文档库 最新最全的文档下载
当前位置:文档库 › 范数概念

范数概念

范数概念
范数概念

一、范数的定义

若X是数域K上的线性空间,泛函║·║: X->R 满足:

1. 正定性:║x║≥0,且║x║=0 <=> x=0;

2. 正齐次性:║cx║=│c│║x║;

3. 次可加性(三角不等式):║x+y║≤║x║+║y║ 。

那么║·║称为X上的一个范数。

(注意到║x+y║≤║x║+║y║中如令y=-x,再利用║-x║=║x║可以得到

║x║≥0,即║x║≥0在定义中不是必要的。)

如果线性空间上定义了范数,则称之为赋范线性空间。

注记:范数与内积,度量,拓扑是相互联系的。

1. 利用范数可以诱导出度量:d(x,y)=║x-y║,进而诱导出拓扑,因此赋范线性空间是度量空间。

但是反过来度量不一定可以由范数来诱导。

2. 如果赋范线性空间作为(由其范数自然诱导度量d(x,y)=║x-y║的)度量空间是完备的,即任何柯西(Cauchy)序列在其中都收敛,则称这个赋范线性空间为巴拿赫(Banach)空间。

3. 利用内积<·,·>可以诱导出范数:║x║=^{1/2}。

反过来,范数不一定可以由内积来诱导。当范数满足平行四边形公式

║x+y║^2+║x-y║^2=2(║x║^2+║y║^2)时,这个范数一定可以由内积来诱导。

完备的内积空间称为希尔伯特(Hilbert)空间。

4. 如果去掉范数定义中的正定性,那么得到的泛函称为半范数(seminorm或者叫准范数),相应的线性空间称为赋准范线性空间。完备的赋准范线性空间称为Fréchet 空间。

对于X上的两种范数║x║α,║x║β,若存在正常数C满足

║x║β≤C║x║α

那么称║x║β弱于║x║α。如果║x║β弱于║x║α且║x║α弱于║x║β,那么称这两种范数等价。

可以证明,有限维空间上的范数都等价,无限维空间上至少有阿列夫(实数集的基数)种不等价的范数。

二、算子范数

如果X和Y是巴拿赫空间,T是X->Y的线性算子,那么可以按下述方式定义║T║:║T║ = sup{║Tx║:║x║<=1}

根据定义容易证明║Tx║ <= ║T║║x║。

对于多个空间之间的复合算子,也有║XY║ <= ║X║║Y║。

如果一个线性算子T的范数满足║T║ < +∞,那么称T是有界线性算子,否则称T 是无界线性算子。

比如,在常用的范数下,积分算子是有界的,微分算子是无界的。

容易证明,有限维空间的所有线性算子都有界。

三、有限维空间的范数

基本性质

有限维空间上的范数具有良好的性质,主要体现在以下几个定理:

性质1:对于有限维赋范线性空间的任何一组基,范数是元素(在这组基下)的坐标

的连续函数。

性质2(Minkowski定理):有限维线性空间的所有范数都等价。

性质3(Cauchy收敛原理):实数域(或复数域)上的有限维线性空间(按任何范数)必定完备。

性质4:有限维赋范线性空间中的序列按坐标收敛的充要条件是它按任何范数都收敛。

常用范数

这里以C^n空间为例,R^n空间类似。

最常用的范数就是p-范数。若x=[x1,x2,...,xn]^T,那么

║x║p=(|x1|^p+|x2|^p+...+|xn|^p)^{1/p}

可以验证p-范数确实满足范数的定义。其中三角不等式的证明不是平凡的,这个结论通常称为闵可夫斯基(Minkowski)不等式。

当p取1,2,∞的时候分别是以下几种最简单的情形:

1-范数:║x║1=│x1│+│x2│+…+│xn│

2-范数:║x║2=(│x1│^2+│x2│^2+…+│xn│^2)^1/2

∞-范数:║x║∞=max(│x1│,│x2│,…,│xn│)

其中2-范数就是通常意义下的距离。

对于这些范数有以下不等式:║x║∞ ≤ ║x║2 ≤ ║x║1 ≤ n^{1/2}║x║2 ≤ n║x║∞

另外,若p和q是赫德尔(Hölder)共轭指标,即1/p+1/q=1,那么有赫德尔不等式:

|| = ||x^H*y| <= ║x║p║y║q

当p=q=2时就是柯西-许瓦兹(Cauchy-Schwarz)不等式。

四、矩阵范数

一般来讲矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性:║XY║≤║X║║Y║。所以矩阵范数通常也称为相容范数。

如果║·║α是相容范数,且任何满足║·║β≤║·║α的范数║·║β都不是相容范数,那么║·║α称为极小范数。对于n阶实方阵(或复方阵)全体上的任何一个范数║·║,总存在唯一的实数k>0,使得k║·║是极小范数。

注:如果不考虑相容性,那么矩阵范数和向量范数就没有区别,因为mxn矩阵全体和mn维向量空间同构。引入相容性主要是为了保持矩阵作为线性算子的特征,这一点和算子范数的相容性一致,并且可以得到Mincowski定理以外的信息。

诱导范数

把矩阵看作线性算子,那么可以由向量范数诱导出矩阵范数

║A║ = max{║Ax║:║x║=1}= max{║Ax║/║x║: x≠0} ,

它自动满足对向量范数的相容性

║Ax║ ≤ ║A║║x║,

并且可以由此证明

║AB║ ≤ ║A║║B║。

注:

1.上述定义中可以用max代替sup是因为有限维空间的单位闭球是紧的(有限开覆盖定理),从而上面的连续函数可以取到最值。

2.显然,单位矩阵的算子范数为1。

常用的三种p-范数诱导出的矩阵范数是

1-范数:║A║1 = max{ ∑|ai1|, ∑|ai2| ,…… ,∑|ain| } (列和范数,A每一列元素绝对值之和的最大值)

(其中∑|ai1|第一列元素绝对值的和∑|ai1|=|a11|+|a21|+...+|an1|,其余类似);

2-范数:║A║2 = A的最大奇异值= ( max{ λi(A^H*A) } ) ^{1/2} (谱范数,即A'A特征值λi中最大者λ1的平方根,其中A^H为A的转置共轭矩阵);

∞-范数:║A║∞ =max{ ∑|a1j|, ∑|a2j| ,..., ∑|amj| } (行和范数,A每一行元素绝对值之和的最大值)

(其中为∑|a1j| 第一行元素绝对值的和,其余类似);

其它的p-范数则没有很简单的表达式。

对于p-范数而言,可以证明║A║p=║A^H║q,其中p和q是共轭指标。

简单的情形可以直接验证:║A║1=║A^H║∞,║A║2=║A^H║2,一般情形则需要利用║A║p=max{y^H*A*x:║x║p=║y║q=1}。

非诱导范数

有些矩阵范数不可以由向量范数来诱导,比如常用的Frobenius范数(也叫Euc lid范数,简称F-范数或者E-范数):

║A║F= ( ∑∑ aij^2 )^1/2 (A全部元素平方和的平方根)。

容易验证F-范数是相容的,但当min{m,n}>1时F-范数不能由向量范数诱导(||E11+E22||F=2>1)。

可以证明任一种矩阵范数总有与之相容的向量范数。例如定义

║x║=║X║,其中X=[x,x,…,x]是由x作为列的矩阵。

由于向量的F-范数就是2-范数,所以F-范数和向量的2-范数相容。另外还有以下结论:

║AB║F <= ║A║F ║B║2 以及║AB║F <= ║A║2 ║B║F

矩阵的谱半径和范数

定义:A是n阶方阵,λi是其特征值,i=1,2,…,n。则称特征值的绝对值的最大值为A的谱半径,记为ρ(A)。

注意要将谱半径与谱范数(2-范数)区别开来,谱范数是指A的最大奇异值,即A^H*A 最大特征值的算术平方根。

谱半径是矩阵的函数,但不是矩阵范数。谱半径和范数的关系是以下几个结论:定理1:谱半径不大于矩阵范数,即ρ(A)≤║A║。

因为任一特征对λ,x,Ax=λx,可得Ax=λx。两边取范数并利用相容性即得结果。

定理2:对于任何方阵A以及任意正数e,存在一种矩阵范数使得║A║<ρ(A)+e。

定理3(Gelfand定理):ρ(A)=lim_{k->∞} ║A^k║^{1/k}。

利用上述性质可以推出以下两个常用的推论:

推论1:矩阵序列I,A,A^2,…A^k,… 收敛于零的充要条件是ρ(A)<1。

推论2:级数I+A+A^2+... 收敛到(I-A)^{-1}的充要条件是ρ(A)<1。

酉不变范数

定义:如果范数║·║满足║A║=║UAV║对任何矩阵A以及酉矩阵U,V成立,那么这个范数称为酉不变范数。

容易验证,2-范数和F-范数是酉不变范数。因为酉变换不改变矩阵的奇异值,所以由奇异值得到的范数是酉不变的,比如2-范数是最大奇异值,F-范数是所有奇异值组成

的向量的2-范数。

反过来可以证明,所有的酉不变范数都和奇异值有密切联系:

定理(V on Neumann定理):在酉不变范数和对称度规函数(symmetric gauge function)之间存在一一对应关系。

也就是说任何酉不变范数事实上就是所有奇异值的一个对称度规函数。

范数

3.3 范数 3.3.1 向量范数 在一维空间中,实轴上任意两点距离用两点差的绝对值表示。绝对值是一种度量形式的定义。 范数是对函数、向量和矩阵定义的一种度量形式。任何对象的范数值都是一个非负实数。使用范数可以测量两个函数、向量或矩阵之间的距离。向量范数是度量向量长度的一种定义形式。范数有多种定义形式,只要满足下面的三个条件即可定义为一个范数。同一向量,采用不同的范数定义,可得到不同的范数值。 定义3.1对任一向量,按照一个规则确定一个实数与它对应,记该实数记为 ,若满足下面三个性质: (1),有,当且仅当时,(非 负性) (2),,有(齐次性) (3.37)(3),,有(三角不等式) 那么称该实数为向量的范数。 几个常用向量范数 向量的范数定义为 其中,经常使用的是三种向量范数。

或写成 例3.5 计算向量的三种范数。 向量范数的等价性 有限维线性空间中任意向量范数的定义都是等价的。若是上两种不同的范数定义,则必存在,使均有 或 (证明略) 向量的极限 有了向量范数的定义,也就有了度量向量距离的标准,即可定义向量的极限和收敛概念了。

设为上向量序列,若存在向量使,则称向量列是收敛的(是某种向量范数),称为该向量序列的极限。 由向量范数的等价知,向量序列是否收敛与选取哪种范数无关。 向量序列,收敛的充分必要条件为其序列的每个分量收敛,即存在。 若,则就是向量序列 的极限。 例3.6 求向量序列极限向量。 解:算出每个向量分量的极限后得 在计算方法中,计算的向量序列都是数据序列,当小于给定精度时,取 为极限向量。 3.3.2 矩阵范数 矩阵范数定义

矩阵范数详解

向量和矩阵的范数的若干难点导引 矩阵范数的定义 引入矩阵范数的原因与向量范数的理由是相似的,在许多场合需要“测量”矩阵的“大小”,比如矩阵序列的收敛,解线性方程组时的误差分析等,具体的情况在这里不再复述。 最容易想到的矩阵范数,是把矩阵m n A C ?∈可以视为一个mn 维的向量(采用所谓“拉 直”的变换),所以,直观上可用mn C 上的向量范数来作为m n A C ?∈的矩阵范数。比如 在1l -范数意义下,111 ||||||m n ij i j A a === ∑∑()12 tr()H A A =; (1.1) 在2l -范数意义下,1 2 211||||||m n F ij i j A a ==?? = ??? ∑∑, (1.2) 注意这里为了避免与以后的记号混淆,下标用“F ”,这样一个矩阵范数,称为Frobenius 范数,或F-范数。可以验证它们都满足向量范数的3个条件。 那么是否矩阵范数就这样解决了?因为数学上的任一定义都要与其对象的运算联系起来,矩阵之间有乘法运算,它在定义范数时应予以体现,也即估计AB 的“大小”相对于A B 与的“大小”关系。 定义1 设m n A C ?∈,对每一个A ,如果对应着一个实函数()N A ,记为||||A ,它满足以下条件: (1)非负性:||||0A ≥; (1a )正定性:||||0m n A O A ?=?= (2)齐次性:||||||||||,A A C ααα=∈; (3)三角不等式:||A ||||||||||||,m n A B A B B C ?+≤+?∈ 则称()||||N A A =为A 的广义矩阵范数。进一步,若对,,m n n l m l C C C ???上的同类广义矩阵范数||||?,有 (4)(矩阵相乘的)相容性:||A ||||||||||||AB A B ≤, n l B C ?∈, 则称()||||N A A =为A 的矩阵范数。 我们现在来验证前面(1.1)和(1.2)定义的矩阵范数是否合法?我们这里只考虑(1.2), 把较容易的(1.1)的验证留给同学们, 三角不等式的验证。按列分块,记1212(,,,),(,,,)n n A a a a B b b b == 。 2 22112||)(,),(),(||||||F n n F b a b a b a B A +++=+ 2222222211||||||||||||n n b a b a b a ++++++= ()()22 121222||||||||||||||||n n a b a b ≤++++ ()()()2222122121222122||||||||2||||||||||||||||||||||||n n n n a a a b a b b b =++++++++ 对上式中第2个括号内的诸项,应用Cauchy 不等式,则有 222||||||||2||||||||||||F F F F F A B A A B B +≤++2(||||||||)F F A B =+ (1.3) 于是,两边开方,即得三角不等式。 再验证矩阵乘法相容性。 2 2 2111 111||||||||m l n m l n F ik kj ik ki i j k i j k AB a b a b ======?? =≤ ??? ∑∑∑∑∑∑

内积与范数

范数:用于度量“量”大小的概念 1. 引言 实数的绝对值:a 是数轴上的点a 到原点0的距离; 复数的模:a bi +=是平面上的点()b a ,到原点()0,0的距 离; 还有其他刻画复数大小的方法(准则):如 1)b a +; 2){}max , a b 2. 向量的范数:p-范数 1 1n p p k p k x x =??= ??? ∑ (1) 示例: 1211234515,2345,5x x x x ∞ ???=+-+++= ?-? ?? ?=?==? ?? = ??? ??? 3. 矩阵(算子)的范数 01max max x x Ax A Ax x ≠=== (2) 矩阵的谱半径:设M 是n 阶矩阵,称

()()()(){}12max , ,, n M M M M ρλλλ=L (3) 为该矩阵的谱半径。 记 ()1212,,,T T n T n A ββαααβ?? ? ?== ? ? ??? L M , 那么, {}{}()1211111211112 max ,,,max max ,,,n k n p p x k T A A Ax A A A A αααβββρ∞=?=?? =?=??=??L L (3) 4. 矩阵的条件数:用于刻画矩阵“病态”程度的概念 ()1 cond A A A -=? 5.利用范数定义点之间的距离 (),,,n n x R y R d x y y x ∈∈?=- 向量的内积、范数及n 维空间距离的度量 令 P 是一数域, P n 是 P 上的向量空间,如果函数 ()?x y P P P n n ,:?→有如下性质: 1、共轭对称性:?∈x y P n ,,()()??y x x y ,,=; 2、非负性:?∈x P n ,()?x x ,≥0,()?x x x ,=?=00;

几个范数不等式的证明

设X为一n维赋范空间,其范数定义为, 1≤p<∞,证明以下命题: 1. ||x||2≤||x||1≤; 2. ||x||p≤||x||1; 3. ||x||q≤||x||p≤,p|≤||x||2||y||2,令x=( |x1|, |x2|,..., |x n|),y=(1,1, (1) 可得(|x1|+|x2|+…+|x n|)≤(|x1|+| x2|+…+|x n|)1/2n1/2 ||x||1≤成立。 根据Jensen不等式,令α=2,β=1可以证明。 2. 令f(x)= p=1,f(x)=1,所以只考虑p>1的情况

从上图可以看出f(x)在x=0时为1,先上升,在x=1达到最大值2p-1,然后下降,但始终≥1。所以有,即,令x=b/a,有a p+b p≤(a+b)p,同理,使用归纳法可 证明:|x1|p+|x2|p+…+|x n|p≤(|x1|+|x2|+…+|x n|)p②(|x1|p+|x2|p+…+|x n|p)1/p≤|x1|+|x2|+…+|x n| 也即||x||p≤||x||1成立。 3. 先证||x||q≤||x||p (pp)可以证明。 据说可以根据赫尔德不等式证明,但实在想不到方法证。如果你能想到,不妨发封邮件给我:james05y@https://www.wendangku.net/doc/ae10402968.html, 参考文献 1. 邢家省, 郭秀兰, 崔玉英. 几个幂次不等式的应用[J]. 河南科学, 2008, 26(11):1306-1309. 2. 柯西—施瓦茨不等式. https://www.wendangku.net/doc/ae10402968.html,/view/979424.htm. 3. Jensen不等式. https://www.wendangku.net/doc/ae10402968.html,/view/1427148.htm.

矩阵范数规范标准详解

《周国标师生交流讲席010》 向量和矩阵的范数的若干难点导引(二) 一. 矩阵范数的定义 引入矩阵范数的原因与向量范数的理由是相似的,在许多场合需要“测量”矩阵的“大小”,比如矩阵序列的收敛,解线性方程组时的误差分析等,具体的情况在这里不再复述。 最容易想到的矩阵范数,是把矩阵m n A C ?∈可以视为一个mn 维的向量(采用所谓“拉 直”的变换),所以,直观上可用mn C 上的向量范数来作为m n A C ?∈的矩阵范数。比如 在1l -范数意义下,111 ||||||m n ij i j A a === ∑∑( ) 12 tr()H A A =; (1.1) 在2l -范数意义下,1 2 211||||||m n F ij i j A a ==??= ??? ∑∑, (1.2) 注意这里为了避免与以后的记号混淆,下标用“F ”,这样一个矩阵范数,称为Frobenius 范数,或F-范数。可以验证它们都满足向量范数的3个条件。 那么是否矩阵范数就这样解决了?因为数学上的任一定义都要与其对象的运算联系起来,矩阵之间有乘法运算,它在定义范数时应予以体现,也即估计AB 的“大小”相对于A B 与的“大小”关系。 定义1 设m n A C ?∈,对每一个A ,如果对应着一个实函数()N A ,记为||||A ,它满足以下条件: (1)非负性:||||0A ≥; (1a )正定性:||||0m n A O A ?=?= (2)齐次性:||||||||||,A A C ααα=∈; (3)三角不等式:||A ||||||||||||,m n A B A B B C ?+≤+?∈ 则称()||||N A A =为A 的广义矩阵范数。进一步,若对,,m n n l m l C C C ???上的同类广义矩阵 范数||||?,有 (4)(矩阵相乘的)相容性:||A ||||||||||||AB A B ≤, n l B C ?∈, 则称()||||N A A =为A 的矩阵范数。 我们现在来验证前面(1.1)和(1.2)定义的矩阵范数是否合法?我们这里只考虑(1.2),把较容易的(1.1)的验证留给同学们, 三角不等式的验证。按列分块,记1212(,,,),(,,,)n n A a a a B b b b ==L L 。 2 22112||)(,),(),(||||||F n n F b a b a b a B A +++=+Λ 2 222222211||||||||||||n n b a b a b a ++++++=Λ ()()22 121222||||||||||||||||n n a b a b ≤++++L ()()()22 22122121222122||||||||2||||||||||||||||||||||||n n n n a a a b a b b b =++++++++L L L 对上式中第2个括号内的诸项,应用Cauchy 不等式,则有 222||||||||2||||||||||||F F F F F A B A A B B +≤++2(||||||||)F F A B =+ (1.3) 于是,两边开方,即得三角不等式。 再验证矩阵乘法相容性。

取模运算

取模运算 取模运算即模运算模运算即求余运算。“模”是“Mod”的音译,模运算多应用于程序编写中。Mod的含义为求余。模运算在数论和程序设计中都有着广泛的应用,从奇偶数的判别到素数的判别,从模幂运算到最大公约数的求法,从孙子问题到凯撒密码问题,无不充斥着模运算的身影。虽然很多数论教材上对模运算都有一定的介绍,但多数都是以纯理论为主,对于模运算在程序设计中的应用涉及不多。例如11 Mod 2,值为1 上述模运算多用于程序编写,举一例来说明模运算的原理: Turbo Pascal对mod的解释是这样的: A Mod B=A-(A div B) * B (div含义为整除) 运算及其应用 本文以c++语言为载体,对基本的模运算应用进行了分析和程序设计,以理论和实际相结合的方法向大家介绍模运算的基本应用。。 一基本理论: 基本概念: 给定一个正整数p,任意一个整数n,一定存在等式n = kp + r ; 其中k、r是整数,且0 ≤ r < p,称呼k为n除以p的商,r为n除以p的余数。 对于正整数p和整数a,b,定义如下运算: 取模运算:a % p(或a mod p),表示a除以p的余数。 模p加法:(a + b) % p ,其结果是a+b算术和除以p的余数,也就是说,(a+b) = kp +r,则(a + b) % p = r。 模p减法:(a-b) % p ,其结果是a-b算术差除以p的余数。 模p乘法:(a * b) % p,其结果是a * b算术乘法除以p的余数。 说明: 1. 同余式: 正整数a,b对p取模,它们的余数相同,记做a ≡ b % p或者a ≡ b (mod p)。 2. n % p得到结果的正负由被除数n决定,与p无关。 例如:7%4 = 3,-7%4 = -3,7%-4 = 3,-7%-4 = -3。 基本性质:(1)若p|(a-b),则a≡b (% p)。例如11 ≡ 4 (% 7),18 ≡ 4(% 7) (2)(a % p)=(b % p)意味a≡b (% p) (3)对称性:a≡b (% p)等价于b≡a (% p) (4)传递性:若a≡b (% p)且b≡c (% p) ,则a≡c (% p) 运算规则: 模运算与基本四则运算有些相似,但是除法例外。其规则如下:

矩阵范数详解.docx

《周国标师生交流讲席010》 向量和矩阵的范数的若干难点导引(二) 一.矩阵范数的定义 引入矩阵范数的原因与向量范数的理由是相似的,在许多场合需要“测量”矩阵的“大小”,比如矩阵序列的收敛,解线性方程组时的误差分析等,具体的情况在这里不再复述。 最容易想到的矩阵范数,是把矩阵A C m n可以视为一个mn维的向量(采用所谓“拉 直”的变换),所以,直观上可用C mn上的向量范数来作为A C m n的矩阵范数。比如 m n 1 在∣1 -范数意义下,IIAl1 ;二Ia ijI= tr(A H A) 2; (1.1 ) 1 Zl mn A2 在I2-范数意义下,∣∣A∣∣F=∑∑同|2,(1.2) Iy j A J 注意这里为了避免与以后的记号混淆,下标用“F”,这样一个矩阵范数,称为Frobenius 范数,或F-范数。可以验证它们都满足向量范数的3个条件。 那么是否矩阵范数就这样解决了?因为数学上的任一定义都要与其对象的运算联系起来,矩阵之间有乘法运算,它在定义范数时应予以体现,也即估计AB的“大小”相对于A与B 的“大小”关系。 定义1设A C mn,对每一个A ,如果对应着一个实函数N(A),记为IlAll ,它满足以下条件: (1)非负性:|| A||_0 ; (1 a)正定性:A=O mn= IIAII= 0 (2)齐次性:||〉A||=| |||A||, ? C ; (3)三角不等式:||A||A B||—||A|| ||B||, -B C m n 则称N(A)=|| A||为A的广义矩阵范数。进一步,若对C m n,C n 1C m l上的同类广义矩阵 范数|| || ,有 (4)(矩阵相乘的)相容性:|| A || AB ||_|| A|||| B ||, B C n I , 则称N(A) =||A||为A的矩阵范数。 我们现在来验证前面(1.1 )和(1.2 )定义的矩阵范数是否合法?我们这里只考虑(1.2 ),把较容易的(1.1 )的验证留给同学们, 三角不等式的验证。按列分块,记A=√a1,a2,…,a n), B=√b1,b2,…,b n)。 ||A BII F=Ig bj,? b2), ,(a. b n)||F *1 UII2 IIa2 b2||2 Ha n g ||2 (IIa1II2 +IIdIb ) +…+(IIa n Ib +||b n ||2) 2 2 兰 二険||2 IIa n II;2 || q II2II d ||2 …IIa n II2II b n ||2 IIdII2IIb n II2 对上式中第2个括号内的诸项,应用CaUChy不等式,则有 IIA + BIIF≤IIAII F +2||A||F||B||F +IIBII2=(IIAI F +IIBII F)2(1.3 )于是,两边开方,即得三角不等式。 再验证矩阵乘法相容性。

模电基础知识

模拟电路基础 复习资料 一、填空题 1.在P 型半导体中,多数载流子是( 空隙 ),而少数载流子是( 自由电子 )。 2.在N 型半导体中,多数载流子是( 电子 ),而少数载流子是( 空隙 )。 3.当PN 结反向偏置时,电源的正极应接( N )区,电源的负极应接( P )区。 4.当PN 结正向偏置时,电源的正极应接( P )区,电源的负极应接( N )区。 4.1、完全纯净的具有晶体结构完整的半导体称为 本征半导体 ,当掺入五价微量元素便形成 N 型半导体 ,其电子为 多数载流子,空穴为 少数载流子 。当掺入三价微量元素便形成 P 型半导体 ,其 空穴为多子 ,而 电子为少子 。 4.2、二极管的正向电流是由多数载流子的扩散运动形成的,而反向电流则是由少子的漂移运动形成的。 4.3、二极管有一个PN 结,它具有单向导电性,它的主要特性有:掺杂性、热敏性、光敏性。可作开关、整流、限幅等用途。硅二极管的死区电压约为0.5V ,导通压降约为0.7V ,锗二极管的死区电压约为0.1V 、导通压降约为0.2V 。 5、三极管具有三个区:放大区、截止区、饱和区,所以三极管工作有三种状态:工作状态、饱和状态、截止状态,作放大用时,应工作在放大状态,作开关用时,应工作在截止、饱和状态。 5.1、三极管具有二个结:即发射结和集电结。饱和时:两个结都应正偏;截止时:两个结都应反偏。 放大时:发射结应( 正向 )偏置,集电结应( 反向 )偏置。 5.2、三极管放大电路主要有三种组态,分别是: 共基极电路、共集电极电路、共发射极电路。共射放大电路无电压放大作用,但可放大电流。共基极放大电路具有电压放大作用,没有倒相作用。且共基接法的输入电阻比共射接法低. 5.3、共射电极放大电路又称射极输出器或电压跟随器,其主要特点是电压放大倍数小于近似于1、输入电阻很大、输出电阻很小。 5.4单管共射放大电路中,1.交直流并存,2.有电压放大作用,3.有倒相作用。 5.5微变等效电路法适用条件:微小交流工作信号、 三极管工作在线性区。 5.6图解法优点: 1. 即能分析静态, 也能分析动态工作情况;2. 直观 形象;3. 适合分析工作在大信号状态下的放大电路。缺点: 1. 特性曲线存在误差;2. 作图麻烦,易带来误差; 3. 无法分析复杂电路和高频小工作信号。 5.7微变等效电路法 优点:1.简单方便;2.适用于分析任何基本工作在线性范围的简单或复杂的电路。 缺点:1.只能解决交流分量的计算问题; 2. 不能分析非线性失真;3. 不能分析最大输出幅度 。 6.根据理论分析,PN 结的伏安特性为)1(-=T U U S e I I ,其中S I 被称为( 反向饱和 ) 电流,在室温下T U 约等于( 26mV )。 7.BJT 管的集电极、基极和发射极分别与JFET 的三个电极( 漏极 )、( 栅极 )和( 源极 )与之对应。 7.1.场效应管是电压控制元件,三极管是电流控制元件。 场效应管输入电阻非常高,三极管输入电阻较小。场效应管噪声小,受外界温度及辐射的影响小, 存在零温度系数工作点。场效应管的制造工艺简单, 便于集成。存放时,栅极与源极应短接在一起。 焊接时,烙铁外壳应接地。 7.2共漏极放大电路又称源极输出器或源极跟随器。 7.3多级放大电路的耦合方式:阻容耦合,优点:各级 Q 点相互独立,便于分析、设计和调试。缺点: 不易放大低频信号无法集成。直接耦合,优点:可放大交流和直流信号;便于集成。缺点: 各级Q 点相互影响;零点漂移较严重。变压器耦合,优点:有阻抗变换作用,各级静态工作点互不影响。缺点:不能放大直流及缓慢变化信号; 笨重;不易集成。

泛函数与范数的定义

泛函数-正文 又称泛函,通常实(复)值函数概念的发展。通常的函数在R n或C n(n是自然数)中的集合上定义。泛函数常在函数空间甚至抽象空间中的集合上定义,对集合中每个元素取对应值(实数或复数)。通俗地说,泛函数是以函数作为变元的函数。泛函数概念的产生与变分学问题的研究发展有密切关系。设Ω为R n中的区域,Г1表示边界嬠Ω的片断, 表示一函数集合。考虑对应 ,式中F为具有2n+1个自变数的函数:为寻求J(u)的局部极值,在一定条件下取J(u)的加托变分 如果在u=u0达到局部极值,则u0适合欧拉方程δJ(u)=0。在应用中,常以数学或物理的某个微分方程为背景产生一定泛函数,使原问题化成泛函数极值问题。当代分析学中,变分方法有广泛应用。一般把问题化成Tx=0的形式,即对应于某泛函数φ的欧拉方程,其中φ定义在一巴拿赫空间X中的开集S上且加托可微:算子T称为梯度算子,φ称为T的场位。人们常遇到二阶微分系统,由此产生二次泛函数极值问题,是当代变分法常见的研究对象。 泛函数φ:S嶅X→R(X为拓扑空间)称为在x∈S处下半连续,如果对每个实数r<φx,有x的邻域U(x),使得r<φz,凬z∈U(x)∩S。称φ在x∈S处下半序列连续,如果对每个序列 。其连续性及有界性如同对算子相应的性质所做的规定。 设φ是定义在线性集合S上的实(复)值泛函数。如果φ(x+y)=φ(x)+φ(y),φ称为加性的;如果φ(λx)=λφ(x),λ∈R(C)称为齐性的;如果同时有加性及齐性称为线性的。当φ

取实值时,加性得放松为次加性,其定义为:φ(x+y)≤φ(x)+φ(y);齐性得放松为正齐性,其定义为:?(λx)=λ?(x)(λ≥0);如果同时有次加性及齐性,则称φ具有次线性;如果对于λ∈(0,1),有φ(λx+(1-λ)y)≤λφ(x)+(1-λ)φ(y),则称φ为凸的;如果当x≠y时上式中的≤必为<,则称φ为严格凸的。在一些问题中,容许凸泛函数φ取值+∞,但φ扝+∞,这时称φ为真凸的。此外,还有所谓凸集S上的拟凸泛函数φ:S嶅K→R(K为线性空间),使φ(tx+(1-t)y)≤max{φx,φy},x,y∈S, t∈(0,1)。在赋范空间K中无界集S上定义的泛函数φ称为强制的,如果有函数с:(0,+∞)→R,с(t)→+∞(t→+∞)使得φ(z)≥с(‖z‖),凬z∈S。 线性泛函数是线性算子理论研究的对象之一,也是研究空间性质及结构的工具。例如,局部凸拓扑线性空间K有对偶空间K,K的元素就是定义在K上的连续线性泛函数。对K可赋予简单收敛拓扑或有界收敛拓扑。偶K、K间的关系对认识空间的性质和研究算子的性质都有基本意义。 相应于多重线性算子有多重线性泛函数。例如,设K1、K2是同一数域上的线性空间,定义在积空间K1×K2上的映射φ:K1×K2→R(或C)称为双线性泛函数,如果K2(K1)中元素固定时φ成为K1(K2)上的线性泛函数。当K1=K2=K,K1及K2中取等同的x∈K,则得φ(x,x),称为二次泛函数。对希尔伯特空间中线性算子谱理论的研究,双线性泛函数形式作为表示工具是方便的。二次泛函数在变分法中的应用更是为人熟知的。 拟赋范空间、局部凸拓扑线性空间、赋范空间等的表征主要在于分别在各空间上定义的次加性泛函数,即拟范数、半范数族、范数等。测度空间中的测度,即对应于某种集合的值也可理解为泛函数。对于给定函数的不定积分也可类似地看待。 范数 向量范数

分模线-概念

(源自:百度百科) 注塑模具是由两个半边模具合成的,注塑完成后产品需要取出来,就必须将两个半边模具分开来,在模具分开的地方注塑产品上就会有一条线,叫合模线。 进行灌注使用的模具大多有几部分拼接而成,而接缝处的位置不可能做到绝对的平滑,会有细小的缝隙,在灌注的配件产出时,该位置会有细小的边缘突起即分模线。 不同的产品模具设计并不相同,所以分模线的位置也有区别. 魔方中的分模线 在魔方制作中模具接缝不严导致细小的塑料突起; 从材料角度讨论,分模线的材料和魔方材质相同,因此本身的强度并不大,所以通过常规的使用摩擦就可以磨掉分模线,若想除去分模线,用刀刮掉即可。 处理分模线的必要性并不是很高,自然磨损就可以处理掉,所以在魔方组装的过程中,这个环节并不是绝对的。 因为分模线磨损,会掉落很多碎屑,这些碎屑如果残留在魔方结构内部,还是会对魔方产生影响的,例如在摩擦面上产生划痕、进入轴结构等,如果魔方进行了润滑处理,含有一定润滑油的时候甚至可能和润滑油混合形成油泥,反而影响魔方的使用顺滑程度。如果需要,对魔方进行一次彻底的清理,也是能够让魔方恢复清洁状态的。如果不是对魔方的内部清洁有太高的要求的话,从操作表现上并不会有太多的影响。 手板/PVC中的分模线 在模型中浇注时不可避免的产物,国仿的尤其多; 手板的分模线可通过砂纸打磨来除去,PVC的分模线可先打磨掉,再用丙烯补色,或请人代工重新喷漆。 分模线(理解): (1)产品从前后模分开地方的那条线;(产品这个位置不能出模:产品从模具里面出取出来,如果沿取出方向拿出产品时,有个地方因为与模具上某个部位产生干涉,这个地方在这个出模方向就不能出模); (2)通俗点,朔料件需要分成几个部分成型,各个部分拼在一起组成一个密闭空间,那么各个部分之间的线就是分模线。 产品这个位置不能出模,这个有几种可能: 1.可能加工不了; 2.在各部分做直线运动的轨迹上有不同方向的突起; 3.模具部件强度不足。 (3)分模线就是:动模与定模合起来后,注塑机把塑料高压射入模具,这时就会在动定模结合处的所有面产生一条线(这条线是必须有的)这条线就叫做分模线,意思就是说这条线就是动定模结合处的线。

矩阵与范数—扫盲

矩阵论主要研究的是线性空间以及在线性空间中的一些操作,主要是线性变换。当然书中主要是针对有限维的情况来讨论的,这样的话就可以用向量和矩阵来表示线性空间和线性变换,同其他的数学形式一样,矩阵是一种表达形式(notation),而这一方面可以简洁地表达出我们平时遇到的如线性方程和协方差关系的协方差矩阵等,另一方面又给进一步的研究或者问题的简化提供了一个平台。如特征值分析、稳定性分析就对应着诸如统计分布和系统稳定性等实际问题。而一系列的分解则可以方便方程的数值计算。作为矩阵论的学习,我们需要了解具体的一些计算究竟是怎么算的,但更关键的是要知道各个概念和方法的实际意义,各个概念之间的关系。 首先介绍的是线性空间,对于线性空间中的任意一个向量的表示有基(相当于度量单位)和坐标(相当于具体的尺度),基既然作为度量标准了,当然要求对每一个向量都适用,同时这个标准本身也应该尽可能的简洁,那么就得到了基定义的两点约束:1、基的组成向量线性无关;2、线性空间中的任一个向量都可以由基的线性表示。 基作为一种“计量标准”,当然可能会存在多种形式,只要满足上面的两点条件,因而就有必要解决不同的度量标准之间的转换关系,从而得到过渡矩阵的概念,同时可以使用这种转换关系(过渡矩阵)去完成度量量(坐标)之间的转换。 在完成了线性空间这一对象的认识和表达之后,下面需要研究对象和对象之间的关系。这里主要是线性变换,线性变换针对于实际对象主要完成类似于旋转和尺度变换方面的操作,而这种操作也牵涉到表达的问题。为了保持与空间的一致性,我们也同样是在特定的基下来表示,从而线性变换就具体化为一个变换矩阵,并且,在不同的基下对应的变换矩阵当然也不相同,这里的不同的变换矩阵的关系就是相似的概念。 到此,我们完成了空间中向量的表示和线性变换的矩阵表达。这里涉及了基、坐标、过渡矩阵、变换矩阵、相似矩阵这几个重要的概念。上面算是内涵上的认识,下面我们需要知道线性空间里究竟有些什么东西,它是如何组成的,各个组

矩阵论范数理论

第二章 范数理论 在第一章我们曾利用内积定义了向量的长度,他是几何向量长度概念的一种推广。虽然当n>3时对定义的向量长度无法作出具体的几何解释,但这样规定的长度具有几何向量长度的基本性质,即非负性,齐次性和三角不等式。本章我们采用公理化的方法,八项量长度的概念推广到更一般的情形,主要讨论向量范数、矩阵范数及其有关的应用。 §2.1 向量范数 定义 2.1 若对任意n C x ∈都有一个实数x 与之对应,且满 足: (1) 非负性:当x 0 x 0 x 0x 0 ? ==时,;当,; (2) 齐次性:对任何C x x l l l ?,; (3) 三角不等式:对任意n x,y C ? , 都有x y ,x y +?则称x 为n C 上的向量x 的范数,简称向量范数。 定义中并未给出向量范数的计算方法,只是规定了向量范数应满足的三条公理,称之为向量范数三公理。从范数定义可得范数的下列基本性质。 定理2.1 对任意,n C y x,∈有 (1)x -=x ; (2) x .y x y -? 只证(2)。根据三角不等式,有

x x y y x y y =-+?+ y y x x y x x =-+?+ 综合二式即得 x y x y -? 证毕 例 2.1 设12n ().T n x C x x x = ,, 规定 2x = 第一章已表明 2 x 是向量x 的一种范数,并称之为向量2-范数,该范数具 有如下重要的性质,对任意n x C ? 和任意 n 阶酉矩阵U ,有 22Ux .x = 称之为向量 2-范数的 酉不变性。 例2.2 设12n x ().T n C x x x = ,,规定 11 x n k k x == ? 则1x 是向量 x 的一种范数,称为向量1-范数。 证 当 1 11 x 0x 0 x 0x 0x 0.n k k x =?>==? 时,显然;当时,的每一分量都是,故 对任意λ C , ? 有 n 111 1 x n k k k k x l l x l x l === ==邋 又对任意12y (,,).T n n C h h h = 有

关于范数的理解或定义

I 、向量的范数 向量x ∈R n 的范数f(x )是定义在R n 空间上取值为非负实数且满足下列性质的函数: 1ο 对于所有的x ≠ 0,x ∈R n 有f(x )>0; (非负性) 2ο 对于所有的α∈R 有f(αx )=αf(x ); (正齐性) 3ο 对于所有的x,y ∈R n 有f(x+y )≤f(x )+f(y ). (三角不等式) 一、 一般情况下,f(x )的具体模式如下: p x = p n i p i x 11 )( ∑=,p 1≥ 也称它为p-范数。 下证p-范数满足上述的三个性质: 1、对于所有的x ∈R n ,x ≠ 0,p n i p i x 11 )(∑ =显然是大于0的,故性质1ο成立。 2、 由p x α = p n i p i x 11 )( ∑=α = αp n i p i x 11 )(∑ = = αp x 知性质2ο成立。 3、欲验证性质3ο ,我们的借助下列不等式: 设p>1,q>1,且p 1 + q 1 = 1,则对所有的0,≥βα有 αββα≥+ q p q p 证: 考虑函数p t p t t - =1)(?,因为)1(1)(11' -= -p t p t ?,由()t '?=0 t=1,又因为01 )1(' '<- =pq ?,所以当t = 1的时候)(t ?取最大值,则有:

p p t t p 111-≤-, 令t = q p β α,代入可得: q p p q p p q p 1111 =-=-??? ? ??βαβα, 化简之后即得: αββα≥+ q p q p 证毕! 又令∑=) (1i p x x p i α,∑=) (1i q y y q i β,代入上不等式可得: ∑∑+ ) ()(i q i i p i y y x x q q p p ∑∑≥ ) ()(11y x y x i q i p q p i i ,两边同时对i 求和,并利用 关系式p 1 + q 1 = 1可知: ∑∑≥+ = ∑∑∑∑∑) ()(11) ()(1y x y x y y x x i q i p i q i i p i q p i i q q p p 从而有: ∑∑≤∑) ()(11y x y x i q i p q p i i 另一方面,又有: ∑+∑++=-y x y x y x i i p p i i i i 1 )(1 y x y x i i p i i + ≤∑+- y y x x y x i p i p i i i i ∑+∑+--+=1 1 ()()()()()() ∑ ∑ -+∑ ∑ -≤++y y x x y x i p i i q p i p i i q p p q p q 111111 () ()()() ???? ??? ?∑ ∑ -=+∑+y x y x i p i p p i i q p p q 1111

模电中的概念

模电基本概念 1、共模信号:两个大小相等、极性相同的一对信号称为共模信号。差动放大电 路输入共模信号(u il =u i2 )时,称为共模输入。 2、差模信号:两个大小相等、极性相反的一对信号称为差模信号。差动放大电路输入差模信号(u il=-u i2)时,称为差模输入。 对上面两个概念的图解: 分析在理想状态时候共模信号输出应该为零,而差模输出是正常输出。 3、低频电压放大器:低频电压放大器是指工作频率在 20 赫~ 20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。 4、偏置电路:晶体管构成的放大器要做到不失真地将信号电压放大,就必须保证晶体管的发射结正偏、集电结反偏。即应该设置它的工作点。所谓工作点就是通过外部电路的设置使晶体管的基极、发射极和集电极处于所要求的电位(可根据计算获得)。这些外部电路就称为偏置电路。 5、共发射极放大电路的特点:电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。

注:a图为交直流结合电路、b为直流静态工作点电路 6、分压式偏置共发射极放大电路:基极电压是由 RB1 和 RB2 分压取得的,所以称为分压偏置。 图中可知道:CE 称交流旁路电容对交流是短路的;RE 则有直流负反馈作用图中基极真正的输入电压是 RB2 上电压和 RE 上电压的差值,所以是负反馈。由于采取了上面两个措施,使电路工作稳定性能提高,是应用最广的放大电路。 7、射极输出器的特点:电压放大倍数小于 1 而接近 1 ,输出电压和输入电压同相,输入阻抗高输出阻抗低,失真小,频带宽,工作稳定。它经常被用作放大器的输入级、输出级或作阻抗匹配之用。 8、耦合的定义:一个放大器通常有好几级,级与级之间的联系就称为耦合。 9、零点漂移:零漂也可以是输入电压为零,输出电压偏离零值的变化。 10、耦合分类: ①RC 耦合 ② 变压器耦合 ③ 直接耦合 ④光电耦合器 11、各类耦合的优缺点: ★直接耦合 直接耦合:将前一级的输出端直接连接到后一级的输入端。 直接耦合方式的缺点:采用直接耦合方式使各级之间的直流通路相连,因而静态工作点相互影响。有零点漂移现象。 直接耦合方式的优点:具有良好的低频特性,可以放大变化缓慢的信号;由于电路中没有大容量电容,易于将全部电路集成在一片硅片上,构成集成电路。 ★阻容耦合方式

矩阵范数的意义

矩阵范数的意义 几何方法是一种数学思维方法。函数和几何是数学的两条主要主线。我们学习各种函数及其性质,比如微积分、复变函数、实变函数、泛函等。而几何是函数形象表达,函数是几何的抽象描述,几何研究“形”,函数研究“数”,它们交织在一起推动数学向更深更抽象的方向发展。 函数图象联系了函数和几何,表达两个数之间的变化关系,映射推广了函数的概念,使得自变量不再仅仅局限于一个数,也不再局限于一维,任何事物都可以拿来作映射,维数可以是任意维,传统的函数图象已无法直观地表达高维对象之间的映射关系,这就要求我们在观念中,把三维的几何空间推广到抽象的n维空间。 由于映射的对象可以是任何事物,为了便于研究映射的性质以及数学表达,我们首先需要对映射的对象进行“量化”,取定一组“基”,确定事物在这组基下的坐标,事物同构于我们所熟悉的抽象几何空间中的点,事物的映射可以理解为从一个空间中的点到另一个空间的点的映射,而映射本身也是事物,自然也可以抽象为映射空间中的一个点,这就是泛函中需要研究的对象——函数。 从一个线性空间到另一个线性空间的线性映射,可以用一个矩阵来表达,矩阵被看线性作映射,线性映射的性质可以通过研究矩阵的性质来获得,比如矩阵的秩反映了线性映射值域空间的维数,可逆矩阵反映了线性映射的可逆,而矩阵范数反映了线性映射把一个向量映射为另一个向量,向量的“长度”缩放的比例。 并不是只有线性空间才有范数的定义,任意空间都可以引入范数,这样的空间称为赋范空间,使得这个空间可以被度量,如希尔伯特空间。 范数是把一个事物映射到非负实数,且满足非负性、齐次性、三角不等式,符合以上定义的都可以称之为范数,所以,范数的具体形式有很多种(由内积定义可以导出范数,范数还也可以有其他定义,或其他方式导出),要理解矩阵的算子范数,首先要理解向量范数的内涵。矩阵的算子范数,是由向量范数导出的,由形式可以知: 或方阵

范数的物理意义

范数的物理意义 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

范数的物理意义在介绍主题之前,先来谈一个非常重要的数学思维方法:几何方法。在大学之前,我们学习过一次函数、二次函数、三角函数、指数函数、对数函数等,方程则是求函数的零点;到了大学,我们学微积分、复变函数、实变函数、泛函等。我们一直都在学习和研究各种函数及其性质,函数是数学一条重要线索,另一条重要线索——几何,在函数的研究中发挥着不可替代的作用,几何是函数形象表达,函数是几何抽象描述,几何研究“形”,函数研究“数”,它们交织在一起推动数学向更深更抽象的方向发展。 函数图象联系了函数和几何,表达两个数之间的变化关系,映射推广了函数的概念,使得自变量不再仅仅局限于一个数,也不再局限于一维,任何事物都可以拿来作映射,维数可以是任意维,传统的函数图象已无法直观地表达高维对象之间的映射关系,这就要求我们在观念中,把三维的几何空间推广到抽象的n维空间。 由于映射的对象可以是任何事物,为了便于研究映射的性质以及数学表达,我们首先需要对映射的对象进行“量化”,取定一组“基”,确定事物在这组基下的坐标,事物同构于我们所熟悉的抽象几何空间中的点,事物的映射可以理解为从一个空间中的点到另一个空间的点的映射,而映射本身也是事物,自然也可以抽象为映射空间中的一个点,这就是泛函中需要研究的对象——函数。 从一个线性空间到另一个线性空间的线性映射,可以用一个矩阵来表达,矩阵被看线性作映射,线性映射的性质可以通过研究矩阵的性质来获得,比如矩阵的秩反映了线性映射值域空间的维数,可逆矩阵反映了线性映射的可逆,而矩阵的范数又反映

范数

向量范数 在一维空间中,实轴上任意两点距离用两点差的绝对值表示。绝对值是一种度量形式的定义。 范数是对函数、向量和矩阵定义的一种度量形式。任何对象的范数值都是一个非负实数。使用范数可以测量两个函数、向量或矩阵之间的距离。 向量范数是度量向量长度的一种定义形式。范数有多种定义形式,只要满足下面的三个条件即可定义为一个范数。同一向量,采用不同的范数定义,可得到不同的范数值。 定义3.1 对任一向量,按照一个规则确定一个实数与它对应,记该实数记为,若满足下面三个性质: 若X是数域K上的线性空间,泛函║·║: X->R 满足: 1. 正定性:║x║≥0,且║x║=0 <=> x=0; 2. 正齐次性:║cx║=│c│║x║; 3. 次可加性(三角不等式):║x+y║≤║x║+║y║ 。 那么║·║称为X上的一个范数。 常用范数 这里以C^n空间为例,R^n空间类似。 最常用的范数就是p-范数。若x=[x1,x2,...,xn]^T,那么 ║x║p=(|x1|^p+|x2|^p+...+|xn|^p)^{1/p} 可以验证p-范数确实满足范数的定义。其中三角不等式的证明不是平凡的,这个结论通常称为闵可夫斯基(Minkowski)不等式。 当p取1,2,∞的时候分别是以下几种最简单的情形: 1-范数:║x║1=│x1│+│x2│+…+│xn│ 2-范数:║x║2=(│x1│^2+│x2│^2+…+│xn│^2)^1/2 ∞-范数:║x║∞=max(│x1│,│x2│,…,│xn│) 其中2-范数就是通常意义下的距离。 定理https://www.wendangku.net/doc/ae10402968.html,中任意两种向量范数║x║α,║x║β是等价的,即有m,M>0使m║x║α≤║x║β≤M║x║可根据范数的连续性来证明它. 由定理1可得 定理2.设{x(k)}是Cn中向量序列,x是Cn中向量,则║x(k)-x║→0(k→∞) iff xj(k)-xj→0,j=1,2,…,n(k→∞) 其中xj(k)是x(k)的第j个分量,xj是x的第j个分量. 此时称{x(k)}收敛于x,记作x(k)→x(k→∞),或 . 矩阵范数 一般来讲矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性:║XY║≤║X║║Y║。所以矩阵范数通常也称为相容范数。 如果║·║α是相容范数,且任何满足║·║β≤║·║α的范数║·║β都不是相容范数,那么║·║α称为极小范数。 对于n阶实方阵(或复方阵)全体上的任何一个范数║·║,总存在唯一的实数k>0,使得k║·║是极小范数。 注:如果不考虑相容性,那么矩阵范数和向量范数就没有区别,因为mxn矩阵全体和mn维向量空间同构。 引入相容性主要是为了保持矩阵作为线性算子的特征,和算子范数的相容性一致,并且可以得到Mincowski定理以外的信息。

相关文档