文档库 最新最全的文档下载
当前位置:文档库 › 万有引力定律知识点总结

万有引力定律知识点总结

万有引力定律知识点总结
万有引力定律知识点总结

万有引力和航天题型总结一、开普勒行星运动定律

注意:

1. 开普勒行星运动定律不仅适用于行星绕太阳运转,对于

卫星绕行星运转,也遵循类似的运动规律。

2.比例系数k与中心天体质量有关,与行星或卫星质量无关,

是个常量,但不是恒量,在不同的星系中,k值不相同。

3. T为公转周期,不是自转周期。

二、万有引力定律

1.内容:宇宙间的一切物体都是互相吸引的,两个物体间

的引力大小,跟它们的质量的乘积成正比,跟它们的距离的

平方成反比。

2.表达式:F=G

22

1 r m

m

其中G=6.67×10-11N?m2/kg2,称为为有引力恒量。

3.适用条件:用于计算引力大小的万有引力公式严格地说只适用于两质点间引力大小的计算,如果相互吸引的双方是质量分布均匀的球体,则可将其视为质量集中于球心的质点,此时r是两球心间的距离。

4.对万有引力定律的理解

(1)普遍性:万有引力是普遍存在于宇宙中任何有质量物体之间的相互吸引力,它是自然界中物体之间的基本的相互作用之一,任何客观存在的两部分有质量的物体之间都存在着这种相互作用。

(2)相互性:两个物体相互作用的引力是一对作用力与反作用力.它们大小相等,方向相反,分别作用在两个物体上。

(3)宏观性:通常情况下,万有引力非常小,它的存在可由卡文迪许扭秤来观察,只有在质量巨大的天体间,它的存在才有宏观物理意义。

二、重力加速度

重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极逐渐增大.

1.若不计地球自转的影响,则物体在地球表面的重力等于

地球对物体的万有引力,即

2

GMm

mg

R

=, 则星球表面的

重力加速度为:

2

GM

g

R

=

2.同理,若不计地球自转的影响,在距地球表面高h处的

重力加速度为:

2

()

h

GM

g

R h

=

+

3.若考虑地球自转的影响,

(1)在赤道处,物体的万有引力分解为两个分力F向和mg

刚好在一条直线上,则有

F=F向+mg,

所以mg=F一F向=

2

GMm

R

-mRω自2

则赤道处重力加速度为:g=

2

GM

R

-Rω自2

(而地球赤道处的向心加速度a n= Rω自2 =0.034m/s2,因此一般不计其自转的影响;注意:当题目中出现地球自转时需要考虑此问题。)

(2)在两极处,由于物体做圆周运动半径r为零,向心

力为零。因此重力等于万有引力,即

2

GMm

mg

R

=,此时

重力加速度达到最大值,即

2

GM

g

R

=

三、星球瓦解问题

假设地球自转加快,即ω自变大,赤道上物体的重力由mg

2

GMm

R

-m2Rω自2知,物体的重力将变小。当

2

GMm

R

=mR ω自2时,mg=0,此时地球赤道上的物体无重力,要开始“飘”起来了,若自转继续加快,星球即将要瓦解。

星球瓦解的临界角速度ω自

星球瓦解的临界密度2

3GT

πρ=

六、计算天体质量和密度

注意:计算天体质量需“一个中心、两个基本点”: 1.“一个中心”即只能计算出中心天体的质量。

2.“两个基本点” 即要计算中心天体的质量,除引力常量G 外,还要已知两个独立的物理量。 四、双星:

1.两颗星绕它们连线上的某点做匀速圆周运动,称之为双星。

2.方程

对m 1:Gm 1m 2/L 2

=m 1ω

2

r 1 ; 对m 2:Gm 1m 2/L 2

=m 2ω2

r 2 L= r 1+ r 2

3.

特点:“三个相等,三个反比”

(1)三个相等:角速度ω、周期T 、向心力大小相等。 (2)三个反比:半径r 、线速度v 、向心加速度a n 与其质量m

成反比。

4.注意:万有引力公式12

2

Gm m F

r

=

中的r 应是两星体质量中心之间的距离;而向心力公式F n =m ω2

r 中的r 应是该星体做圆周运动的轨道半径。 七、宇宙速度

2、第一宇宙速度的三层含义 (1)最小的发射速度 (2)最大的环绕速度 (3)近地卫星的环绕速度

3、第一宇宙速度的两个计算公式

(1) v =(M 为星球质量,R 为星球半径)

(2)v (g 为星球表面重力加速度,R 为星球半径)

3.注意:两个公式是等价的;不仅可以用于地球的第一宇宙速度,也适用于其它星球。 八、黑洞

黑洞是一种引力极强的天体,就连光也不能逃脱。当恒星的半径小到一定程度时,就连垂直表面发射的光都无法逃逸了。这时恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。由于黑洞中的光无法逃逸,所以我们无法直接观测到黑洞。然而,可以通过测量它对周围天体的作用和影响来间接观测或推测到它的存在。

黑洞的第二宇宙速度大于光速,c R

GM

>2 八、卫星的四个参量

由万有引力提供卫星做匀速圆周运动的向心力得:

22

222()n GMm v m m r m r ma r r T

πω==== 解得:v =ω=2T =2n

M a G r =

1.四个参量都是r 的函数,r 一定,四个参量大小不变。

2.四个参量中“三度”(线速度v 、角速度ω、加速度a )随着r 的增加而减小,只有T 随着r 的增加而增加。

3.任何卫星的环绕速度不大于7.9km/s ,运动周期不小于8

4.4min 。

4.上述公式适合卫星在圆轨道上运行。 八、卫星的高度

()()()h R T m h R m h R v m h R GMm +??

? ??=+=+=+2

2

22

2πω

()()()

h R T m h R m h R v m h R GMm +??

? ??=+=+=+2

2

222πω

十、同步卫星

3、同步卫星的轨道

同步卫星轨道必须在地球赤道的正上方,运转方向必须跟地球自转方向一致即由西向东。通讯卫星可以实现全球的电视转播,如果能发射三颗相对地面静止的卫星(即同步卫星)并相互联网,即可覆盖全球的每个角落。由于通讯卫星都必须位于赤道上空3.6×107

m 处,各卫星之间又不能相距太近,所以,通讯卫星的总数是有限的。 十一、人造地球卫星轨道

1.所谓人造地球卫星轨道就是人造地球卫星绕地球运行的轨道。这是一条封闭的曲线。这条封闭曲线形成的平面叫人造地球卫星的轨道平面,轨道平面总是通过地心的。

2.分类:(1)按轨道形状分为圆轨道(圆心为地心)和椭圆轨道(焦点之一为地心);(2) 按飞行方向分可分为顺行轨道(与地球自转方向相同)、逆行轨道(与地球自转方向相反)、赤道轨道(在赤道上空绕地球飞行)和极轨道(经过地球南北极上空);(3) 按离地面的高度,可分为低轨道、中轨

道和高轨道;(4)按地面观测点所见卫星运动状况分为一般

十三、卫星的能量

当卫星具有较大的动能时,它将上升到较高的轨道运动,而在较高轨道上运动的卫星却具有较小的动能。反之,如

果人造天体在运动中动能减小,它的轨道半径将减小,在这一过程中,因引力对其做正功,故导致其动能将增大。

同样质量的卫星在不同高度轨道上的机械能不同。其中

卫星的动能为r GMm

E K 2=,由于重力加速度g 随高度增大

而减小,所以重力势能不能再用E k =mgh 计算,而要用到公式r

GMm

E P -

=(以无穷远处引力势能为零,M 为地球质量,m 为卫星质量,r 为卫星轨道半径。由于从无穷远向地球移动过程中万有引力做正功,所以系统势能减小,为负。)

因此机械能为r

GMm

E 2-

=。同样质量的卫星,轨道半径越大,即离地面越高,卫星具有的机械能越大,发射越困难。

十四、卫星变轨

卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术.

如图所示,在轨道A 点,万有引力F A

>2

v m r

,要使卫

星改做圆周运动,必须满足F A =2

v m r

和F A ⊥v ,在远点已

满足了F A ⊥v 的条件,所以只需增大速度,让速度增大到

2

v m r

=F A ,这个任务由卫星自带的推进器完成. 这说明人造卫星要从椭圆轨道变到大圆轨道,只要在椭圆轨道的远点由推进器加速,当速度达到沿圆轨道所需的速度,人造卫星就不再沿椭圆轨道运动而转到大圆轨道.“神州五号”就是通过这种技术变轨的,地球同步卫星也是通过这种技术定点于同步轨道上的. 2.从圆轨道变到椭圆轨道

在B 点加速可实现从圆轨道变到椭圆轨道。 3.从椭圆轨道变到椭圆轨道

在近地点B 点加速可实现从小椭圆轨道变到大椭圆轨道。

4.从圆轨道变到圆轨道

从小圆轨道变到大圆轨道过程:先在小圆轨道的E 点加速,从圆轨道变到椭圆轨道,在椭圆轨道的远地点F 点再次加速,从椭圆轨道变到大圆轨道。

【总结】要想往外轨道运动,必须加速,使它做离心运

动;要想往内轨道运动,必须减速,使它做向心运动。 十五、空间站对接

对接方法:宇宙飞船先在较空间站低的轨道上运行,当运行到适当位置时再加速运行到空间站的轨道,从而实现对接。

空间站实际上就是一颗可以载人的人造卫星,人和物品在地球和空间站间的运送,是通过宇宙飞船(或航天飞机)来实现的,那么能否通过将宇宙飞船(或航天飞机)发射到空间站的同一轨道上,再通过加速去追上空间站实现对接呢?事实上,这样做是不行的,因为环绕速度与轨道半径是一一对应的,即同一个圆轨道上的卫星的环绕速度值都相同,此时万有引力刚好等于人造卫星做圆周运动所需的向心力,即F 万=F 向,当飞船加速时它所需的向心力也相应增大,即F 万<F 向,从而使飞船产生“离心”现象,所以飞船的加速会使它偏离原来的轨道,而无法实现与空间站的对接。

十五、连续物还是卫星

连续物是指和天体连在一起的物体,其角速度和天体相同,其线速度v 与R 成正比。而对卫星来讲,其线速度v=

,即v 与R 的平方根成反比。答案:AD

【例题】根据观察,在土星外层有一个环,为了判断环是土星的连续物还是小卫星群,可测出环中各层的线速度v 与该层到土星中心的距离R 之间的关系.下列判断正确的( )

A.若v 与R 成正比,则环为连续物

B.若v 2与R 成正比,则环为小卫星群

C.若v 与R 成反比,则环为连续物

D.若v 2与R 成反比,则环为小卫星群 十五、宇宙膨胀

【例题】在研究宇宙发展演变的理论中,有一种学说叫做“宇宙膨胀说”,这种学说认为万有引力恒量G 在缓慢地减小.根据这一理论,在很久以前,太阳系中地球的公转

情况与现在相比( )

A. 公转半径R较小

B. 公转周期T较大

C. 公转速率v较小

D. 公转角速度ω较大

万有引力定律公式总结

万有引力公式 线速度 角速度 向心加速度 向心力 两个基本思路 1.万有引力提供向心力:r m r n m ma r T m r m r v m r M G ωππω======22222 2244m 2.忽略地球自转的影响: mg R GM =2 m (2 g R GM =,黄金代换式) 一、测量中心天体的质量和密度 测质量: 1.已知表面重力加速度g ,和地球半径R 。(mg R GM =2m ,则G gR M 2= ) 2.已知环绕天体周期T 和轨道半径r 。(r T m r Mm G 2224π= ,则2 3 24GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。(r v m r Mm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r 。(r m r Mm G 2 2ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T 。(T r v π2=,r v m r M G 22m =,联立得G T M π2v 3=) 测密度: 已知环绕天体的质量m 、周期T 、轨道半径r 。中心天体的半径R ,求中心天体的密度ρ 解:由万有引力充当向心力

r T m r Mm G 2224π= 则2 324GT r M π= ——① 又3 3 4R V M πρρ? == ——② 联立两式得:3 23 3R GT r πρ= 当R=r 时,有2 3GT π ρ= 二、星球表面重力加速度、轨道重力加速度问题 1.在星球表面: 2 R GM mg =(g 为表面重力加速度,R 为星球半径) 2.离地面高h: 2 ) (h R GM g m += '(g '为h 高处的重力加速度) 联立得g'与g 的关系: 2 2 )('h R gR g += 三、卫星绕行的向心加速度、速度、角速度、周期与半径的关系 1.ma r M G =2m ,则2 a r M G =(卫星离地心越远,向心加速度越小) 2.r v m r Mm G 2 2=,则r GM v = (卫星离地心越远,它运行的速度越小) 3.r m r Mm G 22ω=,则3r GM =ω(卫星离的心越远,它运行的角速度越小) 4.r T m r Mm G 22 24π=,则GM T 3 2r 4π= (卫星离的心越远,它运行的周期越大)

曲线运动+万有引力定律知识点总结

曲线运动 1.曲线运动的特征 (1)曲线运动的轨迹是曲线。 (2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。 (3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。(注意:合外力为零只有两种状态:静止和匀速直线运动。) 曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。2.物体做曲线运动的条件 (1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。 (2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。 3.匀变速运动:加速度(大小和方向)不变的运动。 也可以说是:合外力不变的运动。 4曲线运动的合力、轨迹、速度之间的关系 (1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。 (2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。 ①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。 ②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。 ③当合力方向与速度方向垂直时,物体的速率不变。(举例:匀速圆周运动) 平抛运动基本规律 1.速度:0 x y v v v gt = ? ?= ? 合速度:2 2 y x v v v+ =方向: o x y v gt v v = = θ tan 2.位移 2 1 2 x v t y gt = ? ? ? = ?? 合位移:22 x x y =+ 合 方向: o v gt x y 2 1 tan= = α 3.时间由:2 2 1 gt y=得 g y t 2 =(由下落的高度y决定)

万有引力定律例题

1.天体运动的分析方法 2.中心天体质量和密度的估算 (1)已知天体表面的重力加速度g和天体半径R G=mg? (2)已知卫星绕天体做圆周运动的周期T和轨道半径r 1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知() A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行速度的大小始终相等 C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误.答案:C 2.(2016·郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空后,先在近地轨道上以线速度v环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v′在火星表面附近环绕飞行.若认为地球和火星都是质

量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7,设火星与地球表面重力加速度分别为g′和g,下列结论正确的是() A.g′∶g=4∶1B.g′∶g=10∶7 C.v′∶v=D.v′∶v= 解析:在天体表面附近,重力与万有引力近似相等,由G=mg,M=ρπR3,解两式得g=GπρR,所以g′∶g=5∶14,A、B项错;探测器在天体表面飞行时,万有引力充当向心力,由G=m,M=ρπR3,解两式得v=2R,所以v′∶v=,C项正确,D 项错. 答案:C 3.嫦娥三号”探月卫星于2013年12月2日1点30分在西昌卫星发射中心发射,将实现“落月”的新阶段.若已知引力常量G,月球绕地球做圆周运动的半径r1、周期T1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径r2、周期T2,不计其他天体的影响,则根据题目条件可以() A.求出“嫦娥三号”探月卫星的质量 B.求出地球与月球之间的万有引力 C.求出地球的密度 D.= 解析:绕地球转动的月球受力为=M′r1得T1==.由于不知道地球半径r,无法求出地球密度,C错误;对“嫦娥三号”而言,=mr2,T2=,已知“嫦娥三号”的周期和半径,可求出月球质量M′,但是所有的卫星在万有引力提供向心力的运动学公式中卫星质量都约掉了,无法求出卫星质量,因此探月卫星质量无法求出,A错误;已

万有引力定律练习题

万有引力定律练习题 一.选择题(共8小题) 1.(2018?榆林一模)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示.关于航天飞机的运动,下列说法中不正确的有() A.在轨道Ⅱ上经过A的速度小于经过B的速度 B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能 C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期 D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度2.(2018?江西模拟)北斗卫星导航系统由一组轨道高低不同的人造地球卫星组成。高轨道卫星是地球同步卫星,其轨道半径约为地球半径的6.6倍。若某低轨道卫星的周期为12小时,则这颗低轨道卫星的轨道半径与地球半径之比约为() A.4.2 B.3.3 C.2.4 D.1.6 3.(2018?海南)土星与太阳的距离是火星与太阳距离的6倍多。由此信息可知() A.土星的质量比火星的小 B.土星运行的速率比火星的小 C.土星运行的周期比火星的小 D.土星运行的角速度大小比火星的大 4.(2018?高明区校级学业考试)如果把水星和金星绕太阳的运动视为匀速圆周运动,如图所示。从水星与金星在一条直线上开始计时,若天文学家测得在相同时间内水星转过的角度为θ1,金星转过的角度为θ2(θ1、θ2均为锐角),则由此条件可求得()

A.水星和金星绕太阳运动的周期之比 B.水星和金星的密度之比 C.水星和金星表面的重力加速度之比 D.水星和金星绕太阳运动的向心力大小之比 5.(2018?瓦房店市一模)如图所示,“嫦娥三号”的环月轨道可近似看成是圆轨道,观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t通过的弧长为l,该弧长对应的圆心角为θ弧度,已知万有引力常量为G,则月球的质量是() A.B.C.D. 6.(2018春?南岗区校级期中)如图,有关地球人造卫星轨道的正确说法有() A.a、b、c 均可能是卫星轨道B.卫星轨道只可能是a C.a、b 均可能是卫星轨道D.b 可能是同步卫星的轨道7.(2018春?武邑县校级月考)如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞船在距月球表面高度为3R的圆形轨道Ⅰ运动,到达轨道的A点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动。则()

沉积相知识点复习 (5)

长江大学地球科学系试卷 一、填空题( 每空0.5 分,共10 分) 3 、一般说来,层状叠层石生成环境的水动力条件①__________ ,多属②__________ 的产物;柱状叠层石生成环境的水动条件③__________ ,多为④__________ 的产物。①较弱,②潮间带上部,③较强,④潮间带下部至潮下带上部。 6 、Young et al.(1972) 以潮汐作用带为形式的相带模式包括①__________ 、②__________ 、 ③__ ________ 和④__________ 四个相带。①潮上带,②潮间带,③局限潮下带,④开阔潮下带。 7 、第一部系统论述我国各地质时代的沉积岩层的古地理轮廓的专著是①__________ 编著的② __________ 。①刘鸿允,②《中国古地理图》。 1 、相标志是相分析及岩相古地理研究的基础,可归纳为①__________ 、②__________ 和③ __________ 三类。①岩性标志,②古生物标志,③地球化学标志。 6 、Laporate(1969) 以潮汐作用划分的相带模式包括①__________ 、②__________ 、③ __________ 和④__________ 四个相带。①潮上带,②潮间带,③潮下带上部,④潮下带下部。 7 、米德尔顿和汉普顿按支撑机理把沉积物重力流划分为四种类型,即①__________ 、②______ ____ 、③__________ 和④__________ 。①碎屑流,②颗粒流,③液化沉积物流,④浊流。 5、按照地貌特点、水动力状况和沉积物特征,可将砂质高能滨岸相划分为①_____________、②____________、③____________和④___________四个亚相。①海岸沙丘、②后滨、③前滨、④近滨。 6、欧文(Irwin,1965)根据潮汐和波浪作用的能量,将陆表海碳酸盐沉积作用环境划分出了三个能量带,即①____________、②____________和③____________。①远离海岸的X带(低能带)、②稍近海岸的Y带(高能带)、③靠近海岸的Z带(低能带)。 三、比较下列每对术语的异同点( 每小题 4 分,共32 分) 4 、泥岩与页岩——均为粘土岩,前者无页理,后者有页理。 5 、沉积相与岩相——岩相与沉积相是从属关系。沉积相是沉积环境及在该环境中形成的沉积岩(物)特征的综合,而岩相是一定沉积环境中形成的岩石或岩石组合,是沉积相的主要组成部分。 6 、河控三角洲与浪控三角洲——为不同作用所控制形成的三角洲。河控三角洲是以河流作用为主形成的三角洲,是高建设性的三角洲,形态上呈鸟足状或朵状。浪控三角洲是以波浪作用为主形成的三角洲,是破坏性的三角洲,形态上呈鸟嘴状。 7 、内波与内潮汐——内潮汐是内波的一种特殊类型。内波是指存在于两个不同密度的水层界面上或具有密度梯度的水体之内的水下波(LaFond,1966 ),内波的振幅、周期、传播速度、深度的变化范围都很大。其中周期与半日潮或日潮相同的内波叫做内潮汐。

高中物理公式大全全集万有引力

五、万有引力 1、开普勒三定律: ⑴开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上 ⑵开普勒第二定律(面积定律):太阳和行星的连线在相等的时间内扫过相等的面积 ⑶开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等 对T 1、T 2表示两个行星的公转周期,R 1、R 2表示两行星椭圆轨道的半长轴,则周期定律可表示为32 312221R R T T = 或k T R =3 3,比值k 是与行星无关而只与太阳有关的恒量 【注意】:⑴开普勒定律不仅适用于行星,也适用于卫星,只不过此时k T R =33 ‘ ,比值k ’ 是 由行星的质量所决定的另一恒量。 ⑵行星的轨道都跟圆近似,因此计算时可以认为行星是做匀速圆周运动 ⑶开普勒定律是总结行星运动的观察结果而总结归纳出来的规律,它们每一条都 是经验定律,都是从观察行星运动所取得的资料中总结出来的。 例题:飞船沿半径为R 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示,如果地球半径为R 0,求飞船由A 点到B 点所需要的时间。 解析:依开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时,其半长轴的三次方跟周期平方和比值,飞船椭圆轨道的半长轴为 2 R R +,设飞船沿椭圆轨道运动的周期一、知识网络 二、 画龙点睛 概念

万有引力定律典型例题解析

万有引力定律·典型例题解析 【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下: (1)g (2)(3)r 60R 地面上物体的重力加速度= ;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值; GM R GM r g 22αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ; (5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求 的值.α g 解析: (1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4 点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力 G Mm r mg G Mm r m 2 2α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目 的条件可以用、ω或来表示.v r r T 2224r 2 π 【例】月球质量是地球质量的 ,月球半径是地球半径的,在21811 38. 距月球表面14m 高处,有一质量m =60kg 的物体自由下落. (1)它落到月球表面需用多少时间? (2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力

加速度g 地=9.8m/s 2)? 解析:(1)4s (2)588N 点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m R mg G M m R 22月月月 地地地 =.同理,物体在地球上的“重力”等于地球对物体的 万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表 面需用时间为==×=. 月月g 1.75m /s S gt t 4s 2 2 12 2214 175S g . (2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N . 跟踪反馈 1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为: [ ] A .Gm 1m 2/r 2 B .Gm 1m 2/r 12 C .Gm 1m 2/(r 1+r 2)2 D .Gm 1m 2/(r 1+r 2+r)2

地史学复习重点汇总+中国地质大学.doc

沉积环境: 一个具有独特的物理、化学和生物特征的自然地理单元 沉积相——反映沉积记录成因(环境、条件和沉积作用)的岩石特征和生物特征的综合。即沉积记录成因的物质表现。生物相岩相 相变——地层的岩石特征和生物特征及其所反映的沉积环境和沉积作用在空间(横向)上的变化。 相分析——综合地层的岩石特征和生物特征,推断其成因(沉积环境和沉积作用)瓦尔特相(定)律亦称相对比原理 :只有那些目前可以观察到是相互毗邻的相和相区,才能原生地重叠在一起; 即在垂向上整合叠置的相是在侧向上相邻的沉积环境中形成的。 “The past history of our globe must be explained by what can be seen to be happening now” (James Hutton). It was named Uniformitarianism by Charles Lyell (1830; Hutton, 1795) Sed. Facies indicators——the physic, chemic and biologic characteristics which indicate sedimentary environments, processes and conditions. 。。。。。。 地层:各种层状岩石的统称.包括所有的沉积岩,部分火成岩和变质岩. 地层学:研究层状岩石形成的先后顺序、地质年代、时空分布规律(狭义)和形成环境条件及其物理、化学性质的地质学分支学科.她的核心目标就是建立地球科学的时间坐标。 地层叠覆律: 原始地层自下而上是从老到新的(上新下老) 原始水平律: 地层沉积时是近于水平的,而且所有的地层都是平行于这个水平面的(水平摆放). 原始侧向连续律: 地层在大区域甚至全球范围内是连续的,或者延伸到一定的距离逐渐尖灭(侧向连续)。 化石层序律:不同时代的地层含有不同的化石,含相同化石的地层其时代相同。

高中物理《万有引力定律》知识点

高中物理《万有引力定律》知识点 万有引力是由于物体具有质量而在物体之间产生的一种相互作用。它的大小和物体的质量以及两个物体之间的距离有关。物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。 两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=Gmm/r^2,即万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。其中G代表引力常量,其值约为6.67×10的负11次方单位N·m2/kg2。为英国科学家卡文迪许通过扭秤实验测得。 万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T 如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小为mrω^2=mr(4π^2)/T^2 另外,由开普勒第三定律可得 r^3/T^2=常数k' 那么沿太阳方向的力为 mr(4π^2)/T^2=mk'(4π^2)/r^2 由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。从太阳的角度看,

(太阳的质量m)(k'')(4π^2)/r^2 是太阳受到沿行星方向的力。因为是相同大小的力,由这两个式子比较可知,k'包含了太阳的质量m,k''包含了行星的质量m。由此可知,这两个力与两个天体质量的乘积成正比,它称为万有引力。 如果引入一个新的常数(称万有引力常数),再考虑太阳和行星的质量,以及先前得出的4·π2,那么可以表示为万有引力=Gmm/r^2 两个通常物体之间的万有引力极其微小,我们察觉不到它,可以不予考虑。比如,两个质量都是60千克的人,相距0.5米,他们之间的万有引力还不足百万分之一牛顿,而一只蚂蚁拖动细草梗的力竟是这个引力的1000倍!但是,天体系统中,由于天体的质量很大,万有引力就起着决定性的作用。在天体中质量还算很小的地球,对其他的物体的万有引力已经具有巨大的影响,它把人类、大气和所有地面物体束缚在地球上,它使月球和人造地球卫星绕地球旋转而不离去。 重力,就是由于地面附近的物体受到地球的万有引力而产生的。 任意两个物体或两个粒子间的与其质量乘积相关的吸引力。自然界中最普遍的力。简称引力,有时也称重力。在粒子物理学中则称引力相互作用和强力、弱力、电磁力合称

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析 一、高中物理精讲专题测试万有引力定律的应用 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R =

岩石学期末考试重点整理

火成岩 岩石:是天然产出的,由一种或多种矿物、或类似矿物的物质(如有机质、玻璃、非晶质)和生物遗骸等构成的固态集合体。 岩石的成因分类:按岩石的形成作用过程划分为:岩浆岩:是由地幔或地壳的岩石经熔融或部分熔融形成岩浆继而冷却固结的产物。沉积岩:是由地表风化产物、火山碎屑物等,在外力作用下搬运、沉积、固结而成的。变质岩:是由先已存在的岩石(岩浆岩及沉积岩)在温度、压力及应力条件发生变化的情况下,为适应新的环境而形成的岩石。 三大岩类之间的循环转换关系:已经存在的沉积岩、变质岩、火成岩抬升到地表以后,经风化剥蚀、机械破碎、搬运、沉积等作用可以形成沉积岩;已经存在的沉积岩、火成岩或变质岩,因温压条件的变化或流体的作用等可形成变质岩;温压条件的进一步变化,可使原来的沉积岩。变质岩或火成岩发生熔融形成岩浆,岩浆在固结形成新的火成岩。 岩石学:是专门研究地壳、地幔及其它星体产出的岩石的分布、产状、成分、结构、构造、分类、命名、成因、演化等方面的科学。 岩浆:是天然形成于上地幔或地壳深部,含有部分挥发分和固态物质、粘稠的、以硅酸盐为主要成分的高温熔融体。自然界中硅酸盐岩浆占绝大多数,极少量是金属硫化物岩浆和金属氧化物岩浆(矿浆)及碳酸岩浆。 岩浆的主要化学成分: (1) 常量元素: O、Si、Al、Fe、Mg、Ca、Na、K、Mn、Ti、P、H、C等,其中O最多。在岩浆结晶过程中这些元素相互结合,组成各种矿物。通常以氧化物形式来表示:如SiO2 、Al2O3 、Fe2O3 、 FeO 、MgO、CaO、Na2O、K2O、MnO、TiO2、P2O5、H2O、CO2 等。但实际上在岩浆中这些元素并非以氧化物形式存在,而多是呈离子、原子或离子团的形式存在,如: Mg2+、 Na +、[SiO4]4-。 另外还有挥发份:CO2、SO2、CO、N2、H2 NH3、NH4、HCl、HF、KCl、NaCl等等。硅酸盐岩浆化学成分以SiO2含量最多,根据SiO2含量将硅酸盐岩浆分成4种类型:1) 酸性岩浆SiO2 > 63%(wt%) 2) 中性岩浆SiO2 52~63%(wt%) 3) 基性岩浆SiO2 45~52%(wt%)

(完整版)万有引力与航天重点知识、公式总结

万有引力与航天重点规律方法总结 一.三种模型 1.匀速圆周运动模型: 无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型: 将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。 3.“天体相遇”模型: 两天体相遇,实际上是指两天体相距最近。 二.两种学说 1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律 1.开普勒定律: 第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆 的一个焦点上 第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫 过相同的面积。 第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公 转周期T 的二次方的比值都相等。 表达式为:)4(2 23 π GM K K T R == k 只与中心天体质量有关的 定值与行星无关 2.牛顿万有引力定律 1687年在《自然哲学的数学原理》正式提出万有引力定律 ⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比. ⑵.数学表达式: r F Mm G 2 =万 ⑶.适用条件: a.适用于两个质点或者两个均匀球体之间的相互作用。(两物体为均匀球体时,r 为两球心间的距离) b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算 c. 认为当0→r 时,引力∞→F 的说法是错误的 ⑷.对定律的理解 a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力 b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。 c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附 近的物体间,它的存在才有实际意义. d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在 空间的性质无关,与周期及有无其它物体无关. (5)引力常数G :

沉积岩与沉积相考试题

沉积岩与沉积相 请注意: 1、本考试科目提供一套试题参考答案,进入本门课程点在线考试,随机抽题,如果考试题不是其中试题,千万别点最下面的“完成考试”按钮,立即关闭窗口,重新进入抽题,直到抽到所给这套题为止 2、在线考试只有一次机会,成绩为最终考试成绩,抄袭、雷同作业一律按零分处理。没给答案的可自行发挥,别空题,做完后一定点完成考试显示“答卷结果保存成功”表示提交成功,否则考试结果将无分值

1.成岩作用 广义的成岩作用是指从沉积物到沉积岩,以及在沉积岩形成以后再到它遭受风化作用或变质作用即到其被破坏或发生质的变化以前,发生的一系列的变化或作用,是沉积岩的形成和演化的重要阶段。 2.沉积相 沉积环境和该环境中所形成的沉积物(岩)特征的总和(综合)。 3.河流的“二元结构” 河流沉积的下段是由河床亚相的滞留沉积和边滩沉积组成,是由于河道迁移而引起的沉积物侧向加积的结果,构成了河流沉积的底层沉积。上段由堤岸亚相和河漫亚相组成,属泛滥平原沉积,主要是大量细粒悬浮物质在洪泛期垂向加积的结果,构成了河流沉积剖面的顶层沉积。底层沉积和顶层沉积的垂向叠置,构成了河流沉积的“二元结构”。 4.在海里或江里的岩石或珊瑚虫遗骸堆积成的岩状物 5.海洋或湖泊中,在重力的作用下,沿水下斜坡或峡谷流动的,含大量泥沙并呈悬浮状态搬运的高密度底流 6.如波状层理:纹层呈对称或不对称的波状,但其总的方向平行于层面。 7.又称毛细管浓缩作用或蒸发泵作用。 一般认为在潮上带,早先沉积的碳酸钙沉积物饱含孔隙水,在强烈蒸发时孔隙水沿毛细管上升,并使沉积物下部与海水沟通的孔隙不断获取海洋中正常海水的供给,就像泵汲一样。蒸发泵汲作用进行,使潮上带沉积物上部孔隙水的盐度大大提高,出现文石、高镁方解石及石膏沉淀,特别是石膏的沉淀增高了卤水中Mg/Ca比值,这些卤水就成为一种交代溶液,逐渐交代碳酸钙沉积物而形成白云岩。 8. 三角洲,即河口冲积平原,是一种常见的地表形貌。江河奔流中所裹挟的泥沙等杂质,在入海口处遇到含盐量较淡水高得多的海水,凝絮淤积,逐渐成为河口岸边新的湿地,继而

万有引力定律公式总结

万有引力定律知识点 班级: 姓名: 一、三种模型 1、匀速圆周运动模型:无论自然天体还是人造天体都可以看成质点,围绕中心天体做匀速圆周运动。 2、双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。 3、“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。 二、两种学说 1、地心说:代表人物是古希腊科学托勒密 2、日心说:代表人物是波兰天文学家哥白尼 三、两个定律 第一定律(椭圆定律):所有行星绕太阳的运动轨道都是椭圆,太阳位于椭圆的每一个焦点上。 第二定律(面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。 第三定律(周期定律):所有行星绕太阳运动的椭圆轨道半长轴R 的三次方跟公转周期T 的二次方的比值都相等。 (表达式 ) 四、基础公式 线速度:v ==== 角速度:== == 向心力:F=m =m(2r=m(2 )2r= m(2)2r=m =m 向心加速度:a= = (2r= (2)2r= (2 )2r== 五、两个基本思路 1.万有引力提供向心力:ma r T m r m r v m r M G ====22 2224m πω 2.忽略地球自转的影响: mg R GM =2m (2g R GM =,黄金代换式) 六、测量中心天体的质量和密度 测质量: 1.已知表面重力加速度g ,和地球半径R 。(mg R GM =2m ,则G gR M 2=)一般用于地球 2.已知环绕天体周期T 和轨道半径r 。(r T m r Mm G 2224π= ,则2 3 24GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。(r v m r Mm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r (r m r Mm G 22ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T (T r v π2=,r v m r M G 22m =,联立得G T M π2v 3=) 测密度:

万有引力定律典型例题分析

“万有引力定律”的典型例题 例5 【例1】假如一个作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则 [ ] A.根据公式v=ωr,可知卫星运动的线速度将增大到原来的2倍 D.根据上述选答B和C中给出的公式,可知卫星运动的线速度将 【分析】人造地球卫星绕地球作匀速圆周运动时,由地球对它的引力作向心力,即 卫星运动的线速度

当卫星的轨道半径增大为原来的2倍时,由于角速度会发生变化, 错,D正确. 同理,当卫星的轨道半径增大为原来的2倍时,由于线速度的变化,卫星所需的向心力不是减为原来的1/2,而是减小到原来的1/4.B错,C正确. 【答】C、D. 【说明】物体作匀速圆周运动时,线速度、角速度、向心加速度、向心力和轨道半径间有一定的牵制关系.例如,只有当ω不变时,线速度才与半径成正比;同样,当线速度不变时,同一物体的向心力才与半径成反比.使用中不能脱离条件. 研究卫星的运动时,最根本的是抓住引力等于向心力这一关系. 【例2】估算天体的质量 【解】把卫星(或行星)绕中心天体的运动看成是匀速圆周运动,由中心天体对卫星(或行星)的引力作为它绕中心天体的向心力.根据 得 因此,只需测出卫星(或行星)的运动半径r和周期T,即可算出中心天体的质量M.

【例3】登月飞行器关闭发动机后在离月球表面112km的空中沿圆形轨道绕月球飞行,周期是120.5min.已知月球半径是1740km,根据这些数据计算月球的平均密度.(G=6.67×10-11Nm2/kg2) 【分析】要计算月球的平均密度,首先应求出质量M.飞行器绕月球做匀速圆周运动的向心力是由月球对它的万有引力提供的. 【解】根据牛顿第二定律有 从上式中消去飞行器质量m后可解得 根据密度公式有 【例4】如图1所示,在一个半径为R、质量为M的均匀球体中, 连线上、与球心相距d的质点m的引力是多大? 【分析】把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可得解.

沉积岩与沉积相在线考试题目与答案

《沉积岩与沉积相》在线考试(开卷)试题—16秋 注意事项: 1、通过在线考试模块完成该课程考核; 2、抄袭、雷同作业一律按零分处理; 3、请务必于20XX年1月6日前完成。 一、名词解释(每题6分,共30分) 1、叠层石:主要是由蓝绿藻的生长活动所形成的亮暗基本层在垂向上有规律交替的一类构造。暗层:富藻纹层,富有机质;亮层:富碳酸盐矿物层,富碳酸盐碎屑。 2、相律:只有在横向上成因相近并且紧密相邻而发育着的相,才能在垂向上依次出现而没有间断。 3、浪基面:又称波浪基准面、波基面或浪底,是指相当于1/2波长的水深界面。波基面以下湖水不受波浪的干扰,是静水环境。 4、陆表海::是位于大陆内部或陆棚内部的,低海底坡度(30m,多为几百米),太暗.底部水体停滞缺氧:来自周围陆棚的底流可为超盐度,较大密度,不易上流所致 5、浊积岩:是浊流沉积形成的各类沉积岩的统称。 二、简答题(每题10分,共30分) 1、简单描述5种不同类型的沉积构造。 1.水平层理:例如:硅藻土,纹层互相平行,并且平行于层面。代表静水环境中的缓慢沉降。 2.平行层理:纹层亦呈直线状互相平行,在剥开面上可见剥离线理构造。主要产于砂岩中。一般出现在急流和能量高的环境中,常与大型交错层理共生。 3.楔状交错层理:层系界面呈平面状,厚度变化大且呈楔状。层系界面不互相平行,纹层倾角变化较大,方向变化也大,常见于海、湖浅水地带。 4.透镜状层理:潮汐层理的一种,砂质沉积以透镜状被保存在泥质中(灰岩)。泥质纹层呈波状,占主体,砂质沉积可见斜纹层。主要形成于潮汐环境中。 5.粒序层理:亦称递变层理——正粒序、逆粒序。层理底部常有一冲刷面。只有粒度的渐变而

万有引力知识点总结

万有引力定律 1. 考纲要求 一 万有引力定律: 1. 开普勒行星运动定律 (1) 所有的行星围绕太阳运动的轨道是_____,太阳处在____上,这就是开普勒第一定律,又称椭圆轨道定律。 (2)对于每一个行星而言,太阳和行星的连线在相等的时间内扫过相等的____.这就是开普勒第二定律,又称面积定律。 (3)所有行星轨道的半长轴的三次方跟公转周期的二次方的比值____。这就是开普勒第三定律,又称周期定律。 若用R 表示椭圆轨道的半长轴,T 表示公转周期,则k T R =2 2(k 是一个与行星无关的 量)。 2. 万有引力定律 (1) 内容:自然界中任何两个物体都相互吸引,引力的大小与物理质量的乘积成____, 与它们之间距离的平方成_______. (2) 公式:_______________________________________, G 为万有引力常量。 G = _______________________ N.2 2 /kg m . (3) 适用条件:公式适用于质点间万有引力大小的计算,当两个物体间的距离_______ 物体本身的大小时,物体可视为质点。另外,公式也适用于均匀球体间万有引力大小的计算,只不过r 应是________的距离。 (4) 两个物体之间的引力是一对作用力与反作用力,总是大小_______、方向______。 3. 应用万有引力分析天体的运动 (1) 基本方法:把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由______ 提供。公式为: a )2( 2 2 2 2 m r T m r m r v m r Mm G ====πω 考纲内容 能力要求 考向定位 1.万有引力定律及其应用 2.环绕速度 3.第二宇宙速度和第三宇宙速度 1.掌握万有引力定律的内容,并 能够用万有引力定律求解相关问题。 2.理解第一宇宙速的意义。 3.了解第二宇宙速度和第三宇宙速度 万有引力定律是广东高考的必考内容,也是全国高考命题的一个热点内容。考生要熟练掌握该定律的内容,还要知道其主要应用,要求能够结合该定律与牛顿第二定律估算天体质量、密度、计算天体间的距离(卫星高度)、以及分析卫星运动轨道等相关问题。 要理解环绕速度实际上是卫星在天体表面做匀速圆周运动时的线速度。 由于高考计算题量减少,故本节命题应当会以选择题为主,难度较以前会有所降低。

沉积相考试重点-(2)教学提纲

沉积相考试重点-(2)

对比淡化澙湖与咸化澙湖的沉积特征。 答:淡化澙湖与咸化澙湖在沉积特征上的不同之处如下: (1)岩石类型:淡化澙湖以钙质粉砂岩、粉砂质粘土岩、粘土岩为主,粗碎屑岩极少见。可见方解石、铁锰结核,二氧化硅沉积矿物。当澙湖底出现还原环境时,可形成黄铁矿、菱铁矿等自生矿物,岩石呈暗色或黑色,澙湖若为碳酸盐沉积时,则以泥晶、微晶石灰岩及白云岩、含泥石灰岩为主。 咸化澙湖以粉砂岩、粉砂质泥岩为主,并可夹有盐渍化和石膏化的砂质粘土岩,几乎无粗碎屑岩沉积,可出现石膏,盐岩夹层。若为清水沉积时,则主要是石灰岩、白云岩,并夹石膏及盐岩层,可出现天青石、硬石膏、黄铁矿等自生矿物。 (2)沉积构造:淡化澙湖中,交错层理一般不发育,若有波浪作用,可发育缓波状层理,水平波状层理,及对称或不对称波痕。虫孔少见,偶见干裂。咸化澙湖中一般多出现水平层理及塑性变形层理,斜层理不发育,盐类沉积中可见周期性溶解作用所引起的“冲刷面”,可见盐类假晶及泥裂。 (3)生物化石:淡化澙湖中为适应淡化水体的广盐性生物如腹足类,瓣鳃类,苔藓类,藻类等数量大为增多,正常海相生物常发生畸变,如出现个体变小,壳体变薄,具特殊纹分布等反常现象,当澙湖底部有H2S存在时,则可使生物群绝迹。咸化澙湖中以广盐性生物最发育,如腹足类,瓣鳃类,介形虫等,正常盐度的生物则全部绝迹,当盐度增高至一定限度时(一般不超过5~ 5.5%),大生物即行灭绝。 简述不同类型河流的主要特征。 答:①平直河流:弯度指数小于1.5,河床坡陡水流急,多出现于一条河流的上游。

②辫状河:弯度指数小于1.5河道宽、水浅、坡陡、流急,心滩是辫状河最重要的沉积类型,心滩出现使河道频繁分叉合并,故形态呈辫状,多出现于中上游。 ③曲流河:弯度指数大于1.5,河道窄、水深、坡缓、流速小,点坝是曲流河最具特征的沉积类型。多出现于中下游。 ④网状河:由多条弯曲多变的河道联结似网状而故名。弯度指数大于1.5,冲积岛(湿地)发育,常占60~90%,为网状河最重要的地貌特征,常出现于下游。 简述湖泊环境的一般特点。 答:(1)水动力特征:主要表现为波浪和岸流作用,缺乏潮汐作用。波基面常常不超过20米。常有众多的河流注入。 (2)物理化学条件:①湖泊对大气温度变化较为敏感,湖水出现温度分层现象。②湖水含盐度变化大,可由小于1%至大于25%。因有不同源区的河流注入,湖水化学成分变化大。③稳定同位素,稀有元素等与海洋差别较大,如18O/16O 13C/12C低于海相,海相碳氢化合物的 34S/32S较为稳定,湖泊中变化大。B、Li、F、Sr在淡水湖泊中较海洋中少,Sr/Ba常<1。(3)生物学特征:常发育良好的淡水生物群,如淡水的腹足类、瓣鳃类等底栖生物,介形虫、叶肢介、鱼类等浮游和游泳生物,还常发育有轮藻、蓝藻等低等植物等。 简述湖泊相沉积的一般特征。 湖泊相一般具有下列特征: ①岩石类型以粘土岩、砂岩、粉砂岩为主.砾岩少见,仅分布于滨湖地区。砂岩的成分成熟度和结构成熟度中等,但一般比河流相略高。由岸向湖心,粘土岩比例增加。粘土岩中含丰富的有机质,是良好的生油岩系。 ②沉积构造类型多样,粘土岩中多发育水平层理、块状层理,砂岩中发育交错层理、波纹交错层理,同时可见对称及不对称波痕、泥裂、雨痕及生物搅混构造。 ③生物化石丰富,常见介形虫、叶肢介、瓣腮类、腹足类动物化石及高等和低等植物化石。

万有引力定律知识点(含答案)

万有引力定律 一、开普勒行星运动定律 开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的 基础上概括出的,给出了行星运动的规律。 K值只取决于中心 天体的质量 通常椭圆轨道近似 处理为圆轨道 也适于用卫星绕行 星的运动 1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连 线上,引力的大小及物体的质量m1和m2的乘积成正比、及它们之间距离 r的二次方成反比.

2.表达式:,G为引力常量:G=6.67×10-11N·m2/kg2. 3.适用条件 (1)公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点. (2)质量分布均匀的球体可视为质点,r是两球心间的距离. 三、环绕速度 1.第一宇宙速度又叫环绕速度. 得:=7.9 km/s. 第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度. 第二宇宙速度(脱离速度):v2=11.2 km/s,使物体挣脱地球引力束缚的最小发射速度. 第三宇宙速度(逃逸速度):v3=16.7 km/s,使物体挣脱太阳引力束缚的最小发射速度. 特别提醒: (1) 两种周期——自转周期和公转周期的不同 (2)两种速度——环绕速度及发射速度的不同,最大环绕速度等于最小发射速度 (3)两个半径——天体半径R和卫星轨道半径r的不同 四、近地卫星、赤道上物体及同步卫星的运行问题 1.近地卫星、同步卫星、赤道上的物体的比较

ω3=ω自 = GM R+h3 a3=ω23(R+h) = GM R+h2 五、天体的追及相遇问题 两颗卫星在同一轨道平面内同向绕地球做匀速圆周运动,a卫星的角速度为ωa,b卫星的角速度为ωb,若某时刻两卫星正好同时通过地面同一点正上方,相距最近(如图甲所示)。当它们转过的角度之差Δθ=π,即满足ωaΔt-ωbΔt=π时,两卫星第一次相距最远(如图乙所示)。 图甲图乙 当它们转过的角度之差Δθ=2π,即满足ωaΔt-ωbΔt=2π时,两卫星再次相距最近。 经过一定的时间,两星又会相距最远和最近。 1. 两星相距最远的条件:ωaΔt-ωbΔt=(2n+1)π(n=0,1,2,…) 2. 两星相距最近的条件:ωaΔt-ωbΔt=2nπ(n=1,2,3…)

相关文档
相关文档 最新文档