文档库 最新最全的文档下载
当前位置:文档库 › 基于DEM的水文分析

基于DEM的水文分析

基于DEM的水文分析
基于DEM的水文分析

基于DEM的水文分析

介绍:基于基于DEM的水文分析的主要内容是利用水纹分析工具提取水流方向、汇流累积量、水流量积量、水流长度、河流网络、河网分级以及流域分割。

(一)无洼地DEM生成

DEM被认为是比较光滑的地形表面的模拟,但是由于内插的原因以及一些真实地形(如采石场或喀斯特地貌)的存在,使得DEM表面存在着一些凹陷的区域。这些区域在进行地表水流模拟时,由于低高程栅格的存在,从而使得在进行水流流向计算时得到不合理的或错误的水流方向,因此,在进行水流方向的计算之前,应该首先对原始DEM数据进行洼地填充,得到无洼地的DEM。

数据:DEM数据dem

(1)原始DEM数据提取水流方向

执行[ Arctoolbox ] >> [Spatial Analyst Tools]>>[Hydrology]>>[Flow Direction ]

在[ Flow Direction ]对话框中,“Force all edge cells to flow outward(Optional)”的复选框前打钩,则所有在DEM数据边缘的栅格的水流方向全部流出DEM数据区域(默认为不选择)。

“drop raster”是该栅格在其水流方向上与其临近的栅格之间的高程差与距离的比值,以百分比的形式记录,它反映了在整个区域中最大坡降的分布情况(可选步骤)。

(2)洼地计算

执行[ Arctoolbox ] >> [Spatial Analyst Tools]>>[Hydrology] >>[Sink]。

(3)洼地深度计算

1、双击Hydrology工具集中的Watershed工具。

2、

3、

(4)计算每个洼地所形成的贡献区域的最低高程

a.打开Spatial Analyst Tools工具箱中Zonal工具集,双击Zonal Statistic工具,

(5)计算每个洼地贡献区域出口的最低高程即洼地出水口高程

a 打开Spatial Analyst Tools工具箱中Zonal工具集,双击Zonal fill工具

(6)计算洼地深度

a 在Spatial Analyst模块的下拉箭头。选择Raster Calculator命令,弹出Raster

Calculator对话框:

(7)洼地填充

洼地填充是无洼地DEM生成的最后一个步骤。经过洼地提取之后,可以确定原始DEM上是否存在洼地,若有洼地,则需要进行填充。洼地深度的计算为填充阀值的设置提供了依据。

a.执行[ Arctoolbox ] >> [Spatial Analyst Tools]>>[Hydrology] >>[Fill]。

b.在Z limite文本框中输入阀值。在洼地填充果过程中,洼地深度大于阀值的地方

不填充,作为真实地形保留。系统默认情况是不设阀值。即所有的洼地区域将

被填平。

注:当一个洼地被填平之后,这个区域与附近区域再进行洼地计算,可能还会形成新的洼地。因此,洼地填充是一个不断反复的过程,直到所有的洼地都被填平、新的洼地不再产生为止。

(二)汇流累积量

汇流累积量数值矩阵表示区域地形没点的流水累积值。在地表径流模拟过程中,汇流累积量是基于水量方向数据计算得到的。汇流累积量的基本思想:以规则格网表示的数字地面高程模型每点处有一个单位的水量,按照自然水流从高处往低处的自然规律,根据区域地形的水流方向数据计算每点处所流过的水流量数值,便得到了该区域的汇流累积量。又水流方向数据到汇流累积量计算的过程

执行[ Arctoolbox ] >>[Spatial Analyst Tools]>>[Hydrology] >>[ Flow Accumulation ]。

a 在input weight raster 文本框中输入权重数据,权重数据一般是降水、土壤以及植被等影响径流分布不平衡因素综合而成,对每一个栅格权重能更详细模拟该区域的地表特征。如果五权重数据,系统默认所有栅格的权重为1

(三)水流长度

执行[ Arctoolbox ] >> [Spatial Analyst Tools]>>[Hydrology] >>[ Flow Length ]。

计算方向分别为Downstream(顺流计算)和Upstream(朔流计算)。在“Input weight raster”文本框中输入权重数据,Downstream记录着其沿着水流方向到下游流域出水口中最长距离所流经的栅格数;Upstream则记录着其沿着水流方向到上游栅格的最长的距离的栅格数。

(四)河网的生成

(1) 提取河流网络栅格

①设定阈值。阈值的设定在河网的提取过程是很重要的,并且直接影响到河网的提取结果。阈值的设定应遵循科学、合理的原则。首先应该考虑到研究的对象,研究对象中的沟谷的最小级别,不同级别的沟谷所对应的不同的阈值;其次考虑到研究区域的状况,不同的研究区域相同级别的沟谷需要的阈值也是不同的。

②提取栅格河流网络

方式一:打开Arctoolbox,运行工具[Spatial Analyst Tools]>>[Map Algebra]>>[单输

出地图代数]。在[地图代数表达式]中输入公式:con (flowacc>800,1),[输出栅格]

指定为:StreamNet。计算的思想:利用所设定的栅格阈值进行条件查询并将查询结果赋予新的栅格数据中。通过此操作将流水累积量栅格[flowacc]中栅格单元值(流水累积量)大于800 的栅格赋值为1,而小于或等于设定阈值的栅格属性值赋为无数据,从而得到河流网络栅格[StreamNet]。

方式二:在Arc Map 中,点击空间分析模块>>计算器,在计算器中输入表达式:con (flowacc>800,1)。

(2) 栅格河流网络矢量化

执行[ Arctoolbox ] >> [Spatial Analyst Tools]>>[Hydrology] >>[ stream to feature ]

(3)stream link的生成

Stream link记录着河网中的一些节点之间的连接信息(河网的结构信息)。Stream link 的每条弧段连接着两个作为出水点或汇合点的结点,或者连接着作为出水点的结点和河网起始点。通过Stream link的计算,即得到每一个河网弧段的起始点和终止点。同样,也可以得到该汇水区域(流域)的出水口。

执行[ Arctoolbox ] >> [Spatial Analyst Tools]>>[Hydrology] >>[ Stream link ]。

经过计算,它将栅格河网在汇合点栅格处分割成河网片段,并将片断进行记录,在属性表中除了记录该片段的ID号之外,还记录着每个片段所包含的栅格数。

[ Stream link ]结果可利用[ stream to feature ]转换为矢量数据。

(5)河网分级

在ArcGIS的水文分析中,提供两种常用的河网分级方法:Strahler分级和Shreve分级。对于Strahler分级来说,它将所有河网弧段中没有支流的河网弧段分为第1级,两个1级河网弧段汇流成的河网弧段为第2级,如此下去分别为第3级,第4级,一直到河网出水口。在这种分级中,当且仅当同级别的两条河网弧段汇流成一条河网弧段时,该弧段级别才会增加,对于那些低级弧段汇入高级弧段的情况,高级弧段的级别不会改变,这也是比较常用的一种河网分级方法。对于Shreve分级而言,其第1级河网的定义与Strahler分级是相同的,所不同的是以后更高级别的河网弧段, 其级别的定义是由其汇入河网弧段的级别之和执行[ Arctoolbox ] >> [Spatial Analyst Tools]>>[Hydrology] >>[ Stream Order ]。

[ Stream Order ]结果可利用[ stream to feature ]转换为矢量数据

(五) 流域分析

(1)流域盆地的确定

流域盆地是由分水岭分割而成的汇水区域。它通过对水流方向数据的分析确定出所有相互连接并处于同一流域盆地的栅格。流域盆地的确定首先是要确定分析窗口边缘的出水口的位置,也就是说,在进行流域盆地的划分中,所有的流域盆地的出水口均处于分析窗口的边缘。当确定了出水口的位置之后,也就是找出所有流入出水口的上游栅格的位置。

执行[ Arctoolbox ] >> [Spatial Analyst Tools]>>[Hydrology] >>[ Basin ]。

(2)集水流域的生成

经过上一步得到的流域盆地是一个比较大的流域盆地,在很多的水文分析中,还需要基于更小的流域单元进行分析,那么就需要进行流域的分割。而流域的分割首先是要确定小级别的流域的出水口的位置。

①汇水区出水口的确定

小级别的流域出水口的位置,可以用[Hydrology]工具集中的[Snap Pour Point] 工具寻找。思想: 利用point点栅格数据寻找潜在的出水点,并赋属性值。在该点位置上在指定距离内在汇流累积量的数据层上搜索那些具有较高汇流累积量栅格点的位置,这些搜索到的栅格点就是小级别的流域的出水点。也可以利用已有的出水点的矢量数据。

如果没有出水点的栅格或矢量数据,可以用上述生成的stream link数据作为汇水区的出水口数据。因为stream link数据中隐含着河网中每一条河网弧段的联结信息,包括弧段的起点和终点等,相对而言,弧段的终点就是该汇水区域的出水口所在位置。

②集水流域的生成

低级的集水区的生成,可以使用[ Hydrology ]工具集中的[ Watershed ]工具生成。其思想如下:先确定一个出水点,也就是该集水区的最低点,然后结合水流方向数据,分析搜索出该出水点上游所有流过该出水口的栅格,直到所有的该集水区的栅格都确定了位置,也就是搜索到流域的边界——分水岭的位置。

通过stream link 作为流域的出水口数据所得到的集水区域是每一条河网弧段集水区域也就是要研究的最小沟谷的集水区域,它将一个大的流域盆地按照河网弧段将其分为一个个的小的集水盆地。

打开[空间分析] 工具栏,执行命令:[空间分析]>>[转换]>>[栅格到要素] 将流域栅格转换成为矢量图层,并进行符号设置。

(完整word版)Arcgis操作第九章水文分析

第九章 水文分析 水文分析是DEM 数据应用的一个重要方面。利用DEM 生成的集水流域和水流网络,成为大多数地表水文分析模型的主要输入数据。表面水文分析模型研究与地表水流有关的各种自然现象例如洪水水位及泛滥情况,划定受污染源影响的地区,预测当某一地区的地貌改变时对整个地区将造成的影响等。 基于DEM 地表水文分析的主要内容是利用水文分析工具提取地表水流径流模型的水流方向、汇流累积量、水流长度、河流网络(包括河流网络的分级等)以及对研究区的流域进行分割等。通过对这些基本水文因子的提取和分析,可再现水 流的流动过程,最终完成水文分析过程。 本章主要介绍ArcGIS 水文分析模块的应用。ArcGIS 提供 的水文分析模块主要用来建立地表水的运动模型,辅助分析地 表水流从哪里产生以及要流向何处,再现水流的流动过程。同 时,通过水文分析工具的应用,有助于了解排水系统和地表水 流过程的一些基本概念和关键过程。 ArcGIS 将水文分析中的地表水流过程集合到ArcToolbox 里,如图11.1所示。主要包括水流的地表模拟过程中的水流 方向确定、洼地填平、水流累计矩阵的生成、沟谷网络的生成 以及流域的分割等。 本章1至5节主要是依据水文分析中的水文因子的提取过 程对ArcGIS 中的水文分析工具逐一介绍。文中所用的DEM 数据在光盘中chp11文件夹下的tutor 文件夹里面,每个计算 过程以及每一节所产生的数据存放在tutor 文件夹的result 文件 夹里面,文件名与书中所命名相同,读者可以利用该数据进行 参照练习。本章最后一节还提供了三个水文分析应用的实例。 9.1 无洼地DEM 生成 DEM 一般被认为是比较光滑的地形表面的模拟,但是由于内插的原因以及一些真实地形(如喀斯特地貌)的存在,使得DEM 表面存在着一些凹陷的区域。这些区域在进行地表水流模拟时,由于低高程栅格的存在,使得在进行水流流向计算时在该区域得到不合理的或错误的水流方向。因此,在进行水流方向的计算之前,应该首先对原始DEM 数据进行洼地填充,得到无洼地的DEM 。 洼地填充的基本过程是先利用水流方向数据计算出DEM 数据中的洼地区域,然后计算出这些的洼地区域的洼地深度,最后以这些洼地深度为参考而设定填充阈值进行洼地填充。 9.1.1 水流方向提取 水流方向是指水流离开每一个栅格单元时的指向。在ArcGIS 中通过 将中心栅格的8个邻域栅格编码,水流方向便可由其中的某一值来确定, 图11.2 水流流向编码 图11.1 ArcToolBox 中的 水文分析模块

水文随机分析

基于小波分析方法的水文随机模拟 摘要:本文对小波分析进行了简要介绍,包括小波分析的发展历史、分析方法、应用领域以及发展现状,在此基础之上介绍了小波分析在水文随机模拟中的应用,最后,对小波分析方法在今后水文水资源领域中的应用进行了展望。总而言之,小波分析在水文预报、水文随机模拟、水文多时间尺度分析、水文时间序列变化特性分析等很多方面具有很大的研究价值和发展前景。 关键词:小波分析;不确定性;水文随机模拟 1引言 由于水文系统较为复杂,受制于气候和人为活动等多因素的影响,所以目前没有一个准确的数学物理方程能够描述并求解这一过程,而传统的随机模型结构简单、参数少,能描述水文序列的主要统计特性。但通过数理统计方法得到的参数描述水文过程过于粗糙,信息量少。小波分析是一种多分辨率分析方法,能充分展示水文序列的精细结构,挖掘更多的信息,可揭示水文系统的多时间尺度特性,较方便识别出水文时间序列中隐含的主要周期。通过小波消噪技术可把高频成分有效分离,从两方面分别研究其水文序列特性。鉴此,本文提出了基于小波分析的随机水文模型。 1.1小波分析的分析方法及发展历史 小波分析或小波转换是指用有限长或快速衰减的、称为母小波的振荡波形来表示信号。该波形被缩放和平移以匹配输入的信号。 小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。随后,1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,小波分析自此才开始蓬勃发展起来。小波变换与Fourier变换、窗口Fourier变换相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析,解决了Fourier变换不能解决的许多困难问题,因此,小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。 1.2小波分析的应用领域及发展现状 事实上小波分析的应用领域十分广泛,包括数学领域的许多学科、信号分析、图像处理、理论物理、医学成像与诊断、地震勘探数据处理、大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等;

ArcGIS之水文分析

ArcGIS教程之DEM水文分析详细图文教程,本教程和之前的两个教程有关联的,数据上是使用上一个教程的结果,步骤相互联系!最后会提供给大家数据和教程的链接!水文分析需要: 1.理解基于DEM数据进行水文分析的基本原理。 2.利用ArcGIS的提供的水文分析工具进行水文分析的基本方法和步骤。 下面开始教程: 工具/原料 ?软件准备:ArcGIS Desktop 10.0---ArcMap(spatial Analyst模块) ?数据准备:DEM(使用由本人前面的教程【ArcGIS地形分析--TIN及DEM 的生成,TIN的显示】中使用的原始数据。 方法/步骤 1.数据基础:无洼地的DEM 在ArcMap中加载 DEM数据,右击DEM图层,点击缩放至图层,显示全部。 2.在【ArcToolbox】中,(要打开扩展模块)执行命令[SpatialAnalyst工 具]——>[水文分析]——> [填洼],按下图所示指定各参数,其中Z限制——填充阈值,当设置一个值后,在洼地填充过程中,那些洼地深度大于阈值的地方将作为真实地形保留,不予填充;系统默认情况是不设阈值,也就是所有的洼地区域都将被填平。之后点击确定即可。 3.确定后执行结果得到无洼地的DEM数据[Fill_dem1]

4.关键步骤:流向分析 在上一步的基础上进行,在【ArcToolbox】中,执行命令[SpatialAnaly st工具]——>[水文分析]——>[流向],按下图所示指定各参数: 5.确定后执行完成后得到流向栅格[Flowdir_fill1],理解代表什么含义! 6.计算流水累积量 在上一步的基础上进行,在【ArcToolbox】中,执行命令[SpatialAnaly st工具]——>[水文分析]——>[流量],按下图所示指定各参数: 1.7 确定后执行完成得到流水累积量栅格[flowacc_flow1] 如图: 7.提取河流网络 首先,提取河流网络栅格。 在上一步的基础上进行,打开【Arctoolbox】,运行工具[Spatial Anal yst 工具]——>[地图代数]——>[栅格计算器],在[地图代数表达式]中输入公式:Con(Flow Accumulation1>800,1),(这里的Flow Accumulat ion1要以上一步得到的文件名为准,注意是Con,不是con,大写第一个字母,不然出错)如图: [输出栅格]指定为:StreamNet保存路径和文件名任意)

水文学在环境工程实践中的应用与发展

水文学在环境工程实践中的应用与发展 摘要:环境永远是人类的主题,而水资源作为环境中的重点,人类生活生产必须,越来越得到重视。本文在此背景下阐述了水文学的概念、环境工程专业的概念和两者之间的联系,指出来水文学在环境工程实践中的应用与发展,并以具体事例来说明河流与湖泊纳污能力(水环境容量 和区域水资源环境调度工程。 关键词:水文学环境工程应用与发展水环境容量水资源调度水环境保护 正文: 一、引言: 钱塘江决堤! 本月初以来,受今年梅雨季节强降水的影响,四轮强降雨持续侵袭浙江。目前因洪涝灾害造成直接经济损失108亿元,据浙江省水利网公布数据,本次洪涝的严峻仍然导致了一批水利设施受损,水利工程损失达25亿元。洪涝之下水利基础设施的脆弱再度敲响警钟,农田水利建设滞后仍然是不争的事实。 然而就在一个月前,长江中下游地区面临严峻的旱灾。那段时间,长江中下游地区大旱,鄱阳湖、洞庭湖等水系都遭遇有历史记录以来最大旱灾,湖区变为“草原”,鱼虾蟹被活活晒成“肉干”。在人们还在为旱情忧心忡忡、尚未从抗旱中缓过神来之时,暴雨又席卷南方多个城市,洪涝灾害又使得许多地方成为“泽国从旱灾到洪灾,怨天还是怨人? 二、环境工程专业开展水文学的原因 就这次的水灾,专家可能会说,暴雨在短时间内带来的大量降水,远远超过了城市排水管道能够承载的极限,以“常量”的管道应对“非常量”的降水,是不可能完成的任务。 面对今年来中国乃至国际上的一次次灾害,人类真的无能为力么? 环境工程作为环境旗帜下的一门学科,就在为人类服务,为环境服务这条道路上努力地行走者。这就需要环境工程的专业化,技术化,成熟化,水文学作为环境工程选择的一门课程,自有其原因。 1、当前局势下的水文学 20世纪50 年代以来,社会生产规模空前扩大,科学技术进入了新的发展时期,并正在出现新的技术革命,人类改造自然的能力迅速增强,人与水的关系已经由古代的趋利避害,和近代较低水平的兴利除害,发展到了现代较高水平的兴利除害的新阶段。这个新阶段赋予水文科学以新的动力和新的特色。 首先,由于人类对水资源的突出需求,水文科学的研究领域正在向着为水资源最优开发利用的方向发展,以期为客观评价、合理开发、充分利用和保护水资源提供科学依据; 其次,大规模的人类活动对自然水体,进而对自然环境正在产生多方面的影

随机方法在水文学的应用

随机方法在水文学中的应用 一、概述 水文现象随时间变化的过程称为水文过程或水文序列,水文现象是一种自然现象,具有确定性变化规律和随机性变化规律。这些确定性和随机性的变化规律通过水文过程可以较为清晰的展示出来。水文过程中的确定性变化规律突出表现在过程中有年、日的变化。如日、旬、月径流过程,明显存在以年为周期的变化;逐时气温和蒸发量过程存在一日为周期的变化。这是由于影响水文过程的确定性因素——气候因素存在以年为周期的变化和某些气象因素存在以日为周期的变化之故。水文过程在表现出确定性变化规律的同时,更多的表现出随机性变化特征。如每一年的的月平均流量过程不相同,形状和数量相差较大;水文过程内前后期要素之间好似变化无序,时大时小,但它们之间存在相依关系,2月平均流量与1月平均流量相依,后一年与前一年径流量相依。随机性变化特征是水文过程形成与演变中众多影响因素所致。这些影响的无限复杂性和多样性,致使水文过程不断发生着各种各样情形,表现出随机变化特征。下图为某水文站月平均流量变化过程,其中既有确定性变化,又有随机性变化。 350 300 250 200 150 100 50 1996年1月7月1997年1月7月1998年1月7月 图表1某水文站月平均流量过程 水文过程既然表现出随机变化特征,因此它是一个随机过程,又称为随机水文过程。将随机过程理论和时间序列分析技术引入水文学领域,广泛展开水文过程随机变化特性研究并不断把科学成果用于水文水资源的实际,就此形成一门重要的学科——随机水文学。随机水文学是以水文过程为研究对象、以随机过程理论和时间序列分析技术为手段的一门学科。描述水文过程的数学模型,称为随机水文模型或随机模型。 随即水文学的基本任务是在全面随机分析的基础上对随机水文过程建立起反映水文现象主要变化特征的随机水文模型,根据建立的模型,即可模拟大量水文序列,也可做统计预测,以满足水利水电工程规划、设计、运行及水文水资源水环境各种分析、计算和研究的需要。在这些过程中大量的用到随机方法,下面介绍随机水文学方法及随机方法在水文学中应用。

第十一章 电分析导论

第十一章电分析导论 一、名词术语: 电化学分析法:电化学分析法又称为电分析化学法,它是应用电化学原理和实验技术建立起来的一类分析方法的总称。 平衡电位:前面所述平衡状态下的电位,电位与相应组分浓度符合Nernst关系。原电池:能自发地将化学能转化为电能的装置. 电解池:需要消耗外部电源提供的电能,使电池内部发生化学反应装置。 极化:当有较大电流通过电池时,电极的实际电极电位偏离平衡电极电位的现象称为电极的极化。 浓差极化:由于电极反应过程中电极表面附近溶液的浓度和主体溶液的浓度发生了差别所引起的极化。 电化学极化:由于电极反应较慢引起的极化现象,即某些动力学因素决定的。工作电极:在测试过程中,有较大电流通过,溶液的主体浓度发生显著变化的电极称为工作电极。 指示电极:能反映溶液中待测离子的活度或浓度的电极,在测试过程中,溶液主体浓度不发生变化的电极称为指示电极。 参比电极:在测量过程中,具有已知、恒定电位的电极称为参比电极。 极化电极:在电解过程中,插入试液的电极的电位完全随外加电压的变化而变化,或当电极的电位改变很大而电流改变很小时,这一类电极称为极化电极。去极化电极:当电极电位不随外加电压的变化而变化,或电极电位改变很小而电流改变很大时,这类电极称为去极化电极。 膜电极:具有敏感膜并能产生膜电位的电极。 膜电位:与特定的离子活度的关系符合能斯特公式。 扩散电流:由扩散传质引起的电流称为扩散电流。 对流电流:由对流传质引起的电流叫对流电流。 迁移电流:由电迁移引起的电流叫迁移电流。 二.问题: 1、理解原电池、电解池的原理 原电池: 阳极:发生氧化反应的电极(负极); 阴极:发生还原反应的电极(正极); 阳极≠正极 阴极≠负极 电极电位较正的为正极,电子由负极流向正极。 电解池: 阳极:发生氧化反应的电极(正极); 阴极:发生还原反应的电极(负极); 阳极=正极 阴极=负极 电子由阳极流向阴极 2、电池表示方法及电极电位、电动势计算(P226-229) 1)阳极及其有关的溶液都写在左边;

ARCGIS水文分析

ARCGIS水文分析 水文分析是DEM数据应用的一个币要方式。利用DEM生成的集水流域和水流网络,成为大多数地表水文分析模型的卞要输入数据。表ICI水文分析模型应用十研究与地表水流有关的各种自然现象如洪水水位及泛滥情况,或者一划定受污染源影响的地区,以及预测当某一地区的地貌改变时一对整个地区将造成的影响等,应用在城市和区域规划、农业及森林、交通道路等许多领域,对地球表ICI形状的理解也具有}一分要的b,义。这些领域需要知道水流怎样流经某一地区,以及这个地区地貌的改变会以什么样的方式影响水流的流动。 基十DEM的地表水文分析的卞要内容是利用水文分析土具提取地表水流径流模型的水流方向、汇流祟积量、水流长度、河流网络(包括河流网络的分级等)以及对研究区的流域进行分割等。通过对这些基木水文因子的提取和基木水文分析,可以在DEM表ICI之 上再现水流的流动过程,最终完成水文分析过程。 主要介绍ArcGIS水文分析模块的应用。ArcGIS提供的水文分析模块卞要用来建立地表水的运动模型,辅助分析地表水流从哪里产生以及要流向何处,再现水流的流动过程。同时,通过水文分析土具的应用,也可以有助了解排水系统和地表水流过程的一些基木的概念和关键的过程,以及怎样通过ArcGIS水文分析土具从DEM数据上获取更多的水文信息。 ArcGIS9将水文分析中的地表水流过程集合到ArcToolbox里,卞要包括水流的地表模拟过程中的水流方向确定、汁地填平、水流祟不}一矩阵的生成、沟谷网络 的生成以及流域的分割等。 1.无洼地DEM生成

DEM被认为是比较光滑的地形表n的模拟,但是由十内插的原因以及一些真实地形(如喀斯特地貌)的存在,使得DEM表ICI存在着一些}u}陷的区域。那么这些区域在进行地表水流模拟时一,由十低高程栅格的存在,从而使得在进行水流流向不}一算时一在该区域的得到不合理的或错误的水流方向,因此,在进行水流方向的不}一算之前,应该首先对原始DEM数据进行汁地填充,得到无洼地的DEMO 水流方向是指水流离开何一个栅格单儿时一的指向。在ArcGIS个邻域栅格编码,水流方向便可以其中的某一值来确定,栅格方向编码例如:如果中心栅格的水流流向I,边,则其水流方向被赋中通过将中心栅格的8值为160输出的方向值以2的幂值指定是因为存在栅格水流 方向不能确定的情况,此时一须将数个方向值相加,这样在后续处理中从相加结果便可以确定相加时一中心栅格的邻域栅格状己。 1.2水流流向编码 水流的流向是通过不}一算中心栅格与邻域栅格的最大距离权落差来确定。距离权落差是指中心栅格与邻域栅格的高程差除以两栅格间的距离,栅格间的距离与方向有关,如果邻域栅格对中心栅格的方向值为2, 8, 32, 128,则栅格间的距离为2的开平方根,否则距离为1。 1.1.2洼地计算 注地区域是水流方向不合理的地方,可以通过水流方向来判断那些地方是注地,然后再对注地进行填充。有一点必须清楚的是,并不是所有的注地区域都是由十数 据的误差造成的,有很多洼地区域也是地表形态的真实反映,因此,在进行洼地填充之前,必须计算 注地深度,判断哪些地区是由十数据误差造成的注地而哪些地区又是真实的地表形态,然后在进行注地填充的过程中,设置合理的

水文学及水资源

水文学及水资源(081501) (Hydrology and Water Resources) 学科门类:工学(08)一级学科:水利工程(0815) 河海大学水文学及水资源学科创建于1952年。1981年获学士、硕士和博士学 位授予权。1988年、2002年、2007年连续三次被评为国家重点学科。2004年被批准设立水文水资源与水利工程科学国家重点实验室,2005年被批准设立水资源 高效利用与工程安全国家工程研究中心。现有教师75人,教育部长江学者“特聘 教授”1人,教育部长江学者与科技创新团队一个,教授28人,副教授22人,具有博士学位者54人。本学科设置了水文物理规律模拟及水文预报等7个研究方向。 2000年以来主持与承担国家“973”、“863”、自然科学基金、国家科技攻关和直接 服务于国民经济建设的800余项研究项目,获国家科技奖5项,部省级科技奖50多项。学科瞄准国际前沿和国家重大需求,特色显著,基础雄厚,在国内处于领 先地位,在国际上也具有重要的影响。研究生就业部门主要有科研院所、高等学 校、流域管理机构、勘测设计部门、环境保护和地矿部门等。 一、培养要求 培养面向现代化,品行端正,身心健康,学风严谨,具有强烈的事业心和创 新精神,在水文学及水资源科学方面掌握坚实宽广的基础理论和系统的专门知识,具备独立从事科学研究和专门技术工作的能力,适应我国社会主义建设需要的德 智体美全面发展的高层次专业人才。 二、主要研究方向 1.水文物理规律模拟及水文预报 (Watershed Hydrological Simulation and Forceasting)2.水文不确定性理论与应用(Theory of Hydrological Uncertainty and Application)3.水资源规划与管理(Water Resources Planning and Management) 4.地下水数值模拟及开发利用(Numerical Simulation and Utilization of Groundwater )5.水信息理论与技术(Theory and techniques of hydroinformatics) 6.生态水文与水环境保护(Ecohydrology and Water Environment Protection) 7.应用水文气象(Applied Hydrometeorology ) 三、学分要求 总学分为30学分,其中学位课程为18学分,非学位课程为9学分,教学环节3学分。 四、课程设置

ArcGIS之水文分析

ArcGIS之水文分析

ArcGIS教程之DEM水文分析详细图文教程,本教程和之前的两个教程有关联的,数据上是使用上一个教程的结果,步骤相互联系!最后会提供给大家数据和教程的链接!水文分析需要: 1.理解基于DEM数据进行水文分析的基本原理。 2.利用ArcGIS的提供的水文分析工具进行水文分析的基本方法和步骤。 下面开始教程: 工具/原料 ?软件准备:ArcGIS Desktop 10.0---ArcMap(spatial Analyst模块) ?数据准备:DEM(使用由本人前面的教程【ArcGIS地形分析--TIN及DEM 的生成,TIN的显示】中使用的原始数据。 方法/步骤 1.数据基础:无洼地的DEM 在ArcMap中加载 DEM数据,右击DEM图层,点击缩放至图层,显示全部。

2.在【ArcToolbox】中,(要打开扩展模块)执行命令[SpatialAnalyst工 具]——>[水文分析]——> [填洼],按下图所示指定各参数,其中Z限制——填充阈值,当设置一个值后,在洼地填充过程中,那些洼地深度大于阈值的地方将作为真实地形保留,不予填充;系统默认情况是不设阈值,也就是所有的洼地区域都将被填平。之后点击确定即可。 3.确定后执行结果得到无洼地的DEM数据[Fill_dem1]

4.关键步骤:流向分析 在上一步的基础上进行,在【ArcToolbox】中,执行命令[SpatialAnaly st工具]——>[水文分析]——>[流向],按下图所示指定各参数: 5.确定后执行完成后得到流向栅格[Flowdir_fill1],理解代表什么含义!

第五章极谱与伏安分析法习题资料讲解

第五章极谱与伏安分 析法习题

第五章极谱与伏安分析法 一、简答题 1.伏安和极谱分析时一种特殊情况下的电解形式,其特殊表观在哪些方面? 2.极谱分析法采用的滴汞电极具有哪些特点?在极谱分析法中为什么常用三电极系统? 3.什么是极化电极?什么是去极电极?试结合极谱分析加以说明。 4.何谓半波电位?它有何性质和用途? 5.何谓极谱扩散电流方程式(也称尤考维奇方程式)?式中各符号的意义及单位是什么? 6.影响极谱扩散电流的因素是什么?极谱干扰电流有哪些?如何消除? 7.极谱的底液包括哪些物质?其作用是什么? 8.直流极谱法有哪些局限性?应从哪些方面来克服这些局限性? 9.试比较单扫描极谱法及循环伏安法的原理、特点和应用等方面的异同点。 10.试述脉冲极谱法的基本原理,为什么示差脉冲极谱法的灵敏度较高? 11.极谱催化波有哪些类型?各类催化波产生的过程有何不同? 12.试述溶出伏安法的基本原理及分析过程,解释溶出伏安法灵敏度比较高的原因。 13.脉冲极谱的主要特点是什么? 14.单扫描极谱与普通极谱的曲线图形是否有差别?为什么? 15. 在极谱分析中,为什么要使用滴汞电极? 16. 在极谱分析中,影响扩散电流的主要因素有那些?测定中如何注意这些影响因素?

17.为何说极谱分析是一种特殊的电解分析? 18.在极谱分析中,为什么要加入大量支持电解质? 19.极谱分析的定量依据是什么?有哪些定量方法? 20.影响扩散电流的主要因素有哪些?测定时,如何注意这些影响影响因素? 二、填空题 1.883型笔录式极谱仪由三部分组成,即主机、记录仪和。 2.滴汞电极的滴汞面积很,电解时电流密度很,很容易发生极化,是极谱分析的。 3.极谱极大可由在被测电解液中加入少量物质予以抑制,加入 可消除迁移电流。 4. 是残余电流的主要部分,这种电流是由于对滴汞电极和待测液的 形成的,所以也叫。 5.选择极谱底液应遵循的原则:好;极限扩散电流与物质浓度的关系;干扰少等。 6.我国生产的示波极谱仪采用的滴汞时间间隔一般为7s,在最后 s才加上我的以观察i-v曲线。 7.示波极谱仪采用三电极系统是为了确保工作电极的电位完全受 的控制,而参比电极的电位始终保持为的恒电位控制体系,所以i-v即。 8. 单扫描极谱法施加的是电压。循环伏安法施加的是电压,其所用的工作电极是的微电极(悬汞电极)。

如何使用ArcGIS进行水文分析(完整版)

如何使用ArcGIS 进行水文分析 对于做水利的朋友来说有时候需要进行水文的分析,今天给大家分享一下如何通过ArcGIS 进行水文分析,材料可以通过水经注万能地图下载器进行下载。工具/ 原料 水经注万能地图下载器ArcGIS 方法/ 步骤 1. 打开水经注万能地图下载器,框选上需要进行水文分析的地方并下载(图1) 图1 2.下载完成后会自动导出成tif 格式的高程DEM数据,将其加载到ArcGIS 内(图2)。【说明】:此处下载生成的tif 格式的图片即为大家常说的DEM数据,直接加载到ArcGIS 内即可使用。

图2 3. 点击“自定义”→“扩展模块”(图3),在弹出的对话框中将“空间分析” Spatial Analyst )工具勾选上(图4)。 图3

图4 4. 在ArcToolbox 中点击“ Spatial Analyst 工具”→“水文分析”→“填洼” (图5),在弹出的“填洼”对话框中按图 6 进行设置。其中Z限制——填充阈值,当设置一个值后,在洼地填充过程中,那些洼地深度大于阈值的地方将作为真实地形保留,不予填充;系统默认情况是不设阈值,也就是所有的洼地区域都将被填平。【特别说明】:为了保证最终分析成功,在最终的结果之前,所有输出的数据都默认保存名称和路径,这就需要我们记清楚哪个名称是对应的哪个成果,后面会有用。

图5 图6 5. 填洼完成后得到名称为 “ Fill_tif3 的填洼成 果, 在ArcToolbox 工具中点击Spatial Analyst 工具”→“水文分析”→“流向”图7 ),在弹出的“流 向” 对话框中进行如图8 所示的设置,将上一步得到 的 Fill_tif3 ”填洼数据作为

ArcGIS空间分析报告——找出某药材地生长区域

课程:ArcGIS空间分析 实验目的:利用GIS空间分析方法,结合等高线及温度和降水数据,在充分分析某药材的生长习性的情况下,找到其生长区域,从而能够更好的保护该药材的生长环境。 数据来源:本实验所采用的数据均来自ArcGIS地理信息系统空间分析实习教程,数据有:山区等高线数据contour.shp 和山区观测点采集的年平均温度和年总降水数据climate.txt. 实验要求:根据所给条件,确定某区域适合种植这种药材的范围,求出适合种植的面积。 (1)这种药材一般生长在沟谷两侧较近的区域(不超过 500m) (2)这种药材喜阳 (3)生长气候环境为年平均温度10度-12度 (4)年总降水量为550-680mm 实验流程:利用该山区等高线数据生成DEM,基于DEM进行水文分析,提取沟谷网络;基于DEM提取坡向数据,重分类划分阴阳坡。 利用观测点采集的年平均温度和年总降水数据分别进行表面内插,生成年平均温度栅格数据和年总降水栅格数据。提取年平均温度10度-12度的区域和年总降水为

550mm-680mm的区域。 综合叠加分析满足上述4个条件的区域,得到适合该药材生长的区域,并制作专题图,计算该适合区域的面积。实验步骤: 1.利用等高线,构建DEM。首先打开ArcMap,加载等高线数据,在ArcToolbox中,选择【3D Analyst】|【Tin 管理】|【创建Tin】工具,打开工具对话框,生成tin。空间参考依然导入contour相同的坐标系统。 2.将Tin转换成格网DEM,以便于进行表面分析和与其他数据的叠加分析。选择【3D Analyst工具】|【转换】|【由Tin转出】|【Tin转栅格】工具,打开工具对话框。

第十一章 电导分析法

第十一章电导分析法 1.在25℃时,用面积为1.11cm2,相距1.00cm的两个平行的铂黑电极来测定纯水的电导,其理论值为多 少? 解:已知A=1.11cm2, l=1.00cm 查表知,H+、OH-离子的极限摩尔电导率分别为 λH+=349.82×10-4S·m2·mol-1,λOH-=349.82×10-4S·m2·mol-1 纯水的极限摩尔电导率Λm=λH+ +λOH-=547.42×10-4S·m2·mol-1 纯水中氢离子、氢氧根离子的浓度均为10-7mol·L-1,即c=10-4mol·m-3 由纯水的电导率为k=cΛm=5.4742×10-6S·m-1 所以纯水电导率为G=kA/l=5.4742×10-6×1.11×10-2=6.08×10-8S 2.用电导池常数为0.53cm-1的电导池测得某硝酸溶液的电导为22.7mS,计算该硝酸溶液的物质的量的 浓度。 解:电导池常数θ=l/A=0.53cm-1=53m-1, G=22.7mS 由条件,得G=c·Λm/θ, Λm=λH+ +λNO3- 则 6. 28 10 ) 44 . 71 82 . 349 ( 53 10 7. 22 4 3 = ? + ? ? = Λ ? = - - m G c θ mol·m-3 即c=0.0286mol·L-1 3.在电池中,放有两支面积为1.25×10-4m2的平行电极,相距0.105m,测得某溶液的电阻为1995.6Ω, 计算池常数和溶液的电导率。 解:已知A=1.25×10-4m2, l=0.105m, R=1995.6Ω 池常数 840 10 25 .1 105 .0 4 = ? = = - A l θ m-1 由G=1/R=k/θ得到:k=θ/R=840/1995.6=0.421S·m-1 4.某电导池内装有两个直径为4.0×10-2m并相互平行的圆形电极,电极之间的距离为0.12m,若池内盛 满浓度为0.1mol·L-1的AgNO3溶液,并施加20V电压,则所测电流强度为0.1976A。试计算池常数、溶液的电导、电导率和AgNO3的摩尔电导率。 解:已知A=3.14×4×10-4=1.256×10-3m2, l=0.12m, c=0.1mol·L-1=100mol·m-3 池常数θ=l/A=0.12/(1.256×10-3)=95.5m-1 溶液的电导G=i/E=9.88×10-3S 电导率k=G·θ=9.88×10-3×95.5=0.943S·m-1 Λm=k/c=9.43×10-3S·m2·mol-1 5.用一个具有池常数为555m-1的电导池测得饱和AgCl水溶液的电阻值为67953Ω(298K),实验用水的 电导率为8×10-5S·m-1。计算AgCl的溶度积。 解:k 溶液 =θ/R=555/67953=8.167×10-3S·m-1 k AgCl= k溶液-k水=8.167×10-3-8×10-5=8.087×10-3S·m-1 以于AgCl的离解平衡,AgCl==Ag+ + Cl-, a(Ag+)=a(Cl-) k AgCl=a(Ag+)·λAg+ + a(Cl-)·λCl-=a(Ag+) (λAg+ + λCl-) 即8.087×10-3= a(Ag+)× (61.9+76.34)×10-4 则a(Ag+) =0.585mol·m3=5.85×10-4=mol·L-1 K sp-AgCl= a(Ag+)·a(Cl-)=(5.85×10-4)2=3.42×10-7 6.给出下列滴定体系的电导滴定曲线:(1)用KCl滴定AgNO3;(2)用LiCl滴定AgAc. 解:

ArcGIS水文分析

实验四、水文分析-DEM应用 专业年级:地信071姓名:王媛媛学号:06407024 一、实验目的与要求 1.实验目的 水文分析:根据DEM提取河流网络,进行河网分级,计算流水累积量、流向、水流长度、根据指定的流域面积大小自动划分流域。 通过本实验应达到以下目的: 1理解基于DEM数据进行水文分析的基本原理。 ②掌握利用ArcGIS提供的水文分析工具进行水文分析的基本方法和步骤。 2.实验要求 ①了解水文分析工具 2DEM的预处理:填洼与削峰 3流向分析 4计算流水累积量 5计算水流长度(流程) 6提取河流网络 7流域分析 二、实验原理 水文分析基本步骤

①无洼地的DEM DEM被认为是比较光滑的地形表面的模拟,但是由于内插的原因以及一些真实地形(如采石场或喀斯特地貌)的存在,使得DEM表面存在着一些凹陷的区域。这些区域在进行地表水流模拟时,由于低高程栅格的存在,从而使得在进行水流流向计算时得到不合理的或错误的水流方向,因此,在进行水流方向的计算之前,应该首先对原始DEM数据进行洼地填充,得到无洼地的DEM。 ②关键步骤:流向分析―――流向分析原理 水流方向是指水流离开每一个栅格单元时的指向。在ArcGIS中通过将中心栅格的8个邻域栅格编码(D8算法),来确定水流方向。 方向约定如左图:共有八个方向,分别是2的n次方。 水流的流向是通过计算中心栅格与邻域栅格的最大距离权落差来确定的。距离权落差是指中心栅格与邻域栅格的高程差除以两栅格间的距离,栅格间的距离与方向有关,如果邻域栅格对中心栅格的方向值为2、8、32、128,则栅格间的距离为SQRT(2)≈1.414,否则距离为1。如果高程差为正值,则为流出;负值则为流入。 ③汇流累积量 在地表径流模拟过程中,汇流累积量是基于水流方向数据计算而来的。对每一个栅格来说,其汇流累积量的大小代表着其上游有多少个栅格的水流方向最终汇流经过该栅格,汇流累积的数值越大,该区域越易形成地表径流。图有些地方的计算不是太理解 ④水流长度(流程) 水流长度通常是指在地面上一点沿水流方向到其流向起点(终点)间的最大地面距离在水平面上的投影长度。目前水流长度的提取方式主要有两种,一种是顺流计算(Downstream),一种是朔流计算(Upstream)。顺流计算是计算地面上每一点沿水流方向到该点所在流域出水口最大地面距离的水平投影;朔流计算者是计算地面上每一点沿水流方向到其流向起点间的最大地面距离的水平

水文系统不确定性分析方法综述

《水资源系统优化规划与管理》 课程论文 学院: 专业: 姓名: 学号: 任课教师: 2017年1月3日

水文系统不确定性分析方法综述 杨金孟 (山东农业大学水利土木工程学院山东泰安271018 ) 摘要:水文系统是一个复杂的系统,包含了很多不确定性因素,增加了精确模拟和预测水文过程的困难。为了提高计算结果的可靠性,水文系统的不确定性分析已成为当前研究的热点。本文对水文系统不确定性分析方法及应用研究进展进行了分类综述,介绍了它们的基本概念、原理和应用现状,并对值得进一步研究的问题进行了展望。 关键词:水文系统;不确定性分析;方法综述 A Summary on Uncertainty Analysis Methods of Hydrological System Y ANG Jinmeng (College of W ater Conservancy and Civil Engineering,Shandong Agricultural University ,Taian 271018)Abstract: Hydrological system is a complex system with many uncertain factors. These factors are not conductive to the accurate simulation and prediction of hydrological processes. Thus more and more people focus on the uncertainty analysis methods for the hydrological systems to improve the reliability of calculations. In this paper, we summarized the researches and the applications of the uncertainty analysis methods for hydrological systems. Based on the review,we introduced their basic concepts, principles and status of applications and prospected the issues worthy of further research. Keywords:hydrological system; uncertainty analysis; methods summary 1 引言 水文系统研究的基本内容为水在自然界里的运动、变化过程和分布规律,通常以流域或区域作为研究对象,涉及到降雨、蒸散发、地表径流、地下水运动变化及连接地表水和地下水的土壤水的状况等。水文系统的复杂性使得不确定性分析贯穿水循环研究过程的始终,从水文过程监测数据的获取、分析和处理,水文模型的开发、应用等,都伴随自然或人为的不确定性因素。由于水文系统数据本身固有的模糊性和变异性,加之技术和人为因素,使得数据处理具有不确定性,主要表现在正确与错误并存、信息与“噪声”并存以及正常与异常并存,使得对数据分析产生的结论不精确或不可信。 模型是水文系统研究的重要手段,由于多数模型带有明显的主观假设,且参数只能通过实测资料和参数优选得到,在模型结构的选择、参数的率定、方法的优选、目标函数的确定等方面均存在不确定性。因而,不确定性分析在水文系统研究和应用中就显得尤为重要。第23届国际地球物理和大地测量大会上,国际水文科学协会(IAHS)明确提出应减少水文预报中的不确定性,探索水文模拟的新方法,实现水文理论的重大突破。1996年9月由联合国教科文组织开了第三届国际研讨会。会议的主题是:水资源系统的风险、可靠性、不确定性和稳健性;重心是研讨风险、可靠性、不确定性等问题的新途径和未来研究应用的展望。我国1994年在武汉召开了《全国首届水文水资源与水环境科学不确定性研究新理论、新方法学术讨论会》。会后出版了会议论文专著《现代水科学不确定性研究与进展》。近年来,水文系统不确定性研究取得丰硕的成果。本文就水文系统不确定性分析方法简要综述。 2 不确定性分析方法及应用分类

ARCgiss水文提取2

利用ArcGIS水文分析工具提取河网的操作 DEM包含有多种信息,ArcToolBox提供了利用DEM提取河网的方法,但是操作比较烦琐(帮助可参看Hydrologic analysis sample applications),今天结合我自己的使用将心得写出来与大家分享。提取河网首先要有栅格DEM,可以利用等高线数据转换获得。在此基础上,要经过洼地填平、水流方向计算、水流积聚计算和河网矢量转化这几个不步骤。 1.洼地填平 DEM洼地(水流积聚地)有真是洼地和数据精度不够高所造成的洼地。洼地填平的主要作用是避免DEM的精度不够高所产生的(假的)水流积聚地。洼地填平使用ArctoolBox- >Spatial Analysis Tools->Hydrology->Fill工具。 2.水流方向计算 水流方向计算就可以使用上一步所生成的DEM为源数据了(如果使用未经洼地填平处理的数据,可能会造成精度下降)。这里主要使用ArctoolBox->Spatial Analysis Tools->Flow Direction 工具。输入的DEM采用第一步的Fill1_exam1 3.水流积聚计算 这里主要使用ArctoolBox->Spatial Analysis Tools->Flow Accumulation工具流向。栅格数据就是第二步所获得的数据(FlowDir_fill1)。可以看到,生成的水流积聚栅格已经可以看到所产生的河网了。现在所需要做的就是把这些河网栅格提取出来。可以把产生的河网的支流的象素值作为阀值来提取河网栅格。 4.提取河网栅格 使用spatial analyst中的栅格计算器,将所有大于河网栅格阀值的象素全部提取出来。至于这个阀值是多少因具体情况而定。通常是要大于积聚计算后得到栅格的最低河流象素值。这里采用的是500这个值。最后生成只有0、1值的栅格数据。其中1表示是河网,0是非河网。 5.生成河网矢量 这里主要使用ArctoolBox->Spatial Analysis Tools->Stream to Feature工具.Input Stream raster 为第四步只有0、1值的河网栅格。流向栅格使用第二步所生成的栅格数据。 6.矢量河网处理 由于Stream to Feature工具.将所有栅格象素均转为矢量线段。所以要进行处理,方法是利用属性查询的方法把所有GRID_CODE为1的全部选择出来。导出就得到了由dem所生成的河网矢量。 7.处理结果 最后,得到的河网如下图所示。但是由于是栅格转换而来。生成的河网并不是连续的矢量。可以根据需要做简单的处理。

第十章 伏安法和极谱分析法

第十章 伏安法和极谱分析法 (书后习题参考答案) 1.在0.10 mol·L -1 KCl 溶液中锌的扩散电流常数为3.42.问0.00200 mol·L -1 的锌溶液,所得的扩散电流在下列条件下各为多少(微安)?所用毛细管汞滴落时间分别为3.00s ,4.00s 和5.00s ,假设每一滴汞重5.00mg 。 解:平均扩散电流公式为 c m nD i 6 /13 /22 /1605τ = 扩散电流常数42.36052 /1==nD I ,汞滴质量为5mg ,c =0.00200 mol·L -1=2 mol·L -1 (1) τ =3.00S, 3 5= m mg·s -1 则5 .1123)35(42.36 /13/2=???=i μA (2) τ =4.00S, 4 5= m mg·s -1 则 7 .1024)45(42.36 /13/2=???=i μA (3) τ =5.00S, m =1mg·s -1 则94.825142.36 /13 /2=???=i μA 2.某金属离子作极谱分析因得两个电子而还原。该金属离子浓度为0.0002mol·L -1,其平均扩散电流为12.0μA ,毛细管的m 2/3τ1/6值为1.60.计算该金属离子的扩散系数。 解:已知n=2, c =0.000200mol·L -1=0.200mmol·L -1 , 0.12=i μA , 60.16/13/2=τm c m nD i 6 /13/22/1605τ= 于是4 226 /13/21060.9)200.060.126050.12()605(-?=???==τnm i D cm 2·s -1 3.作一种未知浓度的铅溶液的极谱图,其扩散电流为6.00μA 。加入10mL 0.0020mol·L -1 Pb 2+ 溶液到50mL 上述溶液中去,再作出的极谱图其扩散电流为18μA ,计算未知溶液内铅的浓度。 解:?? ? ? ?++==000V V c V c V k i kc i x x x x x 代入已知数据,得 ? ????+?+==105000200.010500.180.6x x c k kc 求得c x = 1.54×10-4mol·L -1 4.用未知浓度的铅溶液 5.00mL 稀释到25.0mL 作极谱图,其扩散电流为0.40μA 。另取 这种铅溶液5.00mL 和10.0mL 的0.00100mol·L -1铅溶液相混合,混合液稀释到25.0mL ,再作极谱图。此时波高为2.00μA 。试计算未知溶液的浓度。 解:已知 c i ∝,于是 5 .200100.055 00 .2400.0+ =x x c c ,求得c x = 5.00×10-4mol·L -1

相关文档