文档库 最新最全的文档下载
当前位置:文档库 › 主变油色谱分析异常的技术探讨

主变油色谱分析异常的技术探讨

主变油色谱分析异常的技术探讨
主变油色谱分析异常的技术探讨

110kV主变油色谱分析异常的技术探讨

一、异常的发现

2009年4月,110kV主变色谱试验时,简化试验试验数据合格,色谱试验时发现总烃为200.66 ul/L 超过注意值(150 ul/L)。见表

取样日期试验日期试验数据(ul/L)备注甲烷

(CH4)

乙烯

(C2H4)

乙烷

(C2H6)

乙炔

(C2H2)

氢气

(H2)

一氧化

碳(CO)

二氧化

碳(CO2)

总烃

2009.4.11 2009.4.13 92.76 75.80 30.49 1.61 14.45 627.98 9033.37 200.66 跟踪监

视总烃超过注意值(150ul/L),可以判断其存在故障隐患。

此后多次跟踪试验结果如下:

取样日期试验日期试验数据(ul/L)备注CH4 C2H4 C2H6 C2H2 H2 CO CO2 总烃

2004.3.24 2004.3.24 52.86 4.08 15.64 0.00 13.75 712.70 7142.21 72.58

2005.3.23 2005.3.28 29.55 3.38 12.50 0.00 5.05 184.68 4261.16 45.43

2006.3.31 2006.3.31 49.66 4.34 17.35 0.00 5.21 535.70 6793.24 71.35

2007.4.10 2007.4.11 29.44 2.26 8.90 0.00 6.70 256.23 3201.75 40.60

2008.4.9 2008.4.10 37.98 6.09 21.04 0.00 17.28 371.82 11682.79 65.11

2009.4.11 2009.4.13 92.76 75.80 30.49 1.61 14.45 627.98 9033.37 200.66 跟踪监视2009.4.14 2009.4.14 99.52 64.60 25.24 1.43 31.57 945.96 12560.59 190.79 跟踪监视2009.5.5 2009.5.5 98.06 72.78 29.85 1.42 35.68 880.12 14239.60 202.11 跟踪监视2009.6.5 2009.6.5 161.43 367.13 47.46 13.74 52.96 576.32 15087.80 589.76 跟踪监视2009.6.9 2009.6.9 180.73 416.80 49.01 15.36 75.15 675.20 14204.5 661.90 跟踪监视2009.6.11 2009.6.11 194.81 433.49 51.86 15.40 87.39 821.58 14715.08 695.56 跟踪监视2009.6.16 2009.6.16 173.40 391.09 46.24 13.05 60.95 676.38 12894.25 623.78 跟踪监视2009.6.18 2009.6.19 195.23 456.13 49.76 15.13 57.85 580.61 14037.06 716.25 跟踪监视2009.6.25 2009.6.25 208.45 472.16 50.36 14.78 84.76 811.74 14305.03 745.75 跟踪监视2009-6.28 2009.6-28 294.29 749.94 69.71 24.57 145.75 861.43 15290.76 1138.51 跟踪监视2009.7.1 2009.7.1 289.94 703.50 63.70 23.12 180.91 970.08 14065.44 1080.26 跟踪监视2009.7.3 2009.7.3 326.37 789.91 72.53 25.94 212.27 1073.82 14436.72 1214.75 跟踪监视2009.7.6 2009.7.6 292.17 740.04 67.75 23.51 172.14 933.57 14614.98 1123.47 跟踪监视2009.7.14 2009.7.14 232.65 725.46 69.77 20.73 49.61 379.89 11240.44 1048.61

2009.8.3 2009.8.3 0.55 13.77 4.00 0.39 6.63 16.26 185.85 18.71 已脱气此变压器为上世纪70年代沈变生产的,后96年电业局修造厂大修,已运行了30多年了。根据试验数据分析,此后跟踪试验故障气体一直显著增加。直到6月28日变压器轻瓦斯保护动作报警时,故障气体产生量达到了峰值,而后变压器就进入冷备用状态。

二、设备中气体增长率注意值

绝对产气速率:即每运行日产生某种气体的平均值,以2009年5月5日(A)与2009年6月5日(B)

进行比较,B-A/?t×G/ρ其中G油中15吨,ρ油的密度0.85,?t为31天,其总烃的产气速率为220mL/d(注意值为12mL/d)、乙炔的产气速率为7mL/d(注意值为0.2mL/d),以上两种特征气体均有明显上升,超过了国标规定的注意值,可以判断为异常,其具体故障有待进步分析。

三、变压器产气故障类型及其油中气体的特征。

变压器产气的内部故障一般可分为两类;即过热和放电。过热按温度高低,可分为低温过热、中温过热与高温过热三种情况;放电又可分为局部放电、火花放电和高能量放电三种类型。

过热故障:所谓过热故障是指局部过热,它和变压器正常运行下的发热是有区别的。正常运行时,温度的热源,来自线圈绕组的铁芯,即所谓铜损和铁损。在正常运行下,由于铜损和铁损转化而来的热量,使变压器油温升高,一般上层油温不大于85℃。变压器的运行温度直接影响到绝缘的运行寿命。

过热性故障在变压器内发生的原因和部位主要可归纳为三种:

1、接点或接触不良如引线连接不良,分接开关接触不良等

2、磁路故障铁芯两点或多点接地,铁芯片间短路,铁芯被异物短路、铁芯与穿芯螺丝短路等。

3、导体故障部分线圈短路或不同电压比并列运行引起的循环电流发热;导体超负荷过流发热等。

变压器油在热解时的产气取决于不同化学键结构的碳氢化合物分子在高温下的不稳定性,裂解产物的出现顺序为:烷烃—烯烃—炔烃—焦炭。变压器内部过热性故障有以下特点:热点只影响到绝缘油的分解而不涉及固体绝缘的裸金属过热故障时,产生的气体主要为低分子烃类气体,其中甲烷、乙烯为特征气体,两者之和一般占到总烃的80%以上,当故障点温度较低时,甲烷占的比例大,随着热点温度的升高(500℃以上),乙烯、氢组分急剧增加,比例增大。当严重过热(800℃以上)时,也会产生少量乙炔,但其最大含量不超过乙烯量的10%;涉及到固体绝缘的过热性故障时,除产生上述低烃类气体外,还产生较多的CO、CO2 ,且随温度的升高,CO与CO2 的比值逐渐增大。

四、变压器油中气体与故障的关系

油和纸是充油电力变压器的主要绝缘材料,正常运行中变压器油中的溶解气体组分主要是氧气和氮气,可能也会含有少量的故障特征气体。油中气体的产生原理与绝缘材料的性能和各种因素有关,变压器油中的气体主要来自变压器油的劣化和固体绝缘材料的分解,而变压器故障时会加剧特征气体的产生,因此可以根据各种特征气体的量来确定是否有故障发生。我国现行的《变压器油中溶解气体分析和判断导则》将不同故障类型产生的主要特征气体和次要特征气体归纳如表一:

表一充油电力变压器不同故障类型产生的气体

故障类型主要气体组分次要气体组分

油过热CH4、C2 H4 H 2、C 2H6

油和纸过热CH4、C2 H4 、CO、CO2H 2、C 2H6

油纸绝缘中局部放

H2、CH 4、CO C2H2、C2 H6、CO2

油中火花放电H 2、C2H2

油中电弧放电H 2、C2H2CH4、C2 H4 、C 2H6

油和纸中电弧放电H 2、C2H2、CO、CO2CH4、C2 H4 、C 2H6

五、三比值方法

国际电工委员会(IEC)提出的特征气体比值的三比值法作为判断电压器等充油电气设备故障类型的主要方法。三比值法的编码故障和类别识别判断方法是基于C H /C H 、CH / H 、C H / C H 三对比值的结果来进行编码的,编码规则如下表二:

表二编码规则

全体比值范围比值范围的编码

C2H2/C2 H4CH 4/H 2C2 H4 /C 2H6

<0.1 0 1 0

≥0.1~<1 1 0 0

≥1~<3 1 2 1

≥3 2 2 2

六、故障分析

根据试验数据发现油中含有大量的甲烷、乙烯和相对少量的乙炔和氢气。经过三比值法计算得出的结论为(0.2.2)高于700℃高温范围的热故障。

春检期间高压专业对2#主变春检预试的试验数据合格,而油务专业的简化试验也未见异常都在合格范围之内。只是色谱试验发现总烃超标,其中已甲烷和乙烯的含量最多。而且随着时间逐渐增长。根据上面的“不同故障类型产生的主要特征气体和次要特征气体归纳”和变压器油在热解时的产气的情况分析属于油的过热,结合高压专业的试验数据,可以排除主绝缘出现故障(固体绝缘的故障,例如各相绕组间的相间短路、绕组的匝间短路、绕组或引线与箱体接地等故障)。判断为铁芯的环流引发的超过800℃

的高温过热。

7月30日,2#变进行吊罩检查,发现变压器内部存在铁屑残渣,体积大小不一,最大的有玉米粒大小,还有订书钉等杂物。吊罩前铁芯摇绝缘数据正常,吊罩后铁芯摇绝缘多点接地。,判断为在变压器放油过程中油中的杂质卡在铁芯中所引发的铁芯多点接地。这些铁屑残渣在变压器运行时,由于铁芯磁场的影响吸附在铁芯上,造成铁芯环流过热或铁屑多点接地,当变压器停运检修时,由于没有了磁场的影响铁屑脱离了铁芯,而高压试验时没有发现铁芯故障。

因此我认为南变2#主变问题是由变压器内部杂质过多引发铁芯多点接地或铁芯环流而产生的过热故障。

七、吊罩后处理情况

南变2#主变吊罩之后,变压器绝缘油经过了脱气处理,其色谱试验结果如下:

取样日期试验日期试验数据(ul/L)备注CH4 C2H4 C2H6 C2H2 H2 CO CO2 总烃

2009.8.3 2009.8.3 0.55 13.77 4.00 0.39 6.63 16.26 185.85 18.71 已脱气2009.8.7 2009.8.7 3.15 11.79 1.64 0.50 5.19 11.84 476.19 17.08

2009.8.12 2009.8.12 7.12 24.52 4.93 1.17 54.25 26.96 1030.48 37.74

2009.8.21 2009.8.21 13.89 37.76 3.18 3.72 6.57 17.52 1629.09 58.55 冷备用第一天2009.8.22 2009.8.22 16.90 45.93 3.20 5.82 12.43 24.71 1300.00 71.85 冷备用第二天2009.8.23 2009.8.23 16.60 42.73 3.06 5.31 15.52 24.19 1496.30 67.70 冷备用第三天2009.8.24 2009.8.24 18.82 48.32 3.67 6.10 18.82 30.24 1528.96 76.91 冷备用第四天2009.8.25 2009.8.25 17.85 47.77 3.33 5.81 18.36 27.71 1651.76 74.76 冷备用第五天刚脱气的绝缘油其数据正常,变压器投入运行第二天后,油中乙炔含量超过了注意值并且总烃有大幅度增长,至投运第五天后试验数据就没有变化。通过三比值法判断为(1.2.2)电弧放电兼过热。

据了解变压器在投运前,曾试运行过一段时间后发现铁芯多点接地,退出运行后两次用大容量电流冲击铁芯消除故障点。由于用大容量电流对铁芯的故障(多点接地)点进行冲击,在冲击瞬间产生高能量放电(电弧放电)致使绝缘油中产生乙炔。在变压器投运前其潜油泵没有运行,油中的故障气体没有充分溶于油中,使投运第一天的故障特征气体含量明显低于以后几天的特征气体含量。空载运行几天后绝缘油中特征气体充分溶于油中,运行后几天的试验数据就相对稳定。

此次绝缘油脱气虽然改善了绝缘油的品质,但是残存在变压器底部的铁屑残渣并没有清理干净,试验数据也表明甲烷(CH4)、乙烯(C2H4)的含量明显增加表明油还是纯在过热(空载中变压器油温在早

上8时为48℃),而乙炔的产生并不是变压器故障引发的,而是人为用大容量电流冲击铁芯产生的。

因此我认为南变2#主变的问题还是因为内部杂质过多而引发铁芯多点接地或铁芯环流而产生的过热故障。

参考文献:GB/T 7252-2001 《变压器油中溶解气体分析和判断导则》

电力行业油、气分析检验人员考核委员会,国家电力公司热工研究院1996年出版《电力用油(气)》

变压器油色谱分析

方法概述 用气相色谱法测定绝缘油中溶解气体的组分含量,是发供电企业判断运行中的充油电力设备是否存在潜伏性的过热、放电等故障,以保障电网安全有效运行的有效手段。也是充油电气设备制造厂家对其设备进行出厂检验的必要手段。 GC-9310SD变压器油色谱分析系统采用一次进样、双柱并联、一次分流的三检测器流程,配TCD检测器和两个FID检测器,其中H2和O2通过TCD检测;烃类气体(甲烷、乙烯、乙烷、乙炔)通过FID1检测,CO、CO2通过FID2检测,克服了大量CO、CO2对烃类气体的影响,特别是乙炔的影响。 执行标准: GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》 GB/T 7252-2001《变压器油中溶解气体分析和判断导则》 DL/T 722-2000《变压器油中溶解气体分析和判断导则》 气路系统流程图: 性能指标: (1)最小检测量:一次进样,进样量为1mL时的最小检测浓度: 溶解气体的分析(uL/L) H2 CO CO2 CH4 C2H4 C2H6 C2H2 2 2 2 0.1 0.1 0.1 0.1 (2)定性重复性:偏差≤1% (3)定量重复性:偏差≤3% (2)热导检测器(TCD) ◎采用半扩散式结构 ◎电源采用恒流控制方式 ◎敏感度:S≥3000mv.ml/mg(正十六烷/异幸烷) ◎基线噪音:≤20μv ◎基线漂移:≤50μv/30min ◎线性:≥105 ◎载气流速稳定性:≤1%。 (3)火焰离子化检测器(FID) ◎收集极采用圆筒型结构,石英喷口 ◎检测限:≤8×10-12g/s(正十六烷/异幸烷) ◎基线噪声:5×10-14A ◎基线漂移:≤2×10-13A/30min ◎线性:≥107 ◎自动点火 ◎稳定时间10min 主要特点 主机介绍 GC-9310SD变压器油色谱分析系统是上海荆和分析仪器有限公司最新推出的一款新型全微机控制气相色谱仪。仪器充分吸收了国外同类产品的先进技术,大量采用进口元件,使GC-9310的稳定性、可靠性以及灵敏度和重复性蓖美进口同类型产品;并且在结构上更加简洁合理;人性化的中文菜单式操作,精美的外观设计,让色谱分析工作者使用的更加自信。

油色谱试验标准

油色谱分析试验标准 一、作业前的准备 (一)人员配置:2人(一人操作、一人监护) (二)工器具:油色谱分析仪,油样振荡器电源,烘干箱,油样注射器、5ML注射器、1ML注射器万用表,点火器 二注意事项 1、开色谱分析仪器前,一定先打开氮气钢瓶总阀,避免钨丝烧坏。 2、色谱分析仪器上的压力表参数:氮气0.32Mpa,氢气0.14Mpa,空气0.14Mpa。 3、注射样品后,当采集波形因某种原因,时间没有完成而停止了,需要等到上一次时间完成后才可开始注射下一次的样品,进行第二次试验。 4、A信号采集的六个峰值分别是:一氧化碳(CO)、甲烷(CH4)、二氧化碳(CO2)乙烯(C2H4)、乙炔(C2H2)、乙烷(C2H6)。 5、检测器A内的塞子,大概30次换一次。 6、开机后,当没有信号显示,检查“检测器”开关是否打开。 7、柱箱温度值不能升高时,检查柱箱温度开关是否打开。 8、变压器油气体色谱分析 油中溶解气体含量的注意值: 总炔 150ppm 乙炔 5ppm 氢气 150ppm ※总炔=甲烷+乙炔+乙烯+乙烷 ppm是每升油中含该气体的微升数(106) 三常见故障 1信号A显示“8300”,信号板A放大板没插好, 2信号B显示“1535”,调节调零旋转扭,若值没有什么变化,可能是信号B的钨丝烧坏或旋转按钮损害,需厂家修理处理。 3量程都是1如: SIGNAL 1 RANGE 1 SIGNAL 2 RANGE 1 4调零、衰减都是“0”。 四操作步骤 1开机 1.1打开空气、氢气、氮气钢瓶总阀。钢瓶总阀上的输出压力表的值在0.4 Mpa <压力值<0.5Mpa,钢瓶压力表小于2Mpa以下,换钢瓶。 1.2打开色谱分析仪器的红色开关。

变压器油色谱分析报告

运行中变压器油色谱分析 异常与解决对策 王海军 (河北大唐国际王滩发电有限责任公司) 摘要:对运行变压器油中氢气含量超标出现的原因进行了详细分析,并提出了氢气含量超标的滤油工艺及防止二次污染的源头控制、过程控制及关键点控制。 关键词:变压器油;色谱分析;热油循环;二次污染 1前言 运行中的变压器油气相色谱分析,以检测变压器油中气体的组成和含量,是早期发现变压器内部故障征兆和掌握故障发展情况的一种科学方法。特征气体的出现与变压器运行中的实际状况及在处理中的工艺有关,处理工艺粗糙可能造成变压器油的二次污染。 本文根据实际运行变压器中出现氢气含量超标的具体情况,分析了产生气体的原因并提出了变压器热油循环的处理工艺,防止变压器油二次污染的要点。 2变压器油中氢气含量超标、二次污染实例 我公司#1高压厂用公用变压器(以下简称#1高公变)于2005年10月1日并网运行,在运行中,根据预防性试验规程对各变压器进行了油色谱跟踪分析,发现#1高公变的氢气值出现过含量超过注意值:H2≤150μL/ L ,具体测量数值见表一: 对#1高公变进行热油循环后的色谱分析中,虽然氢气含量达到标准但在油中又检测到痕量乙炔,见表二

再次热油循环后氢气、乙炔均在标准之内。 3#1高公变油中氢气超标及二次污染原因分析 当变压器油中氢气含量超过注意时,人们根据多年的运行经验及文献[1]中指出: (1)当变压器出现局部过热时,随着温度的升高,氢气(H2)和总烃气体明显增加,但乙炔(C2H2)含量极少。 (2)变压器内部出现放电故障也会出现氢气(H2)。局部放电(能量密度一般很低),产生的特征气体主要是氢气氢气(H2),其次是甲烷(CH4),并有少量乙炔(C2H2),但总烃值并不高;火花放电(是一种间歇性放电,其能量密度一般比局部放电高些,属低能量放电)时,乙炔(C2H2)明显增加,气体主要成分时氢气(H2)、乙炔(C2H2);电弧放电(高能放电)时,氢气(H2)大量产生,乙炔(C2H2)亦显著增多,其次是大量的乙烯、甲烷和乙烷。 对于文献[1]中的阐述具有很强的理论性,变压器油是由烷烃、环烷烃和芳香烃等组成[3]的结构复杂的液态烃类混合物。当变压器内发生放电现象,油中的烷烃、环烷烃和芳香烃等烃类混合物发生分解,不同能量的放电产生的特征气体并伴有其他气体产生,根据产生的特征气体可以判断变压器内部发生的具体故障。 三比值法[1]是利用气象色谱分析结果中五种特征气体的三个比值(C2H2/C2H4、CH4/H2、C2H4/C2H6)来判断变压器内部故障性质。根据三比值法的编码规则,三比值法计算结果见表三 从表中特征值0、1、0判定氢气超标的原因为高湿度引起孔穴中的放电,而引起高湿度的原因在变压器生产过程中绝缘材料干燥彻底的情况下只有变压器运行中水分的进入。 所以根据我厂#1高公变在安装、运行过程中的具体情况对变压器油中氢气含量超标、乙炔二次污染分析如下: (1)#1高公变在电建安装过程中曾出现过气体继电器伸缩节法栏处渗油情况,于2005年10月10日更换新伸缩节后,渗油情况解决。在气体继电器伸缩节渗油期间水分、空气从渗油处进入变压器内,导致高公变在运行过程中油中氢气含量超出注意值。2006年2月5日对高公变进行热油循环48小时后,再检测氢气含量为9.99μL/ L,氢气含量超标问题解决。 (2)而乙炔的产生是由于使用的滤油机在滤油之前未对滤油机内部用合格变压器油进行冲洗,而且之前滤油机滤过其他油质。带内部残油进行滤油后的色谱分析里又出现3.23μL/ L的乙炔。重新滤油后再次做色谱分析,油内氢气、乙炔含量合格:氢气4.57μL/ L,乙炔0.00μL/ L。

变压器油的气相色谱分析浅析

变压器油的气相色谱分析浅析 【摘要】本文主要对变压器油的气相色谱分析的特征气体、产气原理以及气相色谱分析的取样方法和一些常用的便携式检测仪器做一说明。 【关键词】变压器绝缘油色谱分析 一、气相色谱分析的意义 变压器油是指用于变压器、电抗器、互感器、套管、油断路器等输变电设备的矿物型绝缘油。一般有25#和45#两种变压器油。运行中的电力设备一般只能按周期停电进行预试检查,而且变压器等密封设备根本看不到内部情况。电力变压器的绝缘油气相色谱分析可以很好的补充这一缺陷,而且经过精密的计算和分析可以大概判断出设备内部的情况。气相色谱分析是对设备内的油进行的分析,从分析溶解于变压器中气体来诊断内部存在的故障。 二、气相色谱分析的特征气体及产生的原理 体征气体:气相色谱分析的特征气体主要有氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)。在对所做油样的品质进行判定时,还要对总烃含量做判断。总烃即甲烷、乙烷、乙烯、乙炔四种烃类气体的总和。在对油品检验之后,我们需要对不合格的油品分析其不合格的原因。那么,就需要我们

大概清楚在什么情况下会分解出什么气体。

产气原理:运行中的变压器油在进行气相色谱分析的时候一般会检测出特征气体和总烃。那么这些气体又是从哪里来的呢?首先,绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3*、CH2*和CH*化学基团,并由C-C键键合在一起。由电或热故障可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,它们通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体。在低能量故障时,如局部放电。通过离子反应促使最弱的C-H键断裂,主要重新化合成H2而积累。对C-C键的断裂需要较高的温度,然后逊色以C-C 键、C=C键和C三C键的形式重新化合成烃类气体,依次需要越来越高的温度和越来越多的能量。其次,固体绝缘材料的分解也会产生部分特征气体。纸、层压板或木块等固体绝缘材料分子内含有大量的无水右旋糖环和弱的C-O键,它的热稳定性比油中的碳氢键要软,并能在较低的温度下重新化合。在生成水的同时生成大量的CO和CO2及少量的烃类气体,同时油被氧化。 三、气相色谱分析油样的取样方法 气相色谱分析的取样部位应注意,所取油样应能代表油箱本体的油。一般应在设备下部的取样阀门取油样,在特殊情况下,可在不同的取样部位取样。取样量,对大油量的变压器、电抗器等均可为50-80mL,对少油量的设备要尽量少

套管油色谱分析标准

序号项目周期要求说明 1 油中 溶解气 体色谱 分析 1)新投运及 大修后投运 500kV: 1,4,10,30天 220kV: 4,10,30天 110kV:4,30 天 2)运行中 500kV:3个月 220kV:6个月 35kV、110kV: 1年 3)必要时 1)根据GB/T 7252—2001新装变压 器油中H 2 与烃类气体含量(μL/L)任 一项不宜超过下列数值: 总烃:20;H 2 :30;C 2 H 2 :0 2)运行设备油中H 2 与烃类气体含 量( μL/L)超过下列任何一项值时应 引起注意: 总烃:150; H 2 :150 C 2 H 2 :5 (35kV~220kV),1 (500kV) 3)烃类气体总和的产气速率大于 6mL/d(开放式)和12mL/d(密封式),或 相对产气速率大于10%/月则认为设备 有异常 1)总烃包括CH 4 、C 2 H 4 、C 2 H 6 和C 2 H 2 四种气体 2)溶解气体组份含量有增长趋势 时,可结合产气速率判断,必要时 缩短周期进行跟踪分析 3)总烃含量低的设备不宜采用相 对产气速率进行判断 4)新投运的变压器应有投运前的 测试数据 5)必要时,如: —出口(或近区)短路后 —巡视发现异常 —在线监测系统告警等 2 油中 水分, mg/L 1)准备注入 110kV及以上 变压器的新油 2)投运前 3)110kV及 以上:运行中1 年 4)必要时 投运前 110kV ≤20 220kV ≤15 500kV ≤10 运行中 110kV ≤35 220kV ≤25 500kV ≤15 1)运行中设备,测量时应注意 温度的影响,尽量在顶层油温高于 50℃时取样 2)必要时,如: —绕组绝缘电阻(吸收比、极化 指数)测量异常时 —渗漏油等 3 油中 含气 量, %(体 积分 数) 500kV 1)新油注入 前后 2)运行中: 1年 3)必要时 投运前:≤1 运行中:≤3 1)限值规定依据:GB/T 7595-2008《运行中变压器油质量》 2)必要时,如: —变压器需要补油时 —渗漏油 4 油中 糠醛含 量,mg/ L 必要时1)含量超过下表值时,一般为非正 常老化,需跟踪检测: 1)变压器油经过处理后,油中糠 醛含量会不同程度的降低,在作出 判断时一定要注意这一情况 2)必要时,如: —油中气体总烃超标或CO、CO 2 过高 —需了解绝缘老化情况时,如长 期过载运行后、温升超标后等运行 年限 1~55~1010~1515~20 糠醛 含量 0.10.20.40.75 2)跟踪检测时,注意增长率 3)测试值大于4mg/L时,认为绝缘 老化已比较严重 5 油中 颗粒度 测试 500kV 1)投运前 2)投运1个 月或大修后 3)运行中1年 4)必要时 1)投运前(热循环后)100mL油中大 于5μm的颗粒数≤2000个 2)运行时(含大修后)100mL油中大 于5μm的颗粒数≤3000个 1)限值规定依据:DL/T 1096-2008《变压器油中颗粒度限 值》 2)检验方法参考:DL/T 432-2007 《电力用油中颗粒污染度测量方 法》 3)如果颗粒有明显的增长趋势, 应缩短检测周期,加强监控 6 绝缘 油试验 见12.1节

液相色谱分析方法的建立

一. 方法建立的步骤 二.开始前应知道 1. 样品的性质 在开始方法建立之前,我们应该检查自己对样品的了解程度,并明确分离目标。 表 1 有关样品组分和性质的重要信息 所含化合物的数目 化合物的化学结构(官能团) 化合物的分子量 化合物的pKa值 化合物的UV光谱图 化合物在样品中的浓度范围 样品的溶解度 样品的化学成分能够为选择HPLC分离的最佳初始条件提供有价值的线索根据已知的样品信息,HPLC方法建立有两种不甚相同的模式。一种模式依据样品的“化学性质”选择最佳初始条件,色谱工作者需很大程度依赖于过去的经验(如类似结构化合物的分离)和/或用文献资料补充现有信息而另一种模式则直接开始色谱分离,而对样品的性质不大注意这两种HPLC的方法建立模式可分别称为理沦型与经验型初始分离一旦开始,可以根据类似的思路(理论的与经验的)选择进一步的实验。 2.分离的目的 HPLC分离的目的必须十分明确,下面的问题在建立方法之初就应确定:(1)主要目的是什么?定量或定性,还是定性、定量同时做?; (2)是否有必要解析出样品的所有成分?譬如可能有必要分离出产品中的所有降解物或杂质,以使含量测定结果更加可靠,但却没必要将它们彼此完全分开。(3)如要求定量分析,准确度与精密度需多大?样品主要成分的精密度通常能达到±1—2%,特别是不需样品预处理的情况。 (4)特殊化合物可能会以不同的样品形式出现(如:原料药,一种或多种形态,环保样品等)。是否需要一种以上的HPLC方法?单一方法分离不同形态样品是否理想? (5)一次将分析多少样品?当必须同时处理大量样品时,运行时间将变得非常重要。 有时甚至为了缩短运行时间而以牺牲样品分离度作代价,如缩短柱长或加快流速。当一次分析的样品数目超过10个,运行时间一般应控制在20min以内。(6)将要使用该方法的实验室中,有哪些HPLC设备?色谱柱能否恒温系统能否做梯度洗脱?该方法是否可在不同设计与生产的设备上运行? 方法建立实验开始之前,应明确对方法的这些要求。 三. 样品的预处理和检测

电力变压器的油色谱判别及分析

电力变压器的油色谱判别及分析 作者:中试高测时间:2013-6-18 阅读: 1 目前,在电力变压器的故障诊断中,单靠电气试验的方法往往很难发现某些局部故障和发热缺陷,中试高测电气变压器油色谱分析仪而通过变压器中气体的油中色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效。 变压器在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,并分解出极少量的气体(主要包括氢H2、甲烷CH4、乙烷C2H6、乙烯C2H4、乙炔C2H2、一氧化碳CO、二氧化碳CO2等多种气体)。当变压器内部发生过热性故障、放电性故障或内部绝缘受潮时,这些气体的含量会逐渐增加。对应这些故障所增加含量的气体成分见表1-1。 表1-1 不同绝缘故障气体成分的变化 故障类型主要增大的气体成 分 次要增大的气体成 分 故障类型 主要增大的气体成 分 次要增大的气体成 分 油过热CH4、C2H4H2、C2H6油中电弧H2、C2H2CH4、C2H4、C2H6油纸过热C2H4、C2H4、CO、CO2H2、C2H6油纸中电弧H2、C2H2、CO、CO2CH4、C2H4、C2H6油纸中局放H2、CH4、C2H2、CO C2H6、CO2受潮或油有气泡H2 油质中火花放电C2H2、H2 根据色谱分析进行变压器内部故障诊断时,应包括: 1.分析气体产生的原因及变化。 2.判断有无故障及故障类型。如过热、电弧放电、火花放电和局部放电等。 3.判断故障的状况。中试高测电气如热点温度、故障回路严重程度及发展趋势等。 4.提出相应的处理措施。如能否继续进行,以及运行期间的技术安全措施和监 视手段,或是否需要吊心检修等。若需加强监视,则应缩短下次试验的周期。 经验表明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。因此在设备运行过程中,定期测量溶解于油中的气体成分和含量,对于及早发现充油电力设备内部 存在的潜伏性有非常重要的意义和现实成效,在1997年颁布执行的电力设备预防性试验规 程中,已将变压器油的气体色谱分析放到了首要位置,并通过近些年来的普遍推广应用和经 验积累取得了显著的成效。 一、特征气体产生的原因 表1-2 变压器内部故障时气体及产生原因

变压器油气相色谱分析

变压器油气相色谱分析 一、基本原理 正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等。这些气体大部分溶解在油中。当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。随着故障发展,分解出的气体形成的气泡在油里经对流、扩散,不断溶解在油中。例如在变压器里,当产气量大于溶解量时,变有一部分气体进入气体继电器。 故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。 因此,在设备运行过程中定期分析溶解与由衷的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况。 当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况做出判断。 二、用气相色谱仪进行气体分析的对象 氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氮(N2)九种气体作为分析对象。 三、试验结果的判断

1、变压器等充油电气中绝缘材料主要是绝缘油和绝缘纸。设备在 故障下产生的气体主要也是来源于油和纸的热裂解。 2、变压器内产生的气体: 变压器内的油纸绝缘材料会在电和热的作用下分解,产生各种气体。其中对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。在正常运行温度下油和固体绝缘正常老化过程中,产生的气体主要是一氧化碳和二氧化碳。在油纸绝缘中存在局部放电时,油裂解产生的气体主要是氢和甲烷。在故障温度高于正常运行温度不多时,油裂解的产物主要是甲烷。随着故障温度的升高,乙烯和乙烷的产生逐渐成为主要特征。在温度高于1000℃时,例如在电弧弧道温度(3000℃)的作用下,油分解产物中含有较多的乙炔。如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。 有时变压器内并不存在故障,而由于其它原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。例如:有载调压变压器中分解开关灭弧室的有向变压器本体的渗漏;设备曾经有过故障,而故障排除后绝缘油未经彻底脱气,部分残余气体仍留在油中;设备油箱曾作过带油补焊;原注入的油就含有某些气体等。还应注意油冷却系统附属设备(如潜油泵,油流继电器等)的故障也会反映到变压器本体的油中。 3、正常设备油中气体含量 4、《导则》推荐的油中溶解气体的注意值

变压器油色谱分析装置MT6000说明

◆监测对象 监测变压器类设备油中溶解气体:氢气(H2),一氧化碳(CO),甲烷(CH4) ,乙烷(C2H6),乙烯(C2H4),乙炔(C2H2) 、微水(H2O,可选)、二氧化碳(CO2,可选)及总烃、总可燃气体。 ◆监测原理 MT6000变压器油中溶解气体色谱在线监测仪主要包含以 下几个关键技术环节:油中取气环节,混合气体分离环节, 气体组分的定量分析环节和故障专家诊断环节。监测仪的心Array脏是一台特制的气相色谱仪,用于测量多种故障特征气体: 氢气(H2),一氧化碳(CO),甲烷(CH4) ,乙烷(C2H6), 乙烯(C2H4),乙炔(C2H2) 、微水(H2O,可选)、二氧 化碳(CO2,可选)及总烃、总可燃气体含量。在线变压器 油色谱监测仪可以用于带油枕变压器、充氮变压器或高压电 抗器。 变压器油在变压器与监测设备之间通过直径6mm的不锈钢 管道连接,采用世界最先进的紧固技术将油泄露的危险降至 最小。监测仪配备一个内部的油气分离装置,可以将溶解气 体从循环的变压器油中析出来,而后使用高纯度氮气 (99.999%)将样气推入色谱柱,把混合的样气依次分离, 送色谱仪进行检测。 每做一次气相色谱分析后,监测仪采集一次数据。一次完整的色谱分析大约需要40分钟。一旦完成采样和信号处理工作,你可以使用OES-MES软件进行数据的浏览、追踪、分析及故障判断。 变压器油色谱在线监测仪带有环境温度,油中水分和油温测量以及几个用于其它外部装置的4-20mA输入作为可选项。外部的传感器信息可以与故障气体信息进行关联分析,这样可以对变压器的运行状态进行全面的诊断。 ◆主要功能 1.定期监测氢气、一氧化碳、甲烷、乙烷、乙烯、乙炔、水(可选)、二氧化碳(可选)及总烃、总可燃气体含量,并实时分析、诊断变压器的工作状态及故障类型 2.系统具备自校准系统,采用标准样气,定期进行校准,保证监测的准确性和可追溯性

浅谈变压器油的气相色谱分析

浅谈变压器油的气相色谱分析 一、色谱分析在绝缘监督中的作用在电气试验中,通过气相色谱分析绝缘油中溶解气体,能尽早的发现充油电气设备内部存在的潜伏性故障,是绝缘监督的一种重要手段。这一检测技术可以在设备不停电的情况下进行,而且不受外界因素的影响,可定期对运行设备内部绝缘状况进行监测,确保设备安全可靠运行。变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。当充油电器内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。故障气体的组成及含量与故障类型和故障严重程度关系密切。因此,在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。二、实例变压器内部放电性故障产生的特征气体主要是乙炔。正常的变压器油中不含这种气体,如果变压器油中这种气体增长很快,说明该变压器存在严重的放电性故障。某公司送来两台运行中变压器的油样,经色谱分析,其中一台有C2H2气体(4.9PPm),5天后他们再次送来该台变压器油样检测,乙炔含量猛增到12.8PPm,见表1。 表1 从上表可以看出,总的烃类气体不高,惟有乙炔气体超过注意值。氢气含量也比较高。我们分析该变压器内可能存在放电性故障,要他们回去检查,果然发现是分接开关拨叉电位悬浮引起放电,经过处理,避免了事故的发生。还有一次,某电站送来升压变压器油样,经色谱分析烃类气体含量均在注意值范围内,惟有氢气含量高达345ppm,见表2。我们分析该变压器可能有进水现象。经检查,果然发现该变压器进水受潮,经处理,避免了绝缘击穿事故的发生。 表2 变压器油的气相色谱分析在绝缘监督中具有很重要的作用:第一,可检测设备内部故障,预报故障的发展趋势,使实际存在的故障得到有计划且经济的检修,避免设备损坏和无计划的停电;第二,当确诊设备内部存在故障时,要根据故障的危害性、设备的重要性、负荷要求和安全及经济来制定合理的故障处理措施,确保设备不发生损坏;第三,对于已发生事故的设备,有助于了解设备事故的性质和损坏程度,以指导检修。三、气相色谱分析过程气相色谱分析是一种物理分离分析技术,分析程序是先将取样变压器油经真空泵脱气装置将溶解

变压器油色谱分析的基本原理及应用

变压器油色谱分析的基本原理及应用 字数:2509 字号:大中小 摘要:文中阐述了采用色谱分析判断变压器内部故障的意义、原理及方法,并列举了采用色谱分析判断变压器故障的实例。 关键词:变压器色谱分析潜伏性故障 概述 油色谱分析作为在线检测变压器运行的一项有效措施,由于它做到了监测时不需要将设备停电,而且灵敏度高,与其他试验配合能提高对设备故障分析准确性,而且不受外界因数的影响,可定期对运行设备内部绝缘状况进行监测。因此变压器油色谱分析已真正成为发现变压器等重要电气设备内部隐患、预防事故发生的有效途径,在严格色谱分析工作的开展下,使设备的潜伏性故障得到及时消除,确保变压器等设备安全稳定运行。 1.绝缘油色谱分析的基本原理 变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低于分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中,当充油电气设备内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。 2.绝缘油色谱分析的方法 2.1故障下产气的累计性 充油电力设备的潜伏性故障所产生的可燃性气体,大部分会溶解与油中,随着故障的持续,这些气体在油中不断积累,直至饱和甚至析出气泡。因此,油中故障气体的含量及其积累程度是诊断故障存在与发展的一个依据。 2.2故障下产气的速率 正常情况下充油电力设备在热和电场的作用下,同样老化分解出少量的可燃性气体,但产气速率应很慢。有的设备因某些原因使气体含量超过注意值,不能断定故障;有的设备虽低于注意值,如含量增长迅速,也应引起注意。产气速率对反映故障的存在、严重程度及其发展趋势更加直接和明显,可以进一步确定故障的有无及性质。因此,故障气体的产气速率,也是诊断故障的存在与发展程度的另一个依据。 2.3故障下产气的特征 变压器等电力设备内部不同故障下,产生的气体有不同的特征。如:局部放电时会有

油色谱在线监测系统调试手册

ES-2010 变压器油色谱在线监测系统 使 用 手 册 第一章 基本说明 福州亿森电力设备有限公司非常感谢您选用 ES-2010 变压器油色谱在线监测系统。为确保安全正确的使用本系统,请在使用前一定详细阅读本使用手册。阅读后请妥善保存,以便必要时查阅。 本使用手册在安全规程上采用如下三种方式强调一些重要事项: 警告 这种警示栏是指对生命和健康有一定危险的提示。忽视这种警告可能导致严重的或 致命的伤害。 1.1 规定用途 ES-2010 变压器油色谱在线监测系统是用于电力变压器油中溶解气体的在线分析与故障诊断,适用于 110kV 及以上电压等级的电力变压器、电弧炉变压器、电抗器以及互感器等油浸式高压设备。 当心 ES-2010系统是否只用于规定的用途,由用户负责。为了安全起见,在系统的安装、改进投入运行和更新过程中,事前未经本公司同意不能进行其他未授权的作业。 否则可能危害本系统和变压器的安全运行。在变压器油的处置上一定要遵守当地的 环境保护条例。 警告 必须严格遵守所有有关的防火规程。 当心 这种警示栏是指对本设备和用户的其他设备有一定危险的提示,但不会导致严重的 或致命的伤害。 注意 这种提示是对某一事项的重要说明。

1.2相关标准 本设备引用下列标准,通过引用标准中的相关条文构成本标准的条文。由此规定了本设备的技术要求、验收规则、检验方法、适用范围、包装要求、标志、运输及储存。 (1 )GB1094 -1996 电力变压器 (2 )GB2536 -1990 变压器油 (3 )GB7597 -1987 电力用油取样方法 (4 )GB/T507 -1986 绝缘油介电强度测定法 (5 )GB/T7601 -1987 运行中变压器油水分测定法 (6 )GB/T14542 -93 运行中变压器油的维护管理规定 (7 )DL/T 596 -1996 (2005 复审)电力设备预防性试验规程 (8 )DL/T 572 -1995 (2005 复审)电力变压器运行规程 (9 )GB /T 7252 --- 2001 变压器油中溶解气体分析和判断导则 (10 )GB/T17623 -1998 绝缘油中溶解气体组份含量的气相色谱测定法 (11 )GB/T 2423 -2001 电工电子产品环境试验 (12 )GB/T 17626 -1998 电磁兼容试验和测量技术 (13 )GB/T 13384 -1992 机电产品包装通用技术要求 (14 )GB190 — 1990 危险货物包装标志 (15 )GB5099 -1994 钢质无缝气瓶 (16 )GB/T 9361 -1988 计算站场地安全要求 (17 )GB 4943 -2001 信息技术设备的安全 (18 )GB/T 2887 -2000 电子计算机场地通用规范 (19 )GB 4208 -1993 外壳防护等级(IP 代码) 1.3安全规程 从事本设备的安装、投入运行、操作、维护和修理的所有人员 ◆必须有相应的专业资格。 ◆必须严格遵守各项使用说明。 ◆不要在数据处理服务器上玩电子游戏、浏览网页。 ◆不要在数据处理服务器上任意安装软件,避免不必要的冲突。 违章操作或错误使用可能导致: ◆降低设备的使用寿命和监测精度。 ◆损坏本设备和用户的其他设备。 ◆造成严重的或致命的伤害。

如何建立薄层色谱法测定有关物质的方法

摘要本文就如何建立TLC法测定有关物质的方法进行论述,系统地阐述了薄层色谱法各条件确定的原理,并列举了质量标准制订中存在的某些问题。 关键词薄层色谱法(TLC法)有关物质方法建立 有关物质是研究药品中除主成分以外的杂质,它可能是原料药合成过程中带入的原料、中间体、试剂、降解物、副产物、聚合体、异构体以及不同晶型、旋光异构的物质,也可能是制剂过程中产生的降解物,或是在贮藏、运输、使用过程中产生的降解物等[1]。这些杂质的存在直接反映药品的有效性和安全性,故要对其进行研究,特别是在药品申报的质量研究资料中需建立其检测方法,并根据生产、稳定性考核等实际情况考虑是否在质量标准中制订该检查项,规定其限度。目前,有关物质的常用测定方法有高效液相色谱法(HPLC法)和薄层色谱法(TLC法)。 TLC的特点是快速、简便,尤其是对无紫外吸收的杂质测定,更具有其应用价值。如能将TLC法与HPLC法有机地结合、或彼此间进行比对研究,便可得到更多、更为准确的有关杂质信息,做到两方法间的相辅相成,相益得彰!本文将着重讨论如何建立薄层色谱法测定有关物质的方法。 1.测定方法类型 常用的方法有杂质对照品法(适用于已知杂质)和自身(稀释)对照法(适用于一般杂质检查,杂质成分少且尚不能取得杂质对照品)。目前国内由于难以获得杂质对照品、故一般均采用自身对照法。 2.展开剂的确定(即专属性试验) 专属性的研究是提供被分析物在杂质和辅料存在时能被区分的证明,该点是色谱条件建立的关键。通常采用在被分析物的对照品或精制品中加入一定量的杂质或辅料,证明色谱条件可将各杂质与被分析物分离[1]。这里的关键是:将多少量的杂质加入到多少量的主成分中。正确的作法是将1%(w/w)浓度量的各杂质加入到100%浓度的主成分中,配制这样的溶液来验证系统适用性。之所以如此配制,目的是模仿样品中有可能存在的状态,即有少量(1%左右)杂质存在时是否能与主成分达到完全分离,只有这样才能比较客观、科学地反映样品中实际存在情况的(见图1);而不应把该溶液配制成:主成分与中间体相同浓度的。因为一者实际检测时样品中不可能存在此种情况;二者该浓度不易确定,目前国内申报资料中一般的作法均是配制成较低的一致浓度,这样各斑点当然易于完全分离了(见图2),但在实际测定时,由于主斑点急剧增大,很易将相邻杂质包含于主成分斑点中。同样,质量标准中的系统适用性试验用溶液的配制方法亦如此。

变压器油的色谱分析

浅谈变压器油的色谱分析 时间:2011-04-27 15:04来源:《电气世界》 朱莉莉,朱明明摘要:从技术和专业管理的角度叙述变电站变压器、互感器内油的气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。油气相色谱分析在检验充油设备试验中占有十分重要的地位。文章详细介绍了绝缘油、纸热解产气的理化过程。 摘要:从技术和专业管理的角度叙述变电站变压器、互感器内油的气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。油气相色谱分析在检验充油设备试验中占有十分重要的地位。文章详细介绍了绝缘油、纸热解产气的理化过程。并对油样的提取要点进行了论述。最后根据本地区的电网等实际情况,举例说明故障后设备油中气体成份的分析判断。在研究、分析的基础上,论证了色谱分析与电气试验的关系。 关键词:变压器色谱油分析 0引言 随着地方经济迅速发展,及电气设备的不断更新换代的需要,给我们供电部门不论是从设备上还是技术上提出了更高的要求。为保证供给足够的优质电能,减少停电时间在采取原有的状态检修基础上,进一步实行在线监测。变压器类设备是变电站最关键的设备,它不仅是因为价值昂贵,最重要的是它发生事故后,影响面广,给工农业生产造成巨大的损失。目前对此类设备的安全运行给予高度的重视,而对变压器、互感器等用油的电气设备类最好的监测手段之一,就是对设备内的油进行气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。所以油气相色谱分析在检验充油设备试验中占有十分重要的地位。我们公司从上世纪80年代中期就对220kV、110kV及35kV8000kVA及以上的主变压器、电流互感器、电压互感器、充油套管进行色谱分析,并发现了部分设备存在缺陷,及时处理保证了设备安全正常运行。 1绝缘油、纸热解产气的理化过程 变压器的绝缘材料主要是油、纸组合绝缘,变压器内部潜伏性故障产生的气体主要是来源于油和纸的热裂解。热解产气特征与材料的化学结构有着密切的关系,矿物质绝缘油的化学组成是石油烃类;绝缘纸的化学成分是纤维素。在它们的分子结构上有不同类型的化学键,键能越高,分子越稳定,由于具有不同化学键结构的碳氢化合物分子在高温下的不同稳定性,因此需要了解一下绝缘油热裂解产气的一般规律,即产生的烃类气体的不饱和度是随裂解能量密度(温度)的增加而增加的。随着热裂解温度增高的过程裂解的顺序是:烷烃—烯烃—炔烃—焦炭。 不同性质的故障,产生气体组份的特征不一样,例如局部放电时产生氢;较高温度过热时产生甲烷与乙烯,当严重过热时也会产生少量的乙炔;电弧故障时产生乙炔和氢气。另外,不同性质和不同能源大小的故障,产气量和产气速度也不一样。初始阶段的潜伏性故障产气少,产气速度慢;故障源温度高、面积大的故障产气多、产气速度快。要明白这个道理,必须对绝缘油、纸在故障下热裂解产气的化学原理有一个基本了解,这对我们分析和判断变压器类设备的故障有所帮助。 绝缘油、纸热裂解产气过程所涉及的化学原理主要有:绝缘油、纸的化学结构,热解产气过程的化学反应及其热力动力学。当然还涉及到其他理、化机理如气体的析气、溶解和扩散作用等问题。 2简述

实用高效液相色谱法的建立破解版

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 色谱分离与在线检测技术已经成为当今分析化学的一门重要学科,而因其衍生出的相关产品也日益丰富。对色谱工作者来说,在面对具体方法开发中如何获得适当的分离度则成为关注的焦点。本文仅从网络上的资源收集简要介绍反相液相色谱法的建立思路。 一、 基本术语基本术语 读者可跳过本部分内容,直接阅读实例讲解部分 在评价色谱分离的品质时,通常用以下相关术语来反映色谱特征(如图1.): 图1. 典型色谱图 1. 保留因子(k): t t t k R ?= (1) 用于反映化合物的色谱保留性质,跟化合物性质有密切关系。如图1,设t R1 =3.65min, t 0 =1.20min, 则峰1的保留因子为:(3.65-1.20)/1.20=2.04 2. 拖尾因子(T f )

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 a b a f W W W T 2+= (2) 图2. 典型拖尾峰 在理想情况下,色谱峰为高斯型对称峰,其拖尾因子为1.0,但在实际情况中,由于化合物的二次保留等其他因素,色谱峰大多会呈现一定程度的拖尾。如图2中,该色谱峰的拖尾因子可计算得:{(41.5-37.0)+(37.0-35.0)}/{2*(37.0-35.0)}=1.63. 3. 理论塔板数(N )

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 图3. 峰高与峰宽的关系 2(16W t N R = (3) 或 2( 54.55 .0W t N R = (4) 注意:在上式中W 为图3中的W b ,为基线峰宽(4σ),W 0.5 为峰高一半处的峰宽W h (2.335σ), 并非峰宽的一半(2σ)。 设图1中峰1的基线峰宽为0.25min, 则塔板数为:16*(3.65/0.25)^2=3410 4. 分离因子(α) 10 212t t t t k k R R ??= =α (5) 又称两个色谱峰的相对保留值。只有当α>1时,两个色谱峰才有分离的可能性。 设在图1中峰2的保留时间为6.50min, 则分离因子为: (6.50-1.20)/(3.65-1.20)=2.16

绝缘油溶解气体的在线色谱分析

绝缘油溶解气体的在线色谱分析 一、气相色谱分析及在线监测方法简介 油中溶解气体分析就是分析溶解在充油电气设备绝缘油中的气体,根据气体的成分、含量及变化情况来诊断设备的异常现象。例如当充油电气设备内部发生局部过热、局部放电等异常现象时,发热源附近的绝缘油及固体绝缘(压制板、绝缘纸等)就会发生过热分解反应,产生CO2、CO、H2和CH4、C2H4、C2H2等碳氢化合物的气体。由于这些气体大部分溶解在绝缘油中,因此从充油设备取样的绝缘油中抽出气体,进行分析,就能够判断分析有无异常发热,以及异常发热的原因。气相色谱分析是近代分析气体组分及含量的有效手段,现已普遍采用。图4-7所示为油色谱分析在线监测的原理框图。 图4-7 油色谱分析在线监测原理框图 进行气相色谱分析,首先要从运行状态下的充油电气设备中取油样,取样方法和过程的正确性,将严重影响到分析结果的可信度。如果油样与空气接触,就会使试验结果发生一倍以上的偏差。因此,在IEC和国内有关部门的规定中都要求取样过程应尽量不让油样与空气接触。其次,要从抽取的油样中进行脱气,使溶解于油中的气体分离出来。脱气方法有多种,常用的是振荡脱气法,即在一密闭的容器中,注入一定体积的油样,同时再加入惰性气体(不同于油中含有的待测气体),在一定温度下经过充分振荡,使油中溶解的气体与油达到两相动态平衡。于是就可将气体抽出,送进气相色谱仪进行气体组分及含量的分析。 常规的油色谱分析法存在一系列不足之处,不仅脱气中可能存在较大的人为误差,而且监测曲线的人工修正法也会加大误差,从取油样到实验室分析,作业程序复杂,花费的时间和费用较高,在技术经济上不能适应电力系统发展的需要;监测周期长,不能及时发现潜伏性故障和有效的跟踪发展趋势;因受其设备费用和技术力量的限制,不可能每个电站都配备油色谱分析仪,运行人员无法随时掌握和监视本站变压器的运行状况,从而会加大事故率。因此,国内外不仅要定期作以预防性试验为基础的预防性检修,而且相继都在研究以在线监测为基础的预知性检修策略,以便实时或定时在线监测与诊断潜伏性故障或缺陷。 绝缘油气相色谱在线监测主要解决油气分离问题,目前在线监测油气分离采用的是不渗

变压器油的气相色谱分析与研究

变压器油的气相色谱分析与研究 【摘要】以某公司送来两台运行中变压器的油样,经色谱分析,其中一台有C2H2气体(4.9PPm)为例,以实例分析说明:在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。 【关键词】压器油;色谱分析;气相色谱;误差分析 1. 色谱分析在绝缘监督中的作用 在电气试验中,通过气相色谱分析绝缘油中溶解气体,能尽早的发现充油电气设备内部存在的潜伏性故障,是绝缘监督的一种重要手段。这一检测技术可以在设备不停电的情况下进行,而且不受外界因素的影响,可定期对运行设备内部绝缘状况进行监测,确保设备安全可靠运行。变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。当充油电器内部存在潜伏

性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。故障气体的组成及含量与故障类型和故障严重程度关系密切。因此,在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。 2. 实例 (1)变压器内部放电性故障产生的特征气体主要是乙炔。正常的变压器油中不含这种气体,如果变压器油中这种气体增长很快,说明该变压器存在严重的放电性故障。某公司送来两台运行中变压器的油样,经色谱分析,其中一台有C2H2气体(4.9PPm),5天后他们再次送来该台变压器油样检测,乙炔含量猛增到12.8PPm,见表1。 (2)从表1可以看出,总的烃类气体不高,惟有乙炔气体超过注意值。氢气含量也比较高。我们分析该变压器内可能存在放电性故障,要他们回去检查,果然发现是分接开关拨叉电位悬浮引起放电,经过处理,避免了事故的发生。还有一次,某电站送来升压变压器油样,经色谱分析烃类气体含量均在注意值范围内,惟有氢气含量高达345ppm,见表2。我们分析该变压器可能有进水现象。经检查,果然发现该变压器进水受潮,经处理,避免了绝缘击穿事故的发生。 (3)变压器油的气相色谱分析在绝缘监督中具有很重

变压器油色谱异常分析及处理_图文(精)

变压器油色谱异常分析及处理 (陕西延安) 摘要:介绍了延安发电厂3#主变压器油色谱分析数据超标后的检查、试验、分析判断及处理。 关键词:变压器;色谱;分析;处理 延安发电厂3#主变压器(型号SFSb-20000/110,额定容量20MW),在8月13日的油样色普分析结果中,发现乙炔含量为6.51ppm,超过注意值5.0ppm,引 起注意,及时汇报加强监督,为了进一步判断分析,在8月17日,又取油样送检,分析结果仍然是油样不合格,且乙炔含量增长较快,由6.5 1ppm 增长到7.26 ppm,在8月18日,再次送检油样,分析结果仍然是油样不合格,且乙炔含量增长较快,增长到11.76 ppm,根据三比值计算编码为102,判断设备内部存在裸金属放电故障,及时汇报,立即退出运行安排检查。 1 设备修前测量试验情况 1.1变压器油气相色谱分析报告 采样时间气体组分 (uL/L) H 2 CO CO 2 CH4 C 2H6 C 2H4 C 3H8 C 2H2 C 3H6 C 1+C2 86.95 16281514 6 5

.13 6.32 7.95 .77 .77 1.31 .51 5.36 8 .17 13.35 22 1.87 275 5.66 5 .66 2 .22 4 2.82 7 .26 5 7.96 8 .18 60.6 22 5.75 341 6.01 1 1.57 1 .82 5 4.3 1 1.76 7 9.45 8 .20 64.82 21 7.14 359 1.95 1 4.34 2 .31 6 5.67 1 4.15 9 6.47 结论根据三比值计算 编码为102,判断设 备内部存在裸金属放 电故障,建议立即停 运检修。 以8月20日的数据为依据,利用三比值法对其故障进行判断: (1)C2H2/ C2H4=14.15/65.67=0.27,比值范围的编码为:1; (2)CH4/ H2=14.34/64.28=0.22,比值范围的编码为:0; (3)C2H4/C C2H6=65.67/2.31=28.42,比值范围的编码为:2; 通过三比值计算编码为102,初步判断其故障性质为高能量放电。 1.2在西北电研院专家的指导下,对变压器进行了修前检测、试验。绕组绝缘测试合 格;绕组直流泄漏电流测试合格;各绕组介质损耗测试合格;高压侧110kv套管介质

相关文档
相关文档 最新文档