济损失。地面沉降也使内陆平原城市或地区遭受洪水灾害的频率增大、危害程度加重,尤其那些新构造盆地如江汉盆地、洞庭湖盆地、汾渭盆地及辽河盆地等。 2、对城市公共设施、交通运输、港口码头及水利设施的损害。例如城市中下水管道变形排水能力下降,河道桥下净空减小通航能力降低,既有河、海堤坝或防洪墙防洪、潮的能力降低,道路设施破坏,港口码头失效货物装卸能力下降等。 3、地面沉降的不均匀往往使地面和地下建筑遭受巨大的破坏,危及稳定、安全。如建筑物墙壁开裂、高楼脱空并使桩基产生负摩阻力,深井井管上升、井台破坏,桥墩不均匀下沉、自来水管弯裂漏水等。 三、地面沉降的分布规律及成因 1、地面沉降的分布规律 地面沉降的地域分布具有明显地带性,其范围主要局限于存在厚层第四纪堆积物的平原、盆地、河口三角洲或滨海地带。例如长江、黄河、海河及辽河下游平原和河口三角洲地区,这些地区的第四纪沉积厚度大,固结程度差,颗粒细,层次多,压缩性高;地下水含水层多,补给径流条件差,开采时间长,强度大;城镇密集、人口多,工农业生产发达。这些地区的地面沉降首先从城市地下水开采中心开始形成沉降漏斗,进而向外围扩展,形成以城镇为中心的大面积沉降区。 2、地面沉降的成因 地面沉降发生的原因主要有自然因素和人为因素,自然因素主要是指新构造运动、强烈地震及海平面上升、欠固结土层自然固结等。人为因素主要是指大量抽取地下气、液体,建设大面积地面建筑群,固体矿床开采等。随着人类工程及经济活动的能力及强度的逐渐增强,其生产活动对地面沉降的影响通常已占主导地位。无论是何种因素,地面沉降都是因为改变了地层中原有应力状态,使地层发生变形的结果。城市地面沉降主要是因各种目的而进行的浅层疏干排水和抽取深层的气、液体,使地层内的气、液压降低,土颗粒间有效应力增加,地层压密固结的结果。这种因抽取地下水而形成的地面沉降,是地面沉降现象中发育最普遍,危害最严重的一类,其特点是沉降速率大,持续时间长,特别是含水层下部存在巨厚层高压缩性粘性土时。 四、预测地面沉降量的估算方法

地面沉降监测

地面沉降监测

上海市工程建设规范 地面沉降监测与防治技术规程Technical code for land subsidence monitor and control (征求意见稿) 2008 上海

上海市工程建设规范 地面沉降监测与防治技术规程 Technical code for land subsidence monitor and control 主编单位:上海市地质调查研究院 批准单位:上海市建设和交通委员会 施行日期:2008年月日

2008 上海 35

上海市建设和交通委员会 沪建交[2008] 号 上海市建设和交通委员会关于批准 《地面沉降监测与防治技术规程》为 上海市工程建设规范的通知 各有关单位: 由上海市地质调查研究院等单位主编的《地面沉降监测与防治技术规程》,经有关专家审查和我委审核,现批准为上海市工程建设规范。该规范统一编号为,其中1.0.4为强制性条文。自2008年月日起实施。本规范由市建设交通委负责管理,上海市地质调查研究院负责解释。 上海市建设和交通委员会 二○○八年月日

前言 本规程是根据上海市建设和交通委员会沪建交[2007]184号文的要求,由上海市地质调查研究院会同有关单位依据国务院《地质灾害防治条例》(国务院2003年第384号)以及上海市政府《上海市地面沉降防治管理办法》(上海市人民政府令2006年第62号),密切结合上海市地面沉降监测与控制的工程实践,在认真总结实践经验和广泛征求本市有关单位和专家意见的基础上,编制完成的。 本规程对地面沉降监测与防治工作的技术要求进行了规定,适用于上海市行政区域内地面沉降的监测与防治工作。 本规程共分五章,内容包括:1.总则;2.规范性引用文件;3.术语;4.地面沉降监测;5.建设工程地面沉降监测;6.地面沉降防治;7.成果编制和归档及其条文说明。 本规程以黑体字标志的条文为强制性条文,必须严格执行。 本规程具体由上海市地质调查研究院负责

西安地面沉降分析

龙源期刊网 https://www.wendangku.net/doc/aa10328726.html, 西安地面沉降分析 作者:兰洋孟繁钰 来源:《科技探索》2013年第01期 摘要:地面沉降是西安市较为突出的地质灾害之一,研究地面沉降的影响因素及沉降机理具有重要的意义,本文通过收集资料总结西安地面沉降的特征,研究地面沉降的机理,并对西安地面沉降量进行理论计算。 关键词:西安沉降机理沉降量 1、前言 地面沉降是西安较为突出的地质灾害之一,其形成发展的历史较长,涉及范围广,并具有独特的活动特征。地面沉降的发展还加剧了西安地裂缝的活动,其灾害形式主要表现为地表建筑物随基础断裂受损,地下水及煤气地下管道被错断,井管“上升”和深部井管受损,功能失效,以及道路路面差异变形等,这些都给西安市的市政设施及城市建设造成很大危害,对正在进行的西安地下铁路建设也有重大不利影响。因此,研究地面沉降机理及主要影响因素具有重要的意义。 2、西安地面沉降原因分析 从上世纪50年代初到90年代,西安城郊区开采承压水井数从最初的2眼增加到500多眼,开采量也从7.7×104m3/a剧增到11223×104m3/a,持续多年的超量开采,引起区域承压水位大幅度下降,形成了250km2的降落漏斗,截至1995年水位降深达80~130m,有90 km2 的地区水位降至第一承压含水层顶板以下[1],然而西安地面沉降中心与承压水降落漏斗基本 一致,由此表明西安市区地面沉降,主要是由于过量开采承压水引起水位大幅度下降所致,除此之外区域构造沉降、黄土湿陷性和地面荷载作用等对地面沉降也有一定的影响。 3、地面沉降机理分析 从上世纪50年代初到90年代西安市持续多年的超量开采地下水,引起区域承压水位大幅度下降,这必然要使含水层本身和其上下相对隔水层中的空隙水压力随之减小。根据有效应力原理可知,土中由覆盖层荷载引起的总应力是由孔隙水压力和有效应力组成的,土的体积压缩和抗剪强度的变化只取决于有效应力的变化。假定抽水过程中土层内的总应力不变,初始承压含水层中的承压水位与上部潜水含水层的水位相一致,那么孔隙水压力的减小必然导致土中有效应力的等量增大,结果就会引起土体的压缩和固结[2] [3]。 4、西安地面沉降量计算 根据西安地层情况,由抽取承压水引起的地层压缩层可分为5层,具体情况描述如下:

土方开挖工程量计算公式资料讲解

土方开挖工程量计算公式 圆柱体:体积=底面积×高 长方体:体积=长×宽×高 正方体:体积=棱长×棱长×棱长. 锥体: 底面面积×高÷3 台体: V=[ S上+√(S上S下)+S下]h÷3 球缺体积公式=πh²(3R-h)÷3 球体积公式:V=4πR³/3 棱柱体积公式:V=S底面×h=S直截面×l (l为侧棱长,h为高) 棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h 注:V:体积;S1:上表面积;S2:下表面积;h:高。 ------ 几何体的表面积计算公式 圆柱体: 表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥体: 表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形 名称符号周长C和面积S 正方形a—边长C=4a S=a2 长方形a和b-边长C=2(a+b) S=ab 三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中 s=(a+b+c)/2 S=ah/2=ab/2?sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形d,D -对角线长α-对角线夹角S=dD/2?sinα平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sin α梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh 圆r-半径d-直径C =πd=2πr S=πr2=πd2/4 扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360) S =πr2×(a/360) 弓形l-弧长S=r2/2?(πα/180-sinα) b-弦长=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 h-矢高=παr2/360 - b/2?[r2-(b/2)2]1/2 r-半径=r(l-b)/2 + bh/2 α-圆心角的度数≈2bh/3 圆环R-外圆半径S=π(R2-r2) r-内圆半径=π(D2-d2)/4 D-外圆直径 d-内圆直径椭圆D-长轴S=πDd/4 d-短轴 土建工程师应掌握的数据2010-03-27 11:05 12墙一个平方需要64块标准砖 18墙一个平方需要96块标准砖 24墙一个平方需要128块标准砖 37墙一个平方需为192块标准砖 49墙一个平方需为256块标准砖 计算公式:

最新地面下沉处理方案(修订版)

利保商贸中心 地下室外围地面下沉处理施工方案 编制: 审核: 批准: 龙元建设集团股份有限公司 2018年8月1日

一、工程概况 本工程位于佛山市顺德区龙江镇,建筑面积约18万平方米,占地面积约2.3平方米,其中地下室三层,基坑深度达16米左右,地上有3栋建筑物,最高一栋为120米。现1/3地下室已完成,已形成的地下室外墙进行了回填,其他地下室结构正在进行施工中。 二、事故原因 2018年6月8日顺德区遭受特大暴雨,且连续不停雨量之大是顺德数十年不遇的特大暴雨。本工程位于顺德地区的龙江镇,周边为家具材料城,本身工地位于整个市场的最低部位,由于暴雨在短时间内雨量很大,导致周边市政管道及周边的排水河道来不及及时的排出,大量的雨水倒灌入工地。倒灌雨水的入口在工程的东南角,当时积水深度达到1.5米左右。由于大量积水灌入基坑和地下室外围回填区域,导致地下室基坑周边回填并已完成混凝土硬化临时地面出现不同程度的沉降和开裂,道路路面也有不同程度的裂缝沉降,人货梯坡道出现倒塌的现象。经现场工程人员勘察发现确定,造成已浇筑完的混凝土地面、路面、人货梯坡道出现下沉、开裂、坍塌等现象主要是由于基坑周边回填物大量的流失造成,为保证工地安全顺利的前提下是施工,根据各方的建议尽快对有安全隐患的部位进行修复,主要是混凝土地面沉降修复面积约为800㎡,路面修复面积约为200㎡,坡道的坍塌等。故编制以下修复方案:

工艺流程 本施工方案结合本工程特点主要为混凝土地面沉降进行修复。原面层为混凝土压光地面,对混凝土基层的平整度要求较高。 施工方式如下: 1.操测处理范围→原混凝土地面破碎→垃圾清理外运→地 沙回填下沉部分→150~200厚钢筋砼地坪浇筑→振捣→拉毛→养护→割缝 2.先用水平仪操测,再由建设单位确定地坪修复范围, 计算工程量,工程量现场确认。 3.基层处理 3.1.地面塌陷范围确定后,用地面切缝机沿外边切割深 度不少50mm的缝,然后用大型镐机将该范围内的地面破碎后再 用挖机装车运走。 3.2.基层做300~1500厚地沙回填用打夯机夯实,并在 地坪修复范围内的水平方向满铺Φ10@150双向网片,再浇筑200 厚砼。 4.混凝土浇筑 地坪为强度等级C30砼浇筑,砼地面最薄处保证150mm厚, 最厚处以地面实际下沉深度实测为准,地面边缘接缝用1:2水泥 砂浆处理。 5.地面的切缝。 为防止混凝土干缩产生的不规则裂缝,将其裂缝控制有规则的切

土方挖掘计算公式

一、土方工程量计算 一、土方工程量计算 土方工程量计算中,挖沟槽、挖地坑、一般挖土方和平整场地的划分及工程量计算公式。 挖沟槽:指挖土宽度B≤3m,挖土长度L>3B; 挖地坑:指不满足上述条件之一,且基底面积S≤20m2的挖土; 一般挖土方:指不满足上述条件之一、基底面积S>20m2,挖土深度h>0.3m的挖土; 平整场地:指不满足上述条件之一、基底面积S>20m2,挖土深度h≤0.3m的挖土; ㈠、挖沟槽土方工程量的计算公式: 1、基础下无垫层时,V=(B+2C+KH)×H×L 2、基础下有不支模板的垫层时,V=[(B+2C+Kh)×h+B1×(H-h)]×L 3、基础下有支模板的垫层时,V=[(B1+2C+Kh)×h+(B1+2C)(H-h)]×L ㈡、挖地坑和一般挖土方的工程量计算公式: 1、基础下无垫层时,V=(A+2C+KH)(B+2C+KH)×H+1/3K2H3 2、基础下有不支模板的垫层时, V=[(A+2C+Kh)(B+2C+Kh)×h+1/3K2h3+A1×B1×(H-h)] 3、基础下有支模板垫层时V=(A1+2C+Kh) (B1+2C+Kh)×h+1/3K2h3+(A1+2C)(B1+2C)(H-h) 式中,B:基础底宽B1:垫层底宽C:工作面宽度 H室外地坪标高至槽底的深度 h室外地坪标高至垫层上表面的深度 K放坡系数:当I、II类土的挖土深度h≥1.2m时,才需要

放坡,坡度系数K=0.5; 当III类土的挖土深度h≥1.5m时,才需要放坡,坡度系数K=0.33; 当IV类土的挖土深度h≥2m时,才需要放坡,坡度系数K=0.25。 ㈢、平整场地工程量的计算公式: S平整场地=S1+L外×2+16 ㈣、基础回填土工程量计算公式: V=挖土的总体基-室外地坪标高以下埋设物体积 ㈤、室内回填土工程量计算公式: V=底层主墙间净面积×(室内外高差-地坪厚度) ㈥、余土外运工程量计算公式: V=挖土总体积-填土总体积

地面沉降研究及其防治

地面沉降研究及其防治 摘要:地面沉降是城市主要地质灾害之一,主要是在自然和人为因素作用下,由于地壳表层土体压缩而导致区域性地面标高降低的一种区域性的缓变地质灾害,成灾慢,但损失大,不易治理。随着中国城市化进程的加快, 地面沉降规模扩大, 危害加剧。本文主要介绍了国内外地面沉降的现状、引起沉降的原因、地面沉降的机理和地面沉降灾害防治措施。 关键字:地质灾害;地面沉降;地裂缝;地下水 Abstract: the ground subsidence is one of the city’s main geo logical hazards, mainly in the natural and artificial factors effect, because the surface soil crust and lead to regional ground elevation compression reduced a regional geological disasters of slowly, with slow, but the loss of large, is not easy to control. With the acceleration of China’s urbanization process, ground subsidence scale expanding and harm the worse. This paper mainly introduces the present situation of domestic and foreign land subsidence, cause, the cause of subsidence land subsidence mechanism and ground subsidence disaster prevention and control measures. Key word: geological disasters; The ground settlement; To crack; groundwater 1 地面沉降概述 地面沉降是在自然和人为因素作用下,由于地壳表层土体压缩而导致区域性地面标高降低的一种环境地质现象,是一种不可补偿的永久性环境和资源损失。地面沉降具有生成缓慢、持续时间长、影响范围广、成因机制复杂和防治难度大等特点,是一种对资源利用、环境保护、经济发展、城市建设和人民生活构成威胁的地质灾害。地面沉降是我国乃至世界范围较为普遍的地质灾害,对社会经济的可持续发展影响巨大。我国的地面沉降主要出现在上海、天津、江苏、河北等17个省市的东、中部地区,沉降总面积超过7×104 km2 ,最大累计沉降量已达3 m,主要分布于长江三角洲、华北平原、松嫩平原和下辽河平原、汾渭河谷平原和一些山间盆地。由于地面沉降,近几年来全国各地地裂缝和地面塌陷等地质灾害频频发生,有城市甚至被预言会在几十年后消失,防治地面沉降已经成为关系国计民生的迫切任务。 2 地面沉降的类型和特征 地面沉降按其成因可划分为五种类型:压实压密型、塌陷型、升降运动

城市地面沉降成因分析及防治对策

城市地面沉降成因分析及防治对策 摘要:针对国内外城市地面沉降的现状及造成的严重危害,从影响因素方面出发,阐明地面沉降的原因,并相应采取防治措施,从而控制城市地面沉降的深度发展。 关键词:地面沉降,成因分析,影响因素,防治措施 Abstract: aiming at the city ground at home and abroad and the present condition of the subsidence caused serious harm, from the aspects of influencing factors, expounds the cause of ground subsidence, and take corresponding prevention and control measures, so as to control the city ground settlement depth development. Key words: the ground settlement, cause analysis, influence factors, prevention and control measures 地面沉降又称为地陷。在我国《地质灾害防治条例》中,它被定义为“缓变性地质灾害”。它的影响因素可分为自然地质因素和人为因素,在城市中,随着城市建设的步伐加快,城市地面沉降是一种受城市经济活动影响的人为地质灾害。它是在人类工程经济活动影响下,由于地下松散地层固结压缩,导致地壳表面标高降低的一种局部的下降运动(或工程地质现象),只要人们找准原因,采用合理的控制手段,城市地面沉降是完全可以控制的。 1、国内外城市地面沉降的现状与危害 1.1、现状 据资料记载,1891年墨西哥最早发生地面沉降,首都墨西哥城座落在高山谷地冲击平原上,现在该城市已形成世界上罕见的大面积沉降区,城市地面大约下陷9米。 美国路易斯安那州的新奥尔良,自1978年以来,地面下沉4.5米,是全美下降速度最快的地方,被称为“下陷之城”。 日本的地表沉降面积约8450平方公里,占全国陆地总面积2.23%。其中,年下降2厘米以上的为624平方公里,在海平面以下的为1125平方公里。1898 年,在新泻发生地面沉降,是日本最早的地面沉降,至1958年地面沉降速率达530 mm/a ,1952-1956年新泻是日本地面沉降最严重的地区。

地面采空区沉降观测设计方案

地面采空区沉降观测设计方案 一、设计情况说明 根据煤矿有关规定,煤矿采煤工作面对应的地面区域必须进行沉降观测,根据沉降观测数据确定地表的沉降程度。 我矿对地面采空区进行了沉降观测点位的布置,在地面北部、中部、南部各设置了一个控制点,作为沉降观测点使用。 二、沉降观测的相关知识 在沉降观测之前,由于采空区距离矿区控制点较远,为方便进行观测以及布点,特在矿区控制点的基础上,在采空区布设沉降观测点。 三、观测时间、方法和仪器 由于地表可能受到影响,因此在进行沉降观测前必须对沉降基准点进行监测,在无影响的情况下,方可进行沉降点观测。每二个月观测一次。 为保证沉降观测数据的精度,进行测量时仪器和测量方法必须一致,施测时必须做到“三固定”,即:固定仪器、固定观测人员、固定的基点和转点,以此减少观测误差,提高精度。日出或日落30分钟前后影响最大,避开此时间段进行测量,雨天严

禁作业。 由于地面的起伏变化较大,故决定采用经纬全站仪代替水准仪进行地面沉降观测。 四、测区特点 由于我矿区地面高低起伏变化较大,作业时会遇见大风、降雨等天气,因此测量工作较为困难。 五、测量标准 在采空区地表中间布设一条控制基线,同时作为沉降观测点使用,共计3个点。其中2个点向采空区两侧布设1个点,1个点在采空区中部,在进行沉降观测时,对其3个点进行观测。 由于采空区地表高低起伏变化较大,基本上为大型山坡,不利于水准测量,因此采用全站仪代替水准仪进行沉降观测。 利用全站仪进行三角高程测量。采空区地表沉降基准点和沉降观测点使用全站仪进行测放,保证沉降基准点的牢固性,同时对所有点进行坐标测量,找出相对位置,在以后的观测中,若发现点位位移,必须立即进行重新布设和测量。 六、数据对比分析 根据每次测得的沉降观测点的高程,分析采空区地面的沉降规律和沉降速度,根据这些规律采取措施,降低地面的沉降速度。

国内外地面沉降现状与研究

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 国内外地面沉降现状与研究 国内外地面沉降现状与研究摘要:系统地介绍了国内外地面沉降的现状、引起沉降的原因、地面沉降的机理和地面沉降灾害预测与监测。 特别针对上海地区随着大规模的城市建设产生的由工程环境效应引起的地面沉降及其监测与研究做了阐述。 关键词:地面沉降;地质灾害;工程环境效应 0 、引言地面沉降是在自然和人为因素作用下,由于地壳表层土体压缩而导致区域性地面标高降低的一种环境地质现象,是一种不可补偿的永久性环境和资源损失。 地面沉降具有生成缓慢、持续时间长、影响范围广、成因机制复杂和防治难度大等特点,是一种对资源利用、环境保护、经济发展、城市建设和人民生活构成威胁的地质灾害。 地面沉降是我国乃至世界范围较为普遍的地质灾害,对社会经济的可持续发展影响巨大。 1 、地面沉降现状 1.1、国外地面沉降现状现有文献资料表明,1891 年墨西哥城最早记录地面沉降现象,但当时由于地面沉降量不大,危害也不明显[1],所以没有引起人们的重视。 目前平均沉降量达到 0.3cm/a,最大累计沉降量超过 7.5m,有的地区甚至超过 15m。 日本于 1898 年在新泻最早发生地面沉降,至 1958 年地面沉 1 / 9

降速率达530mm/a,1952-1956 年新泻是日本地面沉降最严重的地区。 日本产生严重地面沉降的城市或地区还有东京、大阪和佐贺县平原,其它地区还有名古屋、川崎、山口、尼崎及西宫等[2]。 上个世纪意大利的 Ravenna 地区发生了大面积的地面沉降[324]。 起初沉降不大,每年数毫米;第二次世界大战后,由于过度抽取地下水,以每年110mm的沉降量剧增。 美国于 1922 年最早在加州萨克拉门托 SanJoaquin 流域发现沉降,1920-1969年地下水位下降达 137m,累积地面沉降达 2.6m,影响范围 9100km2。 至 20世纪 70 年代初期,美国已有 37 个州因开采地下流体而产生的不同程度的地面沉降现象;至 1995 年,美国 50 个州均有地面沉降发生[5]。 据统计[6],目前世界上已有 60 多个国家和地区发生地面沉降,包括美国、中国、日本、墨西哥、意大利、泰国、英国、俄罗斯、委内瑞拉、荷兰、越南、匈牙利、德国、印度尼西亚、新西兰、比利时、南非等。 1.2、国内地面沉降现状 20 世纪 20 年代初,中国最早在上海和天津市区发现地面沉降灾害,至 20 世纪 60 年代两地地面沉降灾害已十分严重[7]。 20 世纪70 年代,长江三角洲主要城市及平原区、天津市平原区、华北平原东部地区相继产生地面沉降;80 年代以来,中小城市和农村

城市地面沉降判定常见方法介绍与分析

城市地面沉降判定常见方法介绍与分析 李 陆,王 宁 (安徽省地质环境监测总站,安徽蚌埠233000) [摘 要]选用适当监测方法测得地面沉降的数值对地面沉降易发区和控制区的划分起着重要作用。通过对 安徽省阜阳市地面沉降控制区划分项目实例中地面沉降判定的各种方法进行简要分析研究,认为传统的水准测量、GPS 监测和合成孔径干涉雷达监测InSAR技术都能很好反映一个城市地面沉降程度,但也有各自的优缺点,需根据具体情况采用合适的判定方法。 [关键词]地面沉降;水准测量;GPS ;InSAR[中图分类号]TU433[文献标识码]B [文章编号]1004-1184(2019)05-0090-01 [收稿日期]2019-03-27 [作者简介]李陆(1984-),男,山东泰安人,工程师,主要从事地下水环境监测及水文地质、工程地质和环境地质勘查工作。 地面沉降是目前世界各大城市的一个主要工程地质问题。中国超过50个城市发生地面沉降。由于地面沉降是一种大面积地面高程逐渐累计下降的损失,形变缓慢,以毫米、厘米计,初始阶段难以被人们的肉眼察觉,只有采用精密测量才会发现,但往往还会因量小而难以肯定,或被忽略不计,因此能准确判断一个城市发生地面沉降的程度显得尤为重要,本文拟通过阜阳市地面沉降控制区划分项目实例来分析城市地面沉降判定常见方法及各自优缺点。 1地面沉降监测常用方法介绍 现地面沉降的监测主要有三种方法,即传统测量监测、GPS 监测、合成孔径干涉雷达监测。传统地面沉降测量方法包括密水准测量、基岩标和分层标测量等,只能在比较小的范围内开展工作;GPS 监测采用先进的全球定位系统进行监测, 可以对大规模的区域进行实时监测;合成孔径干涉雷达监测是新兴起的一种卫星遥感技术,选择合理的遥感影像数据也可以敏感地监测出地面沉降的变化。 2地面沉降监测方法实例 笔者曾参与过安徽省阜阳市地面沉降控制区划分项目,现对判定该市地面沉降监测的各种方法作简要介绍及分析。由于该市前期未布设GPS 监测点,因此该项目主要采用了传统三角水准测量和合成孔径干涉雷达监测D —InSAR技术,同时大规模收集了地下水开采和地下水位降落漏斗等相关水文资料,为判定结果提供佐证。 2.1地下水开采及区域水位观测 根据地下水开采量调查及地下水动态观测数据分析,阜阳市各市县受区域性长期大量开采深层地下水影响,区域及县市集中开采区深层地下水位呈持续下降趋势,城市中深层地下水位亦呈持续下降趋势,现状已形成阜阳-太和-界首与临泉的区域深层地下水开采降落漏斗(水位埋深大于40m ,图1),各分漏斗中心最大水位埋深50 60m 以上;阜阳城区中深层地下水降落漏斗水位埋深达60m 。 2.2水准监测 该项目通过建立阜阳市地面沉降水准监测网,以国家水 准点为起始点,采用二等水准联测,测定新埋设沉降点的同 时联测已收集到的所有国家三等以上的水准点,利用搜集到的6个国家一等水准点(含起算点)和249个沉降点共255个点组成共28个水准闭合环的水准路线网,总长1580km 。使用电子自动安平水准仪观测,利用清华三维软件进行严密平差,选定可靠点作为起算点,推算其它联测已知水准点高程,以两期水准高程差值比较说明大致情况。 测量结果对比表明,阜阳市域除南部阜南至颖上地区外,普遍存在不同程度地面沉降,其中最大沉降量点为阜阳城市城区,累积沉降量达1289mm (1987-2017年),阜阳城市地下水集中开采区及其外围地区平均沉降速率达20 43mm /a (与深层地下水位埋深大于40m 的范围有较好的吻合),其次为临泉、太和、界首及其北部地区平均沉降速率为15 20mm /a 。区域上中北地区平均沉降速率为10 15mm /a ;南部地区一般小于10mm /a 。 图1城市中深层(FB810孔)水位变化图 2.3D —InSAR遥感解译 项目利用合成孔径干涉雷达技术D —InSAR方法进行工 作区地面沉降遥感解译,解译面积10118km 2 。项目充分利用了可获得的卫星遥感数据,开展了2015-2017年度144个像对的地面沉降InSAR观测,干涉效果良好,充分显示了不同时期地面变形的特征。 D —InSAR技术精确计算表明,阜阳市地面沉降遍布全区,多数地带沉降速率约5 8mm /a ,颖上北部煤矿区、阜阳市城区及其北部地带、太和县城区、临泉县城区均存在明显较快速地面沉降区块:矿区沉降速率大于50mm /a ,阜阳、太 和、临泉城市区沉降速率一般20 50 (下转第209页)0 92019年9月第41卷第5期地下水Ground water Sept.,2019Vol.41NO.5

地表沉降观测办法

西石门铁矿 地表塌陷、断裂变形的观察办法(试行) 根据国家地质灾害防治条例的相关条例和局、矿的有关规定,以及结合我矿长期的观测经验。对我矿开采范围内各大采区因采矿出现的采空塌陷区和裂隙变形情况与马河沉降变形情况和尾矿库的监测情况。我矿地测科特制定了相关检测方法及观测结果整理的办法,以顺利有效地把灾害检测工作做好。能够准确地把观测结果上报有关部门以便采取积极有效措施,以防发生重大的灾害事件。 一、观测要求: 1、仪器:全占仪,精度±2″,钢尺。 2、观测时间:以长期固定检测与定期巡查和汛期强化检测相结合的方式进行。长期固定检测一般为每月两次,雨后加测,雨季加密为每周一次;定期巡查一般为每月进行一次。 3、观测点的设置:沉降观测点要布置在能反映沉降特征且方便观测的位置,一般采用条带型和十字型观测网,布置观测点使用钢钉和混凝土埋桩的方法。 4、沉降观测的五定:点位要稳定;所用仪器、设备要稳定;观测人员要稳定;观测时环境条件要基本一致;观测方法、路线要固定。 5、沉降观测成果的整理:作好原始记录,检查原始记录是否正确,精度是否合格,计算出变化值。然后填入沉降观测表中,绘制出沉降与时间的曲线图。

6、沉降结果的上报:要定期将观测结果上报有关部门,如出现较大的变化时应及时上报,以便及时采取措施,防止出现重大灾害事件。 二、观测位置: 1、北采区:在北大坑南布置一条近东西向的观测线,10余个观测点;间距10-20;观测点采用混凝土现场浇注设桩。每年一季度末对塌陷区的面积、深度和断裂变形的范围进行观测。变形观测线一般情况下每三个月观测一次,每月巡查一次,在雨季或地表巡查发现变化变化较大时可随时加密观测次数。 2、中采区:在塌陷坑东侧布置布置一条近东西向的观测线,10余个观测点,观测方法与北采区相同。 3、南采区:南区塌陷坑已基本用废石充填完毕,没法设置观测点,但在一些地段也存在着裂隙变形和小面积的塌陷。变形观测线一般情况下每三个月观测一次,每月巡查一次,在雨季或地表巡查发现变化变化较大时可随时加密观测次数。 4、马河沉降区:在马河的沉降变形部位,位于马河河床内及马河北岸,对我矿安全生产构成极大地危险,为指导安全渡讯和治理维护的需要,在该部位布置三条主观测线及三条辅助观测线及散点;观测点的间距为10-20米;观测点采用在混凝土面上击注钢钉和埋设混凝土桩等方法。观测时间:汛期(7~8月)每10天观测一次,汛期后的两个月(9~10)每20天一次观测一次。其他月份每30天观测一次。在马河的两岸设置径流水位标志,为有关部门提供观测的数据。 5、尾矿库的观测:沿坝体轴线方向上布置一纵一横观测线,一纵:从底部堆石坝至沙棘林带的下沿,设5个观察点。一横:在411米坝面公

地面下沉处理方案教学教材

地面下沉处理方案

利保商贸中心 地下室外围地面下沉处理施工方案 编制: 审核: 批准: 龙元建设集团股份有限公司 2018年8月1日

一、工程概况 本工程位于佛山市顺德区龙江镇,建筑面积约18万平方米,占地面积约2.3平方米,其中地下室三层,基坑深度达16米左右,地上有3栋建筑物,最高一栋为120米。现1/3地下室已完成,已形成的地下室外墙进行了回填,其他地下室结构正在进行施工中。 二、事故原因 2018年6月8日顺德区遭受特大暴雨,且连续不停雨量之大是顺德数十年不遇的特大暴雨。本工程位于顺德地区的龙江镇,周边为家具材料城,本身工地位于整个市场的最低部位,由于暴雨在短时间内雨量很大,导致周边市政管道及周边的排水河道来不及及时的排出,大量的雨水倒灌入工地。倒灌雨水的入口在工程的东南角,当时积水深度达到 1.5米左右。由于大量积水灌入基坑和地下室外围回填区域,导致地下室基坑周边回填并已完成混凝土硬化临时地面出现不同程度的沉降和开裂,道路路面也有不同程度的裂缝沉降,人货梯坡道出现倒塌的现象。经现场工程人员勘察发现确定,造成已浇筑完的混凝土地面、路面、人货梯坡道出现下沉、开裂、坍塌等现象主要是由于基坑周边回填物大量的流失造成,为保证工地安全顺利的前提下是施工,根据各方的建议尽快对有安全隐患的部位进行修复,主要是混凝土地面沉降修复面积约为800㎡,路面修复面积约为200㎡,坡道的坍塌等。故编制以下修复方案:

工艺流程 本施工方案结合本工程特点主要为混凝土地面沉降进行修复。原面层为混凝土压光地面,对混凝土基层的平整度要求较高。施工方式如下: 1.操测处理范围→原混凝土地面破碎→垃圾清理外运→地沙回填下沉部分→150~200厚钢筋砼地坪浇筑→振捣→拉毛→养护→割缝 2.先用水平仪操测,再由建设单位确定地坪修复范围,计算工程量,工程量现场确认。 3.基层处理 3.1.地面塌陷范围确定后,用地面切缝机沿外边切割深度不少50mm的缝,然后用大型镐机将该范围内的地面破碎后再用挖机装车运走。 3.2.基层做300~1500厚地沙回填用打夯机夯实,并在地坪修复范围内的水平方向满铺Φ10@150双向网片,再浇筑200厚砼。 4.混凝土浇筑 地坪为强度等级C30砼浇筑,砼地面最薄处保证150mm厚,最厚处以地面实际下沉深度实测为准,地面边缘接缝用1:2水泥砂浆处理。 5.地面的切缝。 为防止混凝土干缩产生的不规则裂缝,将其裂缝控制有规则的切

相关文档
相关文档 最新文档