文档库 最新最全的文档下载
当前位置:文档库 › 数学建模案例分析线性代数建模案例例

数学建模案例分析线性代数建模案例例

数学建模案例分析线性代数建模案例例
数学建模案例分析线性代数建模案例例

线性代数建模案例汇编

目录

案例一. 交通网络流量分析问题

城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。

【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).

图3 某城市单行线车流量

(1) 建立确定每条道路流量的线性方程组.

(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计?

(3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.

(4) 若x 4 = 200, 则单行线应该如何改动才合理?

【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.

【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足

500 = x 1 + x 2 ①

400 + x 1 = x 4 + 300 ②

x 2 + x 3 = 100 + 200 ③

x 4 = x 3 + 300 ④

【模型求解】根据上述等式可得如下线性方程组

12142334500100300300x x x x x x x x +=??-=-??+=??-+=?

其增广矩阵

(A , b ) =1100500100110001103000011300?? ?-- ? ? ?-??????→初等行变换10011000101600001130000000--?? ? ?-- ? ??

?

由此可得

142434

100600300x x x x x x -=-??+=??-=-?

14243

4100600300x x x x x x =-??=-+??=-?.

为了唯一确定未知流量, 只要增添x 4统计的值即可.

当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.

若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = ?100 < 0. 这表明单行线“③?④”应该改为“③?④”才合理.

【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.

(2) 由142434100600300x x x x x x =-??=-+??=-?可得213141500200100x x x x x x =-+??=-??=+?, 123242500300600x x x x x x =-+??=-+??=-+?, 13234

3200300300x x x x x x =+??=-+??=+?, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.

Matlab 实验题

某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开

图4 某城市单行线车流量

(1)建立确定每条道路流量的线性方程组.

(2)分析哪些流量数据是多余的.

(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.

案例二. 配方问题

在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模.

【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?

【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克).

【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组

24,327,3,2 5.

x y x y x y x y +=??+=?+=?+=?

【模型求解】上述线性方程组的增广矩阵

(A , b ) =214327113125?? ? ? ? ???????→初等行变换101012000000?? ? ? ? ???

, 可见{

1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成.

【模型分析】(1) 若令?1 = (2, 3, 1, 1)T , ?2 = (1, 2, 1, 1)T , ? = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“?能否由?1, ?2线性表示”.

(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.

(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表

因而有如下线性方程组

214(),7619327(),7619113(),7619125().7

619x y x y x y x y x y x y x y x y ?+=+???+=+???+=+???+=+?? (?) 【模型检验】把x = 7, y = 12代入上述方程组(?), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.

Matlab 实验题

蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.

问怎样安排饮食和运动才能实现每日的营养需求?

案例三. 投入产出问题

在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.

【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗元的电; 为了把这1元钱的煤运出去需花费元的运费; 每生产1元的电需元的煤作燃料; 为了运行电厂的辅助设备需消耗本身元的电, 还需要花费元的运费; 作为铁路局, 每提供1元运费的运输需消耗元的煤, 辅助设备要消耗元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求?

【模型假设】假设不考虑价格变动等其他因素.

【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表

表3 消耗与产出情况

根据需求, 应该有 (0.60.5)60000(0.30.10.1)100000(0.20.1)0

x y z y x y z z x y -+=??-++=??-+=?,

0.60.5600000.30.90.11000000.20.10

x y z x y z x y z --=??-+-=??--+=?

【模型求解】在Matlab 命令窗口输入以下命令

>> A = [1,,;,,;,,1]; b = [60000;100000;0];

>> x = A\b

Matlab 执行后得

x =

+005 *

可见煤矿要生产?105元的煤, 电厂要生产?105元的电恰好满足需求.

【模型分析】令x =x y z ?? ? ???, A =00.60.50.30.10.10.20.10??

? ???

, b =600001000000?? ? ???, 其中x 称为总产值列向量, A 称为消耗系数矩阵, b 称为最终产品向量, 则

Ax =00.60.50.30.10.10.20.10?? ? ???x y z ?? ? ???=0.60.50.30.10.10.20.1y z x y z x y +??

?++ ?+?

? 根据需求, 应该有x ? Ax = b , 即(E ? A )x = b . 故x = (E ? A )?1b .

Matlab 实验题

某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗元乙企业的产品和元丙企业的产品. 乙企业每生产1元的产品要消耗元甲企业的产品, 元自产的产品和元丙企业的产品. 丙企业每生产1元的产品要消耗元甲企业的产品和元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.

(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.

(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?

案例四. 平板的稳态温度分布问题

在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.

图8 一块平板的温度分布图

【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.

图9 一块平板的温度分布图

【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.

【模型建立】根据已知条件和上述假设, 有如下线性方程组

1232143144231(90100)

41(8060)41(8060)41(5050)4

T T T T T T T T T T T T ?=+++???=+++???=+++??=+++?? 【模型求解】将上述线性方程组整理得

T 1 T 2 T 3

T 4 100 80

90 80 60 50 60

50

1231241342344190414041404100T T T T T T T T T T T T --=??-+-=??-+-=?--+=??

. 在Matlab 命令窗口输入以下命令

>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100]; >> x = A\b; x ’

Matlab 执行后得

ans =

可见T 1 = , T 2 = , T 3 = , T 4 = .

参考文献

陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 15-16.

Matlab 实验题

假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.

图10 一块平板的温度分布图

(1) 建立可以确定平板内节点温度的线性方程组.

(2) 用Matlab 软件求解该线性方程组.

(3) 用Matlab 中的函数mesh 绘制三维平板温度分布图.

案例五. CT 图像的代数重建问题

X 射线透视可以得到3维对象在2维平面上的投影, CT 则通过不同角度的X 射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法

.

图11双层螺旋CT 图12 CT 图像 这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像. 一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3?3图像为例来说明. 3?3图像 各点的灰度值 水平方向上 的叠加值

x 1 = 1 x 2 = 0 x 3 = 0 x 1 + x 2 + x 3 = 1

x 4 = 0 x 5 = x 6 = x 4 + x 5 + x 6 = 1

x 7 = x 8 = 0 x 9 = 1 x 7 + x 8 + x 9 =

竖直方向上的叠加值

x 1 + x 4 + x 7 = x 2 + x 5 + x 8 = x 3 + x 6 + x 9 = i 色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)

123456369111

x x x x x x x x x ++=??++=???++=??L 显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程

x 1 = 1,

x 2 + x 4 = 0,

x 3 + x 5 + x 7 = 1,

x 6 + x 8 = ,

x 9 = 1,

和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组.

【模型准备】设3?3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5, x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为, , , 沿水平方向的叠加值依次为1, 1, , 沿右上方到左下方的叠加值依次为1, 0, 1, , 1. 确定x 1, x 2, …, x 9的值.

【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组

1234569111

x x x x x x x ++=??++=???=??L 【模型求解】在Matlab 命令窗口输入以下命令

>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;

1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1;

1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0;

0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];

>> b = [1;1;;;;;1;0;1;;1];

>> x = A\b; x ’

Matlab 执行后得

Warning: Rank deficient, rank = 8 tol = .

ans =

可见上述方程组的解不唯一. 其中的一个特解为

x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = , x 6 = , x 7 = , x 8 = 0, x 9 = 1.

【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的. 这时可以将超定方程组的近似解作为重建的图像数据.

Matlab 实验题

给定一个3?3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为, , , , ; 沿右上方到左下方的灰度叠加值依次为, , , , .

(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解.

(2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.

案例六. 平衡结构的梁受力计算

在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.

图14 埃菲尔铁塔局部

下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况.

【模型准备】在图15所示的双杆系统中, 已知杆1重G1 = 200牛顿, 长L1 = 2米, 与水平方向的夹角为?1 = ?/6, 杆2重G2 = 100牛顿, 长L2 = 2米, 与水平方向的夹角为?2 = ?/4. 三个铰接点A, B, C所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.

图15双杆系统

【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.

【模型建立】对于杆1:

水平方向受到的合力为零, 故N1 = N3,

竖直方向受到的合力为零, 故N2 + N4 = G1,

以点A为支点的合力矩为零, 故(L1sin?1)N3 + (L1cos?1)N4 = (1

2

L1cos?1)G1.

图16 两杆受力情况对于杆2类似地有

N5 = N7, N6 = N8 + G2, (L2sin?2)N7 = (L2cos?2)N8 + (1

2

L2cos?2)G2.

A

C

杆1杆2

C

N1

N2

N3

N

5

N6 G1

G2

A B

杆1杆2

?/6?/4

此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:

132414800

N N N N G N N -=??+=????-=?L

【模型求解】在Matlab 命令窗口输入以下命令

>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4;

>> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;

0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0;

0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2);

0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];

>> b = [0;G1;*L1*cos(theta1)*G1;0;G2;*L2*cos(theta2)*G2;0;0];

>> x = A\b; x ’

Matlab 执行后得

ans =

【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反.

参考文献

陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 157- 158. Matlab 实验题

有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45o .

(1) 列出由各铰接点处受力平衡方程构成的线性方程组.

(2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.

图17 一个平面结构的梁

案例七. 化学方程式配平问题

在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.

【模型准备】某厂废水中含KCN, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:

KCN + 2KOH + Cl 2 = KOCN + 2KCl + H 2O.

投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:

KOCN + KOH + Cl 2 === CO 2 + N 2 + KCl + H 2O.

(注: 题目摘自福建省厦门外国语学校2008-2009学年高三第三次月考化学试卷)

【模型建立】设

x 1KOCN + x 2KOH + x 3Cl 2 === x 4CO 2 + x 5N 2 + x 6KCl + x 7H 2O,

1261247141527362222x x x x x x x x x x x x x x x +=??+=+??=??=??=?=??, 即12612

47141

527360*********

x x x x x x x x x x x x x x x +-=??+--=??-=??-=??-=?-=?? 【模型求解】在Matlab 命令窗口输入以下命令

>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;

1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];

>> x = null(A,’r ’); format rat, x ’

Matlab 执行后得

ans =

1 2 3/2 1 1/2 3 1

可见上述齐次线性方程组的通解为

x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .

取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下

2KOCN + 4KOH + 3Cl 2 === 2CO 2 + N 2 + 6KCl + 2H 2O.

【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = ?中所含方程的个数等于化学方程式中元素的种数s , 未知数的个数就是化学方程式中的项数n .

当r(A ) = n ?1时, Ax = ?的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k 为各分量分母的最小公倍数即可. 例如本例中

1, 2, 3/2, 1, 1/2, 3, 1

分母的最小公倍数为2, 故取k = 2.

当r(A ) ? n ?2时, Ax = ?的基础解系中含有2个以上的线性无关的解向量. 这时可

以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程.

Matlab 实验题

配平下列反应式

(1) FeS + KMnO 4 + H 2SO 4 —— K 2SO 4 + MnSO 4 + Fe 2(SO 4)3 + H 2O + S ↓

(2) Al 2(SO 4)3 + Na 2CO 3 + H 2O —— Al(OH)3↓+ CO 2↑+ Na 2SO 4

案例八. 互付工资问题

互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.

【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:

(1) 每人工作10天(包括在自己家的日子),

(2) 每人的日工资一般的市价在60~80元之间,

(3) 日工资数应使每人的总收入和总支出相等.

求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.

【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表

可得2610451044310x y z x x y z y x y z z

++=??++=??++=?, 即8604504470x y z x y z x y z -++=??-+=??+-=? 【模型求解】在Matlab 命令窗口输入以下命令

>> A = [-8,1,6;4,-5,1;4,4,-7];

>> x = null(A,’r ’); format rat, x ’

Matlab 执行后得

ans =

31/36 8/9 1

可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知

60 ?3631k <98k < k ? 80, 即 31

2160? k ? 80. 也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中31

2160? k ? 80.

为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.

【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下

6845447y z x x z y x y z +=??+=??+=?, 即8604504470

x y z x y z x y z -++=??-+=??+-=?

可见这样得到的方程组与前面得到的方程组是一样的. Matlab 实验题

甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, , ; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: , 2, . 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.

问他们应该怎样分配这500元工资才合理?

案例九. 平衡价格问题

为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.

【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:

等的平衡价格.

【模型假设】假设不考虑这个系统与外界的联系.

【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1, x 2, x 3表示, 则

123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+??=++??=++?, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=??-+-=??--+=?

. 【模型求解】在Matlab 命令窗口输入以下命令

>> A = [1,,;,,;,,];

>> x = null(A,’r ’); format short, x ’

Matlab 执行后得

ans =

可见上述齐次线性方程组的通解为

x = k , , 1)T .

这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别亿元, 亿元, 1亿元, 那么每个行业的投入与产出都相等.

【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.

Matlab 实验题

假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:

等的平衡价格.

案例十. 电路设计问题

电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.

图22 USB 扩展板 【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11v i ?? ???

记录输入电压和输入电流(电压v 以伏特为单位, 电流i 以安培为单位), 用22v i ?? ???

记录输出电压和输入电流. 若22v i ?? ???= A 11v i ?? ???

, 则称矩阵A 为转移矩阵.

图23 具有输入和输出终端的电子电路图 图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是

1101R -?? ???和2101/1R ?? ?-??

串联电路 并联电路

图24 梯形网络 v 1 v 2 i 1

i 2 R 1 v 3

i 2 i 3 R 2 输入终端v 1 输出终端v 2

i 1

i 2 电路

设计一个梯形网络, 其转移矩阵是180.55-?? ?-??

. 【模型假设】假设导线的电阻为零.

【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中

A 2A 1 =2101/1R ?? ?-??1101R -?? ???=121211/1/R R R R -?? ?-+??

就是图22中梯形网络的转移矩阵.

于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -?? ?-+??=180.55-?? ?-?

?. 【模型求解】由121211/1/R R R R -?? ?-+??=180.55-?? ?-??可得121281/0.51/5R R R R -=-??-=-??+=?

. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.

【模型分析】若要求的转移矩阵改为180.54-?? ?-??

, 则上面的梯形网络无法实现. 因为这时对应的方程组是121281/0.51/4R R R R -=-??-=-??+=?

. 根据前两个方程依然得到R 1 = 8, R 2 = 2, 但把

R 1 = 8, R 2 = 2代入上第三个方程却不能使等式成立.

练习题

根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:

图25 简单的回路 E 1

2

案例十一. 平面图形的几何变换

随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.

图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.

【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现.

【模型假设】设平移变换为

(x , y ) ? (x +a , y +b )

旋转变换(绕原点逆时针旋转?角度)为

(x , y ) ? (x cos ? ? y sin ?, x sin ? + y cos ?)

放缩变换(沿x 轴方向放大s 倍, 沿y 轴方向放大t 倍)为

(x , y ) ? (sx , ty )

【模型求解】R 2中的每个点(x , y )可以对应于R 3中的(x , y , 1). 它在xOy 平面上方1单位的平面上. 我们称(x , y , 1)是(x , y )的齐次坐标. 在齐次坐标下, 平移变换

(x , y ) ? (x +a , y +b )

可以用齐次坐标写成

(x , y , 1) ? (x +a , y +b , 1).

于是可以用矩阵乘积1001001a b ?? ? ???1x y ?? ? ???=1x a y b +??

?+ ???

实现. 旋转变换

(x , y ) ? (x cos ? ? y sin ?, x sin ? + y cos ?)

可以用齐次坐标写成

(x , y , 1) ? (x cos ? ? y sin ?, x sin ? + y cos ?, 1).

于是可以用矩阵乘积cos sin 0sin cos 0001θθθθ-?? ? ???1x y ?? ? ???=cos sin sin cos 1x y x y θθθθ-??

?+ ???

实现. 放缩变换

(x , y ) ? (sx , ty )

可以用齐次坐标写成

(x , y , 1) ? (sx , ty , 1).

于是可以用矩阵乘积0000001s t ?? ? ???1x y ?? ? ???=1sx ty ??

? ???

实现. 【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1?? ???

A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现. 参考文献

David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译, 北京: 人民邮电出版社, 2009. 页码: 139-141.

Matlab 实验题

在Matlab 命令窗口输入以下命令

>>clear all , clc,

>>t = [1,3,5,11,13,15]*pi/8;

>>x = sin(t); y=cos(t);

>>fill(x,y,'r');

>>grid on ;

>>axis([, , -2, 2])

运行后得图25.

图26 Matlab 绘制的图形

(1) 写出该图形每个顶点的齐次坐标; (2) 编写Matlab 程序, 先将上面图形放大倍; 再逆时针旋转

3

; 最后进行横坐标加, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.

案例十二. 太空探测器轨道数据问题

太空航天探测器发射以后, 可能需要调整以使探测器处在精确计算的轨道里. 雷达监测到一组列向量x 1, …, x k , 它们给出了不同时刻探测器的实际位置与预定轨道之间的偏差的信息.

图28 火星探测器

数学建模案例线性代数教学研究

数学建模案例线性代数教学研究 摘要:本文通过分析线性代数课程的特点和目前教学中出现的问题,从数学建模思想入手,结合几个案例探讨了线性代数中矩阵的概念与运算、特征值和特征向量的应用等知识点。具体阐述了将数学建模思想融入线性代数教学过程中的重要性,增强了学生利用数学建模思想解决实际问题的能力。 关键词:线性代数;数学建模;教学方法 线性代数是高校理工科专业大一新生的一门重要的公共基础课程,它不仅是很多高年级的课程的延伸和推广,而且它在数学、物理、控制科学、工程技术等领域也具有广泛的应用,特别是当前计算机科学技术人工智能的快速发展,使得线性代数的作用和地位得到更大的提升。因此,线性代数这门课程学习效果的好坏对学生知识能力的培养和后继课程的开展至关重要。但是,目前线性代数的教学仍然存在一些问题,具体表现为:第一,线性代数的教学模式偏重于理论教学,无法激起学生的学习兴趣。线性代数的概念多,理论性强,抽象晦涩,难以理解,更加加深了学生学习线性代数的难度,降低了学生的学习兴趣。第二,学生的基础较差,课程数较少,导致学生的学习困难。学生来源于不同的地区,生源素质差异较大,使得课堂出现两极分化现象,致使线性代数的教学质量无法全面提升。第三,教学中缺乏实际的应用背景,学生无法理解线性代数作为一门重要基础课程的意义。众所周知,数学建模就是根据实际问题建立数学模型,然后运用数学知识对模型求解,最后根据计算结果来解决实际问题的过程[1]。基于此,本文将数学建模的思想融入线性代数的教学过程中,通过适当引入典型的建模案例[2,3],达到吸引学生的注意力和学习兴趣的目的,从而活跃课堂教学氛围,提高教学效果。与此同时,在上课过程中讲授数学建模案例还可以增加老师和学生之间的互动性,丰富课堂教学的内容,开阔学生的眼界,使得原本抽象、枯燥乏味的概念和定理变得生动有趣,进而激发学生学习线性代数的兴趣,提升学生学习数学的素养。 1 数学建模案例在线性代数中的应用 线性代数教学中有许多定义和定理抽象晦涩、难以理解,学生上课中往往不知所云,更不知道学习了相关知识有什么作用。如果在教学过程中我们融入

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

基于层次分析法的数学建模

基于层次分析法研究云南烟草品牌竞争力 摘要 与国外知名烟草品牌相比,国内的烟草品牌存在着品牌集中度不够,品牌多、杂、散、小;品牌定位模糊,市场占有率低;品牌形象乱,品牌美誉度低,消费者购买行为习惯化导致忠诚度差等问题,因此,本文采用层次分析法对在中国烟草行业中有着举足轻重地位的云南省烟草品牌竞争力进行了评价研究,分析云南烟草业品牌现状,提出品牌竞争力的影响因素,对提高云南烟草业的品牌竞争力、解决烟草业存在的问题提供一定的帮助。 关键词:烟草品牌云南烟草品牌竞争力层次分析法 一、问题重述 近年来,我国一直推进实施卷烟工业的整合重组、卷烟品牌的淘汰和优化。但是,由于之前的卷烟品牌众多;截止到 2009 年底我国的烟草企业有 30 家,卷烟品牌 138 个,所以目前我国烟草企业之间的竞争非常激烈,行业内有众多势均力敌的竞争对手。当今卷烟产品差异化日渐缩小,消费者购买时会更看重品牌价值和品牌文化,使烟草行业内部面临着激烈的竞争,以具有代表性的云烟为实证,分析云南烟草企业的品牌竞争力及影响品牌竞争力的主要因素,并提出提高云烟品牌竞争力的对策建议。

二、问题分析 (1)云南卷烟近年情况分析 图1为云产卷烟在全国各地区的销量情况,有颜色部分为云南卷烟销量均超过15.58万箱,在全国卷烟销售中占有很大份额。2008 年卷烟品牌为16个,比2003年的36个减少了 20个。作为全国卷烟产销量最大的省份,2009 年云南的产销量达到 3667.9 亿支。在卷烟产量增幅较小的情况下,2008 年云南烟草工业税利为 577 亿元,比2003 年的 330 亿元增加了 247 亿元。因此,分析云南卷烟品牌竞争力有助于对云南卷烟品牌做出适当的规划调整,很大程度上能够促进云南经济的发展。(数据为云南中烟系统中2015年 云产卷烟销量数据) 图1

数学建模参赛真实经验(强烈推荐)

数学建模参赛真实经验(强烈推荐) 本文档节选自: Matlab在数学建模中的应用,卓金武等编著,北航出版社,2011年4月出版 以下内容根据作者的讲座整理出来,多年数学建模实践经历证明这些经验对数学建模参赛队员非常有帮助,希望大家结合自己的实践慢慢体会总结,并祝愿大家在数学建模和Matlab世界能够找到自己的快乐和价值所在。 一、如何准备数学建模竞赛 一般,可以把参加数学建模竞赛的过程分成三个阶段:第一阶段,是个人的入门和积累阶段,这个阶段关键看个人的主观能动性;第二阶段,就是通常各学校都进行的集训阶段,通过模拟实战来提高参赛队员的水平;第三阶段是实际比赛阶段。这里讲的如何准备数学建模竞赛是针对第一阶段来讲的。 回顾作者自己的参赛过程,认为这个阶段是真正的学习阶段,就像是修炼内功一样,如果在这个阶段打下深厚的基础,对后面的两个阶段非常有利,也是个人是否能在建模竞赛中占优势的关键阶段。下面就分几个方面谈一下如何准备数学建模竞赛。 首先是要有一定的数学基础,尤其是良好的数学思维能力。并不是数学分数高就说明有很高的数学思维能力,但扎实的数学知识是数学思维的根基。对大学生来说,有高等数学、概率和线性代数就够了,当然其它数学知识知道的越多越好了,如图论、排队论、泛函等。我大一下学期开始接触数学建模,大学的数学课程只学习过高等数学。说这一点,主要想说明只要数学基础还可以,平时的数学考试都能在80分以上就可以参加数学建模竞赛了,数学方面的知识可以在以后的学习中逐渐去提高,不必刻意去补充单纯的数学理论。 真正准备数学建模竞赛应该从看数学建模书籍开始,要知道什么是数学建模,有哪些常见的数学模型和建模方法,知道一些常见的数学建模案例,这些方面都要通过看建模方面的书籍而获得。现在数学建模的书籍也比较多,图书馆和互联网上都有丰富的数学建模资料。作者认为姜启源、谢金星、叶齐孝、朱道元等老师的建模书籍都非常的棒,可以先看二三本。刚开始看数学建模书籍时,一定会有很多地方看不懂,但要知道基本思路,时间长了就知道什么问题用什么建模方法求解了。这里面需要提的一点是,运筹学与数学建模息息相关,最好再看一二本运筹学著作,仍然可以采取诸葛亮的看书策略,只观其大略就可以了,等知道需要具体用哪块知识后,再集中精力将其消化,然后应用之。 大家都知道,参加数学建模竞赛一定要有些编程功底,当然现在有Matlab这种强大的工程软件,对编程的的要求就降低了,至少入门容易多了,因为很容易用1条Matlab命令解决以前要用20行C语言才能实现的功能。因为Matlab的强大功能,Matlab在数学建模中已经有了非常广泛的应用,在很多学校,数学建模队员必须学习Matlab。当然Matlab的入门也非常容易,只要有本Matlab参考书,照猫画虎可以很快实现一些基本的数学建模功能,如数据处理、绘图、计算等。我的一个队友,当年用一天时间把一本二百多页的Matlab 教程操作完了,然后在经常运用中,慢慢地就变成了一名Matlab高手了。 对于有些编程基础的同学,最好再看一些算法方面的书籍,了解常见的数据结构和基本

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

层次分析报告法数学建模范例

2011高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话):A甲0616 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:2011 年8 月20 日

2011高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

对学生建模论文的综合评价分析 摘要 本文研究的是五篇建模论文的评价和比较问题。首先,研读分析了五篇论文,并写出评语。其次,进行综合量化评价,主要运用的方法是层次分析法和模糊综合评判。最后,依据所得权重大小对论文排序。 针对问题一,我们对论文进行了横向比较和纵向分析。依据数学建模竞赛论文评分基本原则,首先,在研读论文的基础上,对论文分块进行了横向比较,并按照优、良、中、差四个等级作出评价。其次,采取纵向分析的方法,找到论文的优点与不足,写出每篇论文的评语。最后,结合横向比较和纵向分析对论文综合评价。 针对问题二,在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的二级评判模型把所给论文的建模摘要、模型与求解、模型评价与推广、其他作为第一级因素集,把问题描述等作为第二级因素集。在用模糊综合评判方法时,确定评估数据(评判矩阵)和权重分配是两项关键性的工作,求权重分配时,我们通过往年评分标准确定数据后用层次分析法计算出二级权重和一级权重;对于评判矩阵,我们通过对五篇论文进行评阅打分(用平均分数作为每项得分),用每一项得分占五篇论文该项得分的比重(商值法),建立评价矩阵。 最终,我们通过matlab编程处理得出的综合量化比较结果是所给5篇论文由好到差依次为论文4,论文2,论文1,论文5,论文3。并在模型结束时付上了对五篇论文的评语。

线性代数在数学建模中的应用举例

线性代数在数学建模中的应用举例 1 基因间“距离”的表示 在ABO 血型的人们中,对各种群体的基因的频率进行了研究。如果我们把四种等位基因A 1,A 2,B ,O 区别开,有人报道了如下的相对频率,见表1.1。 表1.1基因的相对频率 爱斯基摩人f 1i 班图人f 2i 英国人f 3i 朝鲜人f 4i A 1 0.2914 0.1034 0.2090 0.2208 A 2 0.0000 0.0866 0.0696 0.0000 B 0.0316 0.1200 0.0612 0.2069 O 0.6770 0.6900 0.6602 0.5723 合计 1.000 1.000 1.000 1.000 问题 一个群体与另一群体的接近程度如何?换句话说,就是要一个表示基因的“距离”的合宜的量度。 解 有人提出一种利用向量代数的方法。首先,我们用单位向量来表示每一个群体。为此目的,我们取每一种频率的平方根,记ki ki f x = .由于对这四种群 体的每一种有14 1 =∑=i ki f ,所以我们得到∑==4 1 2 1i ki x .这意味着下列四个向量的每个都是单位向量.记 .44434241,34333231,24232221,141312114321???? ? ? ??????=????????????=????????? ???=????????????=x x x x a x x x x a x x x x a x x x x a

在四维空间中,这些向量的顶端都位于一个半径为1的球面上. 现在用两个向量间的夹角来表示两个对应的群体间的“距离”似乎是合理的.如果我们把a 1和a 2之间的夹角记为θ,那么由于| a 1|=| a 2|=1,再由内只公 式,得21cos a a ?=θ 而 .8307.03464.02943.03216.0,8228.01778.00000.05398.021???? ? ???????????????? ???=a a 故 9187.0cos 21=?=a a θ 得 2.23=θ°. 按同样的方式,我们可以得到表1.2. 表1.2基因间的“距离” 爱斯基摩人 班图人 英国人 朝鲜人 爱斯基摩人 0° 23.2° 16.4° 16.8° 班图人 23.2° 0° 9.8° 20.4° 英国人 16.4° 9.8° 0° 19.6° 朝鲜人 16.8° 20.4° 19.6° 0° 由表 1.2可见,最小的基因“距离”是班图人和英国人之间的“距离”,而爱斯基摩人和班图人之间的基因“距离”最大. 2 Euler 的四面体问题 问题 如何用四面体的六条棱长去表示它的体积?这个问题是由Euler (欧拉)提出的. 解 建立如图 2.1所示坐标系,设A ,B ,C 三点的坐标分别为(a 1,b 1,c 1),( a 2,b 2,c 2)和(a 3,b 3,c 3),并设四面体O-ABC 的六条棱长分别为 .,,,,,r q p n m l 由立体几何知道,该四面体的体积V 等于以向量→ → → OC OB OA ,,组成右

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

(完整版)数学建模之层次分析法

层次分析法 层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。 缺点: (1)层次分析法的主观性太强,模型的搭建,判断矩阵的输入都是决策者的主观判断,往往会因为决策者的考虑不周、顾此失彼而造成失误。 (2)层次分析法模型的内部结构太过理想化,完全分离、彼此独立的层次结构在实践中很难做到。 (5)层次分析法只能从给定的决策方案中去选择,而不能给出新的、更优的策略。 1.模型的应用 用于解决多目标的复杂问题的定性与定量相结合的决策分析。 (1)公司选拔人员, (2)旅游地点的选取, (3)产品的购买等, (4)船舶投资决策问题(下载文档), (5)煤矿安全研究, (6)城市灾害应急能力, (7)油库安全性评价, (8)交通安全评价等。 2.步骤 ①建立层次结构模型 首先明确决策目标,再将各个因素按不同的属性从上至下搭建出一个有层次的结构模型,模型如下图所示。

目标层 准则层 方案层 目标层:表示解决问题的目的,即层次分析要达到的总目标。通常只有一个总目标。 准则层:表示采取某种措施、政策、方案等实现预定总目标所涉及的中间环节。 方案层:表示将选用的解决问题的各种措施、政策、方案等。通常有几个方案可选。 注意: (1)任一元素属于且仅属于一个层次;任一元素仅受相邻的上层元素的支配,并不是任一元素与下层元素都有联系; (2)虽然对准则层中每层元素数目没有明确限制,但通常情况下每层元素数最好不要超过 9 个。这是因为,心理学研究表明,只有一组事物在 9 个以内,普通人对其属性进行判别时才较为清楚。当同一层次元素数多于 9 个时,决策者对两两重要性判断可能会出现逻辑错误的概率加大,此时可以通过增加层数,来减少同一层的元素数。 ②构造判断(成对比较)矩阵 以任意一个上一层的元素为准则,对其支配的下层各因素之间进行两两比 a重要程度的衡量用Santy的1—9较。得到判断矩阵,再求出各元素的权重。 ij 标度方法给出。即

浅谈矩阵在数学建模中的应用

浅谈矩阵在数学建模中的应用 【摘要】矩阵作为一种认识复杂事物的简捷工具已经被广泛应用在各个学科领域中,在数学建模中也有许多应用。本文就数学建模中使用矩阵的情况做一些举例、小结,最后给出一个典型的数学模型。 【关键词】数学建模;模型;矩阵 矩阵是最基本的数学概念之一,也是人们把握复杂的实际事物本质的一种简捷的思维工具。在数学建模中,矩阵的使用相当广泛,如数学规划、层次分析、马氏链模型、投入产出、数据拟合等都主要应用矩阵分析解决问题,就数学建模中涉及的矩阵就有量纲矩阵、L矩阵、成对比较矩阵、正互反矩阵、一致阵、邻接矩阵、素阵、状态转移矩阵、随机矩阵,还有网络计划分析法中的可达矩阵、模糊评价分析法中的评判矩阵、投入产出法中的消耗系数矩阵、产品流量矩阵,另外在数学建模中还使用了许多普通矩阵。 1.线性方程组与矩阵 自然科学和工程实践很多问题的解决都归纳为线性方程组的求解和矩阵运算。有些问题本身就是一个线性方程组,例如结构应力分析问题、电子传输网分析问题、投入产出分析问题和各种晶体管电路分析问题;另一方面有些数值计算方法也导致线性方程组求解,如数据拟合问题、非线性方程组和偏微分方程数值解问题等等。 例1:曲线拟合问题:已知一组(二维)数据,即平面上n个点(x1,y1)(i=1,2,…,n),寻求一个函数(曲线)y=f(x),使f(x)在某种准则下与所有数据点最为接近,即曲线拟合得最好。曲线拟合问题最常用的解法——线性最小二乘法的基本思路: 数学规划是解决这类问题的有效方法。 而线性规划是数学规划中产生较早的一个分支,如今在国防科技、经济学、现代工农业、环境工程、生物学等众多学科和领域都有十分广泛的应用,典型问题有生产计划、任务分配、投料或产品的混合、运输、库存等问题。 3.微分方程模型中的矩阵 微分方程是研究函数变化过程中变化规律的有力工具,在科技、工程、经济管理、人口、交通、生态、环境等各个领域有着广泛的应用,如在研究牛顿力学、热量在介质中的传播、抛体运动、化学中液体浓度变化、人口增长预测、种群变化、交通流量控制等过程中,作为研究对象的函数,常常要和函数自身的导数一起,用一个符合其内在规律的方程,即微分方程来加以描述。矩阵较多地用在微分方程,尤其是方程组有关的理论结果的表示上。

线性代数应用题

线性代数应用题集锦 郑波 重庆文理学院数学与统计学院 2011年10月

目录 案例一. 交通网络流量分析问题 (1) 案例二. 配方问题 (4) 案例三. 投入产出问题 (6) 案例四. 平板的稳态温度分布问题 (8) 案例五. CT图像的代数重建问题 (10) 案例六. 平衡结构的梁受力计算 (12) 案例七. 化学方程式配平问题 (15) 案例八. 互付工资问题 (17) 案例九. 平衡价格问题 (19) 案例十. 电路设计问题 (21) 案例十一. 平面图形的几何变换 (23) 案例十二. 太空探测器轨道数据问题 (25) 案例十三. 应用矩阵编制Hill密码 (26) 案例十四. 显示器色彩制式转换问题 (28) 案例十五. 人员流动问题 (30) 案例十六. 金融公司支付基金的流动 (32) 案例十七. 选举问题 (34) 案例十八. 简单的种群增长问题 (35) 案例十九. 一阶常系数线性齐次微分方程组的求解 (37) 案例二十. 最值问题 (39) 附录数学实验报告模板 (40)

这里收集了二十个容易理解的案例. 和各类数学建模竞赛的题目相比, 这些案例确实显得过于简单. 但如果学生能通过这些案例加深对线性代数基本概念、理论和方法的理解, 培养数学建模的意识, 那么我们初步的目的也就达到了. 案例一. 交通网络流量分析问题 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。 图1 某地交通实况 图2 某城市单行线示意图 【模型准备】某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).

层次分析数学建模案例

基于层次分析法的护岸框架最优方案选择 【摘要】长期以来,四面六边透水框架在河道整治等工程中,因其取材方便、自身稳定性、透水性、阻水性好、适合地形变化等特性优点而被广泛的应用。但是,在抛投和使用过程中,存在被水流冲击而翻滚移位、结构强度的不足、难以合理互相钩连的问题,使框架群不能达到理想的堆砌效果。本文主要探讨如何合理设计改进现有护岸框架,以最大程度减少框架群被水流冲击翻滚移位的情况,增加框架群在使用过程中互相钩连程度和结构强度,达到减速促淤效 群间易钩连程度、生产成本及易生产、施工简易度六个因素指标为准则层,选取原有护岸框架和本文设计的三个框架模型作为方案层,运用Matlab软件计算比较,最后得出结论为:模型二(六面九边带触脚框架模型)为最优护岸框架模型。 【关键词】护岸框架层次分析法立体图形触脚设计 Matlab 一、问题重述 在江河中,堤岸、江心洲的迎水区域被水流长期冲刷侵蚀。在河道整治工程中,需要在受侵蚀严重的部位设置一些人工设施,以减弱水流的冲刷,促进

该处泥沙的淤积,以保护河岸形态的稳定。 现在常用的设施包括四面六边透水框架等。这是一种由钢筋混泥土框杆相互焊接而成的正四面体结构,常见的尺寸为边长约1m,框杆截面约0.1×0.1m,将一定数量的框架投入水中,在水中形成框杆群,可以使水流消能减速,达到减弱冲击,防冲促淤的效果。 对四面六边透水框架在抛投时和在使用过程中,可能被水流冲击而翻滚移位,使框架群不能达到理想的堆砌效果,对功能有不利影响。为了使框架在水中互相钩连,需要设计新的形状。但已有的多数设计方案都存在问题,主要集中在两个方面:结构强度不足,以及虽然原则上能够互相钩连,但依然不清楚最终堆砌而成的形状是否合理。请你建立合理的数学模型,设计一个良好的框 发挥四面六边透水框架群的优势,并尽量弥补四面六边透水框架群在结构强度、易钩连程度、翻滚移位程度上的不足,并综合考虑设计后的框架结构在架空程度、经济生产成本、施工的难易程度等指标,通过机理分析,确定出参数关系,从而设计出四面六边带触脚框架模型(模型一)、六面九边带触脚框架模型(模型二)和双四面六边透水框架群(模型三)然后,我们利用Matlab软件[2],建立框架群层次分析模型[3](模型四)通过建立目标层、决策层和方案层,可以选取施工时架空率接近4-6的程度、结构强度、易翻滚程度、易钩连程度、生产成本、施工简易度六个指标对模型一、模型二、模型三所设计的改价护岸框架和四面六边透水框架群原型进行综合分析评价,以确立出最优的新型护岸框架方案。 三、模型假设 1. 护岸框架焊接牢固。

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

[实用参考]高中常见数学模型案例.doc

高中常见数学模型案例 中华人民共和国教育部20KK 年4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。”教材中常见模型有如下几种: 一、函数模型 用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。 1、正比例、反比例函数问题 例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数P 与按新价让利总额P 之间的函数关系是___________。 分析:欲求货物数P 与按新价让利总额P 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。 若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有25.0)2.01()25.01()2.01(?-=---b a b 化简得a b 4 5=,所以x a bx y ??==2.0452.0,即+∈=N x x a y ,4 2、一次函数问题 例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路P (km )表示为时间t (h )的函数,并画出函数的图像。 分析:根据路程=速度×时间,可得出路程P 和时间t 得函数关系式P (t );同样,可列出v(t)的关系式。要注意v(t)是一个矢量,从B 地返回时速度为负值,重点应注意如何画这两个函数的图像,要知道这两个函数所反映的变化关系是不一样的。 解:汽车离开A 地的距离Pkm 与时间th 之间的关系式是:?? ???∈--∈∈=]5.6,5.3(),5.3(50150]5.3,5.2(,150]5.2,0[,60t t t t t x ,图略。 速度vkm/h 与时间th 的函数关系式是:?? ???∈-∈∈=)5.6,5.3[,50)5.3,5.2[,0)5.2,0[,60t t t v ,图略。 3、二次函数问题 例3:有L 米长的钢材,要做成如图所示的窗架,上半部分为半圆,下半部分为六个全等小矩形组成的矩形,试问小矩形的长、宽比为多少时,窗所通过的光线最多,并具体标出窗框面积的最大值。 解:设小矩形长为P ,宽为P ,则由图形条件可得:l y x x =++911π ∴x l y )11(9π+-= 要使窗所通过的光线最多,即要窗框面积最大,则: )44(32)442(644])11([322622 222 2ππππππ+++-+-=+-+=+=l l x x lx x xy x s

层次分析法数学建模范例

对学生建模论文的综合评价分析 摘要 本文研究的是五篇建模论文的评价和比较问题。首先,研读分析了五篇论文,并写出评语。其次,进行综合量化评价,主要运用的方法是层次分析法和模糊综合评判。最后,依据所得权重大小对论文排序。 针对问题一,我们对论文进行了横向比较和纵向分析。依据数学建模竞赛论文评分基本原则,首先,在研读论文的基础上,对论文分块进行了横向比较,并按照优、良、中、差四个等级作出评价。其次,采取纵向分析的方法,找到论文的优点与不足,写出每篇论文的评语。最后,结合横向比较和纵向分析对论文综合评价。 针对问题二,在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的二级评判模型把所给论文的建模摘要、模型与求解、模型评价与推广、其他作为第一级因素集,把问题描述等作为第二级因素集。在用模糊综合评判方法时,确定评估数据(评判矩阵)和权重分配是两项关键性的工作,求权重分配时,我们通过往年评分标准确定数据后用层次分析法计算出二级权重和一级权重;对于评判矩阵,我们通过对五篇论文进行评阅打分(用平均分数作为每项得分),用每一项得分占五篇论文该项得分的比重(商值法),建立评价矩阵。 最终,我们通过matlab编程处理得出的综合量化比较结果是所给5篇论文由好到差依次为论文4,论文2,论文1,论文5,论文3。并在模型结束时付上了对五篇论文的评语。 关键词:层次分析法;模糊综合评判;统计分析:matlab编程;论文评价 一、问题重述 数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一。 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致可见下图。

数学建模思想在线性代数教学中的应用

数学建模思想在线性代数教学中的应用 作者:刘逸轩 来源:《教育周报·教育论坛》2020年第19期 摘要:线性代数是现代高等院校理工科与经管类学科的专业基础课程,也是一门有着极强逻辑性与实际应用价值的重要学科。它对学生的抽象思维与逻辑思维能力提出了一定的要求。数学建模思想是数学思想当中的一种,它能帮助学生更加迅速地梳理线性代数知识点,同时完成对相关概念的高效吸收。如何将数学建模思想融入到线性代数的教学工作当中,逐渐成为现代高校线性代数教学工作的核心教研课题。 关键词:数学建模思想;线性代数;教学探究 引言 现代高校的线性代数教学内容大多以矩阵运算及向量组线性相关性的研究为主,教师在实际的教学过程中,往往更加重视学生对数学概念的理论认知,却忽视了学生自身的个性化理解。这在很大程度上降低了线性代数课程对学生未来发展的实际帮助,也让高校线性代数课程的实际价值变得较为片面。数学建模思想本身作为一种思维能力,能够最大程度上引导学生完成知识于现实生活中的应用。想要发挥数学建模思想的全部作用,首先就要求教师能够清晰地认识到数学建模思想在线性代数课程中的具体价值。 1.将数学建模思想应用到线性代数教学中的重要价值 1.1有效提升学生的学习动力 线性代数的教学任务本身就包含了对学生个人技能的有效培养,这也是高校线性代数基本素养的主要内容之一。而传统的线性代数课程更加注重学生的理论认知,教师经常会采取灌输式教学法搭配题海战术的方式培养学生的线性代数计算能力。这种教学方式不仅无法吸引学生的注意力,还很容易让学生产生厌烦和抵触心理。数学建模思想的应用,能够使原本枯燥的数学形象变得更加生动立体,从而使学生的学习动力得到显著的提升。 1.2充分增强课程的应用价值 线性代数是一门十分注重实践性与应用型的课程,将数学建模思想应用到线性代数的教学工作当中,能够最大程度地启发学生利用数学思想来解决未来生活及工作中常见的数学问题。另外,数学建模思想在教学过程中的使用,也能帮助学生另辟蹊径地处理复杂的数学概念。这不仅可以有效提升学生的学习效率,也能使教师的教学工作事半功倍。

数学建模之层次分析法

层次分析法 层次分析法就是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。 缺点: (1)层次分析法的主观性太强,模型的搭建,判断矩阵的输入都就是决策者的主观判断,往往会因为决策者的考虑不周、顾此失彼而造成失误。 (2)层次分析法模型的内部结构太过理想化,完全分离、彼此独立的层次结构在实践中很难做到。 (5)层次分析法只能从给定的决策方案中去选择,而不能给出新的、更优的策略。 1、模型的应用 用于解决多目标的复杂问题的定性与定量相结合的决策分析。 (1)公司选拔人员, (2)旅游地点的选取, (3)产品的购买等, (4)船舶投资决策问题(下载文档), (5)煤矿安全研究, (6)城市灾害应急能力, (7)油库安全性评价, (8)交通安全评价等。 2、步骤 ①建立层次结构模型 首先明确决策目标,再将各个因素按不同的属性从上至下搭建出一个有层次的结构模型,模型如下图所示。

准则层 目标层 方案层 目标层:表示解决问题的目的,即层次分析要达到的总目标。通常只有一个总目标。 准则层:表示采取某种措施、政策、方案等实现预定总目标所涉及的中间环节。 方案层:表示将选用的解决问题的各种措施、政策、方案等。通常有几个方案可选。 注意: (1)任一元素属于且仅属于一个层次;任一元素仅受相邻的上层元素的支配,并不就是任一元素与下层元素都有联系; (2)虽然对准则层中每层元素数目没有明确限制,但通常情况下每层元素数最好不要超过 9 个。这就是因为,心理学研究表明,只有一组事物在 9 个以内,普通人对其属性进行判别时才较为清楚。当同一层次元素数多于 9 个时,决策者对两两重要性判断可能会出现逻辑错误的概率加大,此时可以通过增加层数,来减少同一层的元素数。 ②构造判断(成对比较)矩阵 以任意一个上一层的元素为准则,对其支配的下层各因素之间进行两两比较。得到判断矩阵,再求出各元素的权重。ij a 重要程度的衡量用Santy 的1—9标度方法给出。即 设各元素C 1,C 2,… , C n 对目标O 两两比较后的重要性 ,(),ij i j ij n n a C A a ?==0,1ij ji ij a a a >=,则得到比较矩阵

数学建模小实例

1、司乘人员配备问题 某昼夜服务得公交路线每天各时间区段内需司机与乘务人员如下: 设司机与乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机与乘务人员? 解: 设为第班应报到得人员,建立线性模型如下: LINGO程序如下: MODEL: min=x1+x2+x3+x4+x5+x6;

x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20; x5+x6>=30; END 得到得解为: x1=60,x2=10,x3=50,x4=0,x5=30 ,x6=0; 配备得司机与乘务人员最少为150人。 2、铺瓷砖问题 要用40块方形瓷砖铺下图所示形状得地面,但当时市场上只有长方形瓷砖,每块大小等于方形得两块。一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。试问就是这人得功夫不到家还就是这个问题根本无解呢?

3、棋子颜色问题 在任意拿出黑白两种颜色得棋子共n个,随机排成一个圆圈。然后在两颗颜色相同得棋子中间放一颗黑色棋子,在两颗颜色不同得棋子中间放一颗白色棋子,放完后撤掉原来所放得棋子,再重复以上得过程,这样放下一圈后就拿走前次得一圈棋子,问这样重复进行下去各棋子得颜色会怎样变化呢? 分析与求解: 由于在两颗同色棋子中放一颗黑色棋子,两颗不同色得棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。这就是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色得棋子中间放一颗白色棋子。设棋子数为,为初始状态。

相关文档
相关文档 最新文档