文档库 最新最全的文档下载
当前位置:文档库 › 实验十一最大气泡法测定溶液的表面张力报告

实验十一最大气泡法测定溶液的表面张力报告

实验十一最大气泡法测定溶液的表面张力报告
实验十一最大气泡法测定溶液的表面张力报告

实验十一最大气泡法测定溶液的表面张力

11.1实验目的

11.1.1测定不同浓度正丁醇水溶液的表面张力,计算表面吸附量和正丁醇分子的横截面积;

11.1.2了解表面张力的性质,表面自由能的意义以及表面张力和吸附的关系;11.1.3 掌握用最大泡压法测定表面张力的原理和技术。

11.2实验原理

11.2.1表面自由能

物体表面分子和内部分子所处的境遇不同,表面分子受到向内的拉力,所以液体表面都有自动缩小趋势。如果把一个分子由内部迁移到表面,就需要对抗拉力而做功。在温度、压力和组成恒定时,可逆地使表面增加d A所需做的功,叫表面功,可表示为:

-δW′= σdA (11.1) 式中,σ为比例常数。

σ在数值上等于当T、p和组成恒定的条件下增加单位表面积时所必须对体系做的可逆非膨胀功,也可以说是每增加单位表面积时体系自由能的增加值。环境对体系作的表面功转变为表面层分子比内部分子多余的自由能。因此,σ称为表面自由能,其单位是J·m-2。若把σ看作为作用于每单位长度边缘上的力,通常称为表面张力。

从另外一方面考虑表面现象,特别是观察气液界面的一些现象,可以觉察到表面上处处存在着一种张力,它力图缩小表面积,此力称为表面张力,其单位是N·m-1。表面张力是液体的搬弄是重要特性之一。与所处的温度、压力、浓度以及共存的另一相的组成有关。纯液体的表面张力通常是指该液体与饱和了其本身蒸气的空气共存的情况而言。

11.2.2溶液的表面吸附

纯液体表面层的组成与内部组成层相同,因此,液体降低体系表面自由能的唯一途径是尽可能缩小其表面积。对于溶液则由于溶质会影响表面张力,因此可以调节溶质在表面的浓度来降低表面自由能。

根据能量最低原则,溶质能降低溶剂的表面张力时,表面层中溶质的浓度应比溶液的内部来得大;反之溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度来得低,这种表面浓度与溶液内部浓度不同的现象叫做溶液的表面吸附。从热力学方法可知它们之间的关系遵守Gibbs 吸附方程:

(11.2)

式中:

Γ— 表面吸附量(mol ·m -2 ) σ— 溶液表面张力(N ·m -1)

T — 热力学温度(K) c — 溶液浓度(mol ·m -3 )

R — 气体常数(8.3145J .K -1.mol -1

)。

以表面张力σ对溶液浓度c 作图,可得到σ—c 曲线,在σ—c 曲线上任选一点I 作切线,即可得该点所对应浓度c i 的斜率(d σ/d c i )T ,可求得不同浓度下的Γ值和得出Γ—c 的关系图。

在一定的温度下,吸附量与溶液浓度之间的关系由Langmuir 等温式表示:

(11.3)

式中:

Γ∞— 表面饱和吸附量(mol ·m -2 )

K — 经验常数(与溶质的表面活性大小有关) 将(11.3)式转化成直线方程为:

(11.4)

若以c /Γ~c 作图可得一直线,由直线斜率可求出Γ∞。

假若在饱和吸附的情况下,在气液界面上铺满一单分子层,则可应用下式求得被测物质的分子横截面积S 0:

(11.5)

式中 为阿佛加德罗常数(6.022×1023mol -1

)。

11.2.3 最大泡压法

T

c RT c Γ?

??

????-

=σKc

Kc

ΓΓ+=∞

1∞

∞+

=K ΓΓc Γc 1

=ΓN S ~

1

0N ~

将被测液体装于测定管中,使玻璃管下端毛细管端面与液面相切,液面沿毛细管上升。打开分液漏斗的活塞,使水缓慢下滴而减少系统压力。这样毛细管内液面受到一比试管中液面上大的压力,当此压力差在毛细管端面上产生的作用力大于毛细管口液体的表面张力时,气泡就从毛细管口逸出,这一最大压力差可由数字式微压差测量仪读出。其关系式为:

p

max

= p大气- p系统=?p (11.6)

如果毛细管半径为r,气泡由毛细管口逸出时受到向下的总压力为πr2p max。

气泡在毛细管受到的表面张力引起的作用力为2πrσ。刚发生气泡自毛细管逸出时,上述两力相等,即:

πr2p max=πr2?p =2πrσ(11.7)

σ=r?p /2 (11.8)

若用同一根毛细管,对两种具有表面张力为σ

1和σ

2

的液体而言,则有下列关系:

σ1=σ2?p1/?p2=K?p1 (11.9)式中K为仪器常数。

11.3实验仪器和试剂

恒温装置 1套

带有支管的试管(附木塞) 1支

毛细管(半径为0.15~0.02mm) 1根

容量瓶(50mL) 8只

数字式微压差测量仪 1台

烧杯(200mL) 1只

洗耳球 1个

移液管 1支

滴管 1支

正丁醇(分析纯)

10.4实验步骤

11.4.1 将仪器洗涤干净并按图Ⅱ-11-1装置。对需干燥的仪器作干燥处理。

11.4.2 调节恒温为30℃。

11.4.3正丁醇溶液配制:分别准确配制0.02、0.05、0.10、0.15、0.20、0.25、0.30、0.35mol.dm-3正丁醇溶液各100mL。(注:纯正丁醇的加入量分别为:0.1482、0.3706、0.7412、1.1118、1.4812、1.8530、2.2236、2.5942g,加水至近100mL,在30℃恒温15min,用30℃恒温的蒸馏水加至100.00mL刻度)。

11.4.4仪器常数测定:先以蒸馏水作为待测液测定其仪器常数。方法是在测定管中注入蒸馏水,将干燥的毛细管垂直地插到使毛细管的端点刚好与水面相切,置于恒温水浴内恒温10min。注意使毛细管保持垂直并注意液面位置,然后按图Ⅱ-11-1接好系统。打开滴液漏斗,控制滴液速度,使毛细管逸出的气泡速度约为5s~10s1个。在毛细管口气泡逸出的瞬间最大压差约在700Pa~800Pa左右(否则需调换毛细管)。

通过手册查出实验温度时水的表面张力,利用公式(11.9),求出仪器常数K。

11.4.5待测样品表面张力的测定,用待测溶液洗净试管和毛细管,加入适量样品于试管中,按照仪器常数测定的方法,测定已知浓度的待测样品的压力差 p,代入公式(11.9)计算其表面张力。

11.5实验注意事项

11.5.1测定用的毛细管一定要洗干净,否则气泡可能不能连续稳定地流过,而使压差计读数不稳定,如发生此种现象,毛细管应重洗。

11.5.2毛细管一定要保持垂直,管口刚好与液面相切。

11.5.3气泡形成速度应稳定;在数字式微压差测量仪上,应读出气泡单个逸出时的最大压力差。

11.6数据记录及处理

(一)实验数据

11.6.1正丁醇溶液的配制

表1. 正丁醇溶液的配制

室温 25.00 ℃;实验温度 30.00 ℃;大气压 96.18 kPa

11.6.2仪器常数的测定

表2. 仪器常数的测定

室温 25.00 ℃;实验温度 30.00 ℃;大气压 96.18 kPa

待测物质

?p H 2

O /Pa

σ /N ·m -1

仪器常数K

/N ·m -1·Pa -1

1 2 3 平均值 H 2O

693

692

692

692

7.118×10-

2

9.4529×10-5

计算公式:K=σH 2

O /?p H 2

O (N ·m -1·Pa -1

)

11.6.3正丁醇溶液表面张力的测定

表3. 正丁醇溶液表面张力的测定

室温 25.00 ℃;实验温度 30.00 ℃;大气压 96.18 kPa

正丁醇浓度

/mol ·m -3

Δp /Pa

σ

/N ·m -1

1

2

3

平均值

21.85 684 682 683 683 0.06456 54.63 649 650 649 649 0.06135 109.3 572 574 573 573 0.05416 163.9 521 521 522 521 0.04925 218.5 481 480 482 481 0.04547 273.1 446 446 446 446 0.04216 327.8 419 420 420 420 0.03970 382.4

403

402

402

402

0.03800

11.6.4作σ~c 图,求出曲线上不同浓度c 点处的(?σ/?c )T,p ,并计算相应浓度的Γ。

100ml 容量瓶

1# 2# 3#

4#

5#

6#

7#

8#

V 正丁醇/ml

0.2000 0.5000 1.000

1.500

2.000

2.500

3.000

3.500

c 正丁醇=ρ正丁醇V 正丁醇/M 正丁醇/(100×10-3) /mol ·dm -3,M 正丁醇= 74.12g · mol -1, ρ正丁醇=0.8098g ?dm -3

c 正丁醇/mol ·dm -3

0.0218

5

0.05463

0.1093 0.1639 0.2185 0.2731 0.3278 0.3824

050100150200250300350400

0.035

0.040

0.0450.0500.055

0.0600.065σ/N ·

m -1

c /mol·m -3

σ=0.06769-0.1362c +0.15426c

2

图1. σ~c 关系曲线图

曲线拟合方程:σ= 0.06769-1.36212×10-4c+1.54201×10-7c 2(N ?m -1)

(?σ/?c )T,p =-1.36212×10-4+2×1.54201×10-7c (N ?m 2?mol -1)

Γ= -c /8.3145/303.15×d σ/d c (mol ·m -2

)

表3. 正丁醇溶液表面张力的计算

室温 25.00 ℃;实验温度 30.00 ℃;大气压 96.18 kPa

正丁醇浓度

/mol ·m -3

σ /N ·m -1

-(?σ/?c )T,p

/N ·m 2·mol -1

Γ

/ mol ·m -2

c /Γ

/m -1

50.00 0.06126 12.1×10-5

2.40×10-6

2.09×107

100.0 0.05561 10.5×10-5 4.18×10-6 2.39×107 150.0 0.05073 9.00×10-5 5.35×10-6 2.80×107 200.0 0.04662 7.45×10-5 5.91×10-6 3.38×107 250.0 0.04327 5.91×10-5 5.86×10-6 4.26×107 300.0 0.04070

4..37×10-5

5.20×10-6

5.77×107

图2. c/Γ~c 关系直线图

直线斜率k=1/Γ∞=1.729×105m 2·mol -1,Γ∞=5.784×10-6 m -2·mol -1 11.6.5求乙醇分子的横截面积S 0。

S 0=1/L Γ∞=1.729×105/(6.022×1023)=0.287×10-18m 2=0.287 nm 2

(二)实验数据

11.5.1乙醇溶液的配制

表1. 乙醇溶液的配制

室温 25.00 ℃;实验温度 30.00 ℃;大气压 96.18 kPa

11.5.2仪器常数的测定

表2. 仪器常数的测定

室温 25.00 ℃;实验温度 30.00 ℃;大气压 96.18 kPa

待测物质

?p H 2

O /Pa

σ /N ·m -1

仪器常数K

/N ·m -1·Pa -1

1 2 3 平均值 H 2O

1038

1038

1038

1038

7.118×10-

2

6.857×10-5

计算公式:K=σH 2

O /?p H 2

O (N ·m -1·Pa -1

)

11.5.3乙醇溶液表面张力的测定

表3. 乙醇溶液表面张力的测定

室温 25.00 ℃;实验温度 30.00 ℃;大气压 96.18 kPa

乙醇浓度 /103mol .·m -3 Δp /Pa

σ

/N ·m -1

1

2

3

平均值 0.9309 792 794 793 793 0.05438 1.9351 672 672 672 672 0.04608 2.4276 635 635 635 635 0.04354 3.9127 535 535 535 535 0.03669 5.2954 474 474 474 474 0.03250 6.5518 436 436 436 436 0.02990 7.5895 417 417 417 417 0.02860 9.6351

385

385

385

385

0.02640

容量瓶编号

1#

2#

3#

4#

5#

6#

7#

8#

m 乙醇/g

4.2887

8.9148

11.184

18.026

24.396

30.185

34.965

44.389

c 乙醇=m 乙醇/M 乙醇/(100×10-3) /mol ·dm -3,M 乙醇= 46.08g .·mol -1

c 乙醇/mol ·dm -3

0.930

9 1.9351 2.4276 3.9127 5.2954 6.5520 7.5895 9.6351

11.5.4作σ~c 图,求出曲线上不同浓度c 点处的(?σ/?c )T,p ,并计算相应浓度的Γ。

0.000.050.100.150.200.250.300.350.40

0.035

0.0400.0450.0500.055

0.0600.065σ/N .m

-1

c /mol·m

-3

σ=0.06769-0.1362c +0.15426c

2

图1. σ~c 关系曲线图

曲线拟合方程:σ= 0.06769-0.1362c+0.15426c 2

(?σ/?c )T,p =-0.1362+2×0.15426c

Γ= -c /8.3145/303.15×d σ/d c (mol ·m -2

)

表3. 乙醇溶液表面张力的计算

室温 25.00 ℃;实验温度 30.00 ℃;大气压 96.18 kPa

乙醇浓度 /mol ·m -3

σ

/N.m -1

-(?σ/?c )T,p

/N ·m 2·mol -1

Γ

/ mol ·m -2

c /Γ

/m -1

1.000×103

0.05408 11.31×10-5

4.487×10-6

2.228×108

1.500×103 0.04926 8.352×10-5 4.970×10-6 3.018×108

2.000×103 0.04560 6.540×10-5 5.189×10-6

3.854×108 2.500×103 0.04267 5.363×10-5 5.319×10-6

4.700×108 3.000×103 0.04023 4.546×10-5

5.411×10-6 5.544×108 3.500×103 0.03813 3.941×10-5 5.473×10-6

6.395×108 4.000×103 0.03630 3.467×10-5 5.501×10-6

7.271×108 4.500×103 0.03469 3.077×10-5 5.493×10-6

8.193×108 5.000×103 0.03325 2.745×10-5 5.446×10-6

9.181×108 5.500×103

0.03196

2.458×10-5

5.364×10-6

10.25×108

1

23

4

56

2

468

10c /Γ/108

·m

-1c /103

mol ·m

-3

斜率=1/Γ∞=1.765×105m 2·mol

-1

Γ∞=5.665×10-6mol·m

-2

图2. c/Γ~c 关系直线图

直线斜率k=1/Γ∞=1.765×105m 2·mol -1,Γ∞=5.665×10-6 m -2·mol -1 11.5.5求乙醇分子的横截面积S 0。

S 0=1/L Γ∞=1.765×105/(6.022×1023)=0.293×10-18m 2=0.293 nm 2

11.6问题讨论

11.6.1何谓表面张力、比表面能?表面张力与温度有无关系? 11.6.2何谓正吸附与负吸附?

11.6.3本实验用吉布斯吸附方程求什么量?要求出此量需什么数据?本实验用什么方法测取此数据?

11.6.4为什么要测定仪器常数?

11.6.5是否可以在测定仪器常数时,压力计内的液体用水,而测待测溶液时,压力计内水被换成乙醇?为什么?

11.6.6影响本实验结果的关键因素是什么?

液体表面张力系数测定的实验报告

xx 大学实验报告 一【实验目的】 (1) 掌握力敏传感器的原理和方法 (2) 了解液体表面的性质,测定液体表面张力系数。 二【实验内容】 用力敏传感器测量液体表面的张力系数 三【实验原理】 液体具有尽量缩小其表面的趋势,好像液体表面是一张拉紧了的橡皮膜一样。 这种沿着表面的、收缩液面的力称之为表面张力。 测量表面张力系数的常用方法:拉脱法、毛细管升高法和液滴测重法等。此试验中采用了拉脱法。拉脱法是直接测定法,通常采用物体的弹性形变(伸长或扭转)来量度力的大小。液体表面层内的分子所处的环境跟液体内部的分子不同。液体内部的每一个分子四周都被同类的其他分子所包围,他所受到的周围分子合力为零。由于液体上方的气象层的分子很少,表层内每一个分子受到的向上的引力比向下的引力小,合力不为零。这个力垂直于液面并指向液体内部。所以分子有从液面挤入液体内部的倾向,并使得液体表面自然收缩,直到处于动态平衡。 假如在液体中浸入一块薄钢片,则钢片表面附近的液面将高于其它处的,如图1所示。 由于液面收缩而产生的沿切线方向的力Ft 称之为表面张力,角φ称之为接触角。当缓缓拉出钢片时,接触角φ逐

渐的减小而趋于零,因此Ft方向垂直向下。在钢片脱离液体前诸力平衡的条件为 F = mg + F t (1)其中F是将薄钢片拉出液面的时所施加的外力,mg为薄钢片和它所沾附的液体的总重量。表面张力Ft与接触面的周长2(l+d)成正比,故有Ft = 2σ(l+d),式中比例系数σ称之为表面张力系数,数值上等于作用在液体表面单位长度上的力。将Ft代入式(1)中得 (2) 当用环形丝代替薄钢片做此实验时,设环的内外直径为D1、D2,当它从液面拉脱瞬间传感器受到的拉力差 f = F–m g =π(D1+D2)σ,此时 (3)只要测出力f和环的内外直径,将它们代入式(3),即可算出液体的表面张力系数σ。式中各量的单位统一为国际单位。 四【实验仪器】 (1)FD—NST—B 液体表面张力系数测定仪。 (2)砝码六个,每个质量 五【实验步骤】 (1)开机预热。 (2)清洗玻璃器皿和吊环。 (3)在玻璃器皿内放入被测液体并安放在升降台上。 (4)将砝码盘挂在力敏传感器上,对力敏传感器定标。 (5)挂上吊环,测定液体表面张力系数。当环下沿全部浸入液体内时,转动升降台的螺帽,使液面往下降。 记下吊环拉断液面瞬间时的电压表的读数U1,拉断后瞬间电压表的读数U2。则f=(U1-U2)/B 六【实验注意事项】 (1)轻轻挂上吊环,必须调节好水平。 (2)在旋转升降台时,尽量是液体的波动要小。

最大气泡法实验报告

竭诚为您提供优质文档/双击可除最大气泡法实验报告 篇一:最大气泡法测表面张力实验报告 最大气泡法测定溶液的表面张力 【实验目的】 1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。 2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。 3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量,由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。 【实验原理】 1、表面张力的产生 纯液体和其蒸气组成的体系体相分子:自由移动不消耗功。表面分子:液体有自动收缩表面而呈球形的趋势。要使液体表面积增大就必须要反抗分子的内向力而作功以增加

分子位能。所以分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。 ?w=???A 如果ΔA为1m2,则-w′=σ是在恒温恒压下形成1m2新表面所需的可逆功,所以σ称为比表面吉布斯自由能,其单位为J·m-2。也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是n·m-1。液体单位表面的表面能和它的表面张力在数值上是相等的。 2、弯曲液面下的附加压力 (1)在任何两相界面处都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。 (2)液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。 (3)液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。(4)由于表面张力的存在,产生很多特殊界面现象。3、毛细现象 (1)由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。

液体表面张力

液体表面张力系数的测定实验报告模板 【实验目的】 1.了解水的表面性质,用拉脱法测定室温下水的表面张力系数。 2.学会使用焦利氏秤测量微小力的原理和方法。 【实验仪器】 焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。 【实验原理】液体表面层内分子相互作用的结果使得液体表面自然收缩,犹如紧张的弹性薄膜。由于液面收缩而产生的沿着切线方向的力称为表面张力。设想在液面上作长为L 的线段,线段两侧液面便有张力作用,其方向与L 垂直,大小与线段L 成正比。即有:=γL 比例系数γ称为液体表面张力,其单位为N/m. 将一表面洁净的长为L 、宽为d 的圆形金属环(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属环将要脱离液面,即拉起的水膜刚好要破裂时,则有:F=mg+,式中F 为把金属环拉出液面时所用的力;mg 为金属环和带起的水膜的总质量;f 为张力。此时,与接触面的周围边界π(),则 有γ= ,式中D1,D2分别为圆环的内外直径。 实验表明,γ与液体种类、纯度、温度和液面上方的气体成分有关,液体温度越高,γ值越小,液体含杂质越多,γ值越小,只要上述条件保持一定,则γ是一个常量,所以测量γ时要记下当时的温度和所用液体的种类及纯度。 【实验步骤】1.安装好仪器,挂好弹簧,调节底板的三个水平调节螺丝,使焦利称立柱竖直。在主尺顶部挂入吊钩再安装弹簧和配重圆柱体,使小指针被夹在两个配重圆柱之间,配重圆柱体下端通过吊钩钩住砝码托盘。调整小游标的高度使小游标左侧的基准线大致对准指针,锁紧固定小游标的锁紧螺钉,然后调节微调螺丝使指针与镜子框边的刻线重合,当镜子边框上刻线、指针和指针的像重合时(即称为“三线对齐”),读出游标0线对应刻度的数值。 2.测量弹簧的劲度系数k.依次增加 1.0g 砝码,即将质量为1.0g,2.0g,3.0g,…,9.0g,10.0g 的砝码加在下盘内。调整小游标的高度,每次都 F f F f F f F f D D 2 1 +) mg -F 21D D +∏(

用拉脱法测定液体表面张力系数物理实验报告

用拉脱法测定液体表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被周 围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密 度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解326FB 型液体的表面张力系数测定仪的基本结构,掌握用标准砝码对测量仪进行 定标的方法,计算该传感器的灵敏度。 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 如果将一洁净的圆筒形吊环浸入液体中,然后缓慢地提起吊环,圆筒形吊环将带起一 层液膜。使液面收缩的表面张力f 沿液面的切线方向,角?称为湿润角(或接触角)。当继续提起圆筒形吊环时,?角逐渐变小而接近为零,这时所拉出的液膜的里、外两个表面的张力f 均垂直向下,设拉起液膜破 裂时的拉力为F ,则有 f g m m F 2)(0++= (1) 式中,m 为粘附在吊环上的液体的质量,0m 为吊环质量,因表面张力的大小与接触面周边界长度成正比,则有 απ?+=)(2外内D D f (2) 比例系数α称为表面张力系数,单位是m N /。α在数值上等于单位长度上的表面张力。式中l 为圆筒形吊环内、外圆环的周长之和。 ) ()(0外内D D g m m F ++-= πα (3) 由于金属膜很薄,被拉起的液膜也很薄,m 很小可以忽略,于是公式简化为:

最大气泡压力法测定溶液表面张力.

物理化学实验最大气泡压力法测定溶液表面张力C210 2010-04-12 T=286.15K P=85.02kPa 一、实验目的 1.掌握最大气泡法测定溶液表面张力的原理和方法 2.测水溶液的表面张力并计算定不同浓度正丁醇计算吸附量 3.加深对表面张力、表面自由能、表面张力和吸附量关系的理解 二、实验原理 处于溶液表面的分子,受到不平衡的分子间力的作 用而具有表面张力s. 气泡最大压力法测定表面张力装置见实物;实验中 通过滴水瓶滴水抽气使得体系压力下降,大气压与体系 压力差△p逐渐把毛细管中的液面压至管口,形成气泡。 如果毛细管半径很小,则形成的气泡基本上是球形的; 当气泡开始形成时,表面几乎是平的,这时曲率半径最 大;随着气泡的形成,曲率半径逐渐变小,直到形成半球 形,这时曲率半径R和毛细管半径r相等,曲率半径达 最小值,根据拉普拉斯公式得:附加压力达最大值ΔP max =σ/r min。气泡进一步长大,R变大,附加压力则变小, 直到气泡逸出。 加入表面活性物质时溶液的表面张力会下降,溶质 在表面的浓度大于其在本体的浓度,此现象称为表面吸 附现象; 单位溶液表面积上溶质的过剩量称为表面吸附量Γ, Γ=-(c/RT)*( dσ/dc). 对可形成单分子层吸附的表面活性物质,溶液的表面吸附量Γ与溶液本体浓度c之间的关系符合朗格谬尔吸附等温式: Γ=Γ∞*kc/1+kc 朗格谬尔吸附等温式的线性形式为: c/Γ=c/Γ∞+1/kΓ∞ Γ∞为饱和吸附时,单位溶液表面积上吸附的溶质的物质的量,则每个溶质分子在溶液表面上的吸附截面积为:A m=1/(N A*Γ∞) 三、仪器与试剂 恒温槽装置;数字式微压差计; 抽气瓶l个;表面张力测定仪 烧杯(1000mL);T形管1个; 电导水; 正丁醇(A.R.)及其不同浓度的标准溶液; 四、实验步骤 1.仪器常数的测定 将表面张力测定仪清洗干净;在干净的表面张力测定仪中装入电导水,使毛细管上端塞子塞紧时,毛细管刚好与液面垂直相切;抽气瓶装满水,连接好后旋开下端活塞使水缓慢滴出;控制流速使气泡从毛细管平稳脱出(每个气泡4-6秒),记录气泡脱出瞬间数字微压差计的最大数值,取三次并求平均值。 2.测定正丁醇溶液的表面张力 用同样的方法测定不同浓度的正丁醇溶液的最大压差,由稀到浓依次测定;每个浓度的溶液测量前,表面张力测定仪和毛细管一起用该溶液荡洗二至三次;每份溶液恒温至少3-5min之后,开始读数。 3. 重复测定电导水的数据。 注意事项:仪器系统不能漏气;测定用的毛细管一定要洗干净,否则气泡可能不能连续稳定的流过,而使压差计读数不稳定,如发生此种现象,毛细管应重洗;毛细管端口一定要刚好垂直切入液面,不能离开液面,但亦不可深插;在数字式微压差测量仪上,应读出气泡单个逸出是的最大压力差;正丁醇溶液要准确配置,使用过程防止挥发损失;从毛细管口脱出气泡每次应为一个,即间断脱出;表面张力和温度有关,因此要等溶液恒温后再测量。

实验四溶液的吸附作用和液体表面张力的测定

实验四溶液的吸附作用和液体表面张力的测定 一、实验目的 1.用最大泡压法测定不同浓度的表面活性物质(正丁醇)溶液在一定温度下的表面张力; 2.应用Gibbs和Langmuir吸附方程式进行精确作图和图解微分,计算不同浓度正丁醇溶液的表面吸附量和正丁醇分子截面积,以加深对溶液吸附理论的理解; 3.掌握作图法的要点,提高作图水平。 二、基本原理 T一定,溶液表面吸附量Γ γ测定,毛细管半径r,其抛压出时受到向下压力∏r2P,最大时离开管口:P max =P 外 -P 系 。测 Pmax 气泡在管口受到的表面张力:2∏r*γ γ=rPmax 用同C溶液γ 1/γ 2 =P max1 /P max2 所以:γ1=(γ 2/P max2 )P max1 =KP max1 求常数K。 对于单分子吸附,其吸附量Γ与浓度c之间的关系可用等温吸附方程表示,即: 式中Гm为饱和吸附量,a为吸附平衡常数。将此式两边取倒数可整理成线性方程: 在饱和吸附时,每个被吸附分子在表面上所占的面积,即分子的截面积S为: 三、仪器与试剂 表面张力仪1套;恒温槽1台;1ml移液管1个;烧杯(250ml) 1个;100ml容量瓶1个;50ml容量瓶5个; 正丁醇(二级.);去离子水. 四、实验步骤 样品编号123456789容量瓶体积/cm31005050505050505050 V醇/cm3 3.仪器系数的测定。先用少量丙酮清洗毛细管3,再用蒸馏水仔细清洗样品管2和毛细管3,然后加入适量蒸馏水。在减压管1中装满水,压力计5中注入适量的水,在活塞8打开的情况下,调节活塞6使毛细管端面与液面相切。关闭活塞8,打开活塞7使体系减压,当毛细管口逸出气泡时,调节活塞7使液滴缓慢滴下,读出数字式微压差测量仪最大数值。 再更换样品重复测定两次,取平均值。已知25o C水的表面张力=,计算仪器系数K。 4.乙醇溶液表面张力的测定。取3%的乙醇溶液(一号样品)洗净样品管和毛细管,然后加入适量溶液,待恒温后,按上述操作步骤测定Δh。

液体表面张力实验报告

液体表面张力实验报告 实验原理: 实验一、一元硬币上能承载几滴水? 水是由水分子组成,它们之间不是独来独往的,而是互相吸引,甚至三三两两地结合。处在中间的水分子受到来自四面八方的其他水分子的包围,受力均匀。可是处在水面的水分子情况不同,它的一面与空气接触,没有来自其他水分子的吸引力,使得它受力不均匀,水的表面好像一块张紧的弹性薄膜。 由于液体的表面有这种奇特的存在,就使得液体的表面总是处在被绷紧的状态,并尽量收缩到最小。由于在体积相同的条件下,球的面积最小,所以在表面张力的作用下,肥皂泡、小露珠、水银滴等也

就都收缩成球形了。一元硬币上能承载的水滴也相应增加了。 实验二、订书针、一分硬币能浮在水面上吗? 小木块入水后,撤掉压力还能上浮是因浮力作用,而订书针、硬币入水后,由于表面张力被破坏下沉,原来浮在水面是因水的表面张力。 其实科学就在我们的身边,就在我们的生活中,你也可以和爸爸妈妈一起动手做一做,亲自去感受去体验,做个科学小达人吧! 处于表面的液体分子(球状模型,液体分子排列紧密),以分子B为中心的球面中的一部分在液体当中,另一部分在液面之外,由于对称性可知,CC'和DD'之间部分的受到的合力等于零;对B有效的作用力是由球面内DD'以下的部分受到的向下合力。由于处在边界内的每—个分子都受到指向液体内部的合力,所以这些分子都有向液体内部下降的趋势,同时分子与分子之间还有侧面的吸引力,即有尽量收缩表面的趋势。

以最简单的气液相界面为例,液相内分子周围所受的力是对称的,彼此相互抵消,但表面层分子由于受力不均衡,其结果受到垂直指向液体内部的拉力,所以液体表面都有自动缩小的趋势。如果要扩大表面就要把内层分子移到表面上来,这至少需要克服表面分子的拉力而做功。实际上液体分子内部所受的力是分子间作用力当然也包括氢键。因此,简单地说表面张力是范德华力和氢键微观作用在宏观上的表现。

表面张力系数测量实验报告

实验名称:表面张力系数的测定 实验目的:着重学习焦利氏秤独特的设计原理,并用它测量液体的表面张力系数。 实验原理: 当液体和固体接触时,若固体和液体分子间的吸引力大于液体分子间的吸引力,液体就会沿固体表面扩展,这种现象叫润湿。若固体和液体分子间的吸引力小于液体分子间的吸引力,液体就不会在固体表面扩展,叫不润湿。润湿与否取决于液体、固体的性质,润湿性质与液体中杂质的含量、温度以及固体表面的清洁度密切相关。液体表层内分子力的宏观表现,使液面具有收缩的趋势。想象在液面上划一条线,表面张力就表现为直线两侧的液体以一定的拉力相互作用。这种张力垂直于该直线且与线的长度成正比,比例系数称为表面张力系数。 把金属丝AB 弯成如图5.2.1-1(a)所示的形状,并将其悬挂在灵敏的测力计上,然后把它浸到液体中。当缓缓提起测力计时,金属丝就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一最大值F (超过此值,膜即破裂)。则F 应当是金属丝重力mg 与薄膜拉引金属丝的表面张力之和。由于液膜有两个表面,若每个表面的力为F’,则由 '2F mg F += 得 2 'mg F F -= (1) 显然,表面张力F’是存在于液体表面上任何一条分界线两侧间的液体的相互作用拉力,其方向沿着液体表面,且垂直于该分界线。表面张力F’的大小与分界线的长度成正比。即 l F σ=' (2) 式中σ称为表面张力系数,单位是N/m 。表面张力系数与液体的性质有关,密度小而易挥发的液体σ小,反之σ较大;表面张力系数还与杂质和温度有关,液体中掺入某些杂质可以增加σ,而掺入另一些杂质可能会减小σ;温度升高,表面张力系数σ将降低。

最大气泡法测表面张力实验报告

最大气泡法测定溶液的表面张力 【实验目的】 1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。 2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。 3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。 【实验原理】 1、表面张力的产生 纯液体和其蒸气组成的体系体相分子:自由移动不消耗功。表面分子:液体有自动收缩表面而呈球形的趋势。要使液体表面积增大就必须要反抗分子的内向力而作功以增加分子位能。所以分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。 W=A σ-?g 如果ΔA 为1m 2,则-W ′=σ是在恒温恒压下形成1m 2新表面所需的可逆功,所以σ称 为比表面吉布斯自由能,其单位为J·m -2。也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是N·m -1。液体单位表面的表面能和它的表面张力在数值上是相等的。 2、弯曲液面下的附加压力 (1)在任何两相界面处都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。 (2)液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。 (3)液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。 (4)由于表面张力的存在,产生很多特殊界面现象。 3、毛细现象 (1)由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。

液体表面张力实验报告

液体表面张力系数的测定 [实验目的] 1、了解液体表面张力性质以及表面张力系数的含义和影响因素. 2、理解拉脱法测量液体表面张力系数的基本原理,了解测量方法。 3、了解用液体界面张力仪定标测量微小力的思想和方法。 4、了解液体界面张力仪的调节使用方法和校准方法。 5、熟悉实验的具体内容. 6、拟定出合理的实验数据记录表格. [实验原理] 表面张力是液体表面的重要特性,它类似于固体内部的拉伸应力,这种应力存在于极薄的表面层内,是液体表面层内分子力作用的结果。作用于液面单位长度上的表面张力称为液体的表面张力系数,用来度量表面张力的大小。表面张力系数不仅与液体的种类有关,而且还与温度、纯度、表面上方的气体成分等有关.物质液体状态的许多性质都与液体的表面张力相关,如毛细现象、浸润现象等。因此,测量液体表面张力系数对于科学研究和实际应用都具有重要意义。测定液体表面张力系数的常用方法有:拉脱法,液滴测重法和毛细管升高法等。拉脱法是一种直接测定法,通过物体的弹性形变(拉伸或扭转)来度量力的大小,如扭力天平法、焦力称法等。 实验中采用拉脱法测量水与空气界面的表面张力系数。通过实验可以重点学习如下内容:(1)实验方法:测量液体表面张力系数的拉脱法。(2)测量方法:用液体界面张力仪定标测量微小力的方法。(3)数据处理方法:质量标准曲线的绘制方法.(4)仪器调整使用方法:液体界面张力仪的调整使用方法。 [实验内容] 1、整液体界面张力仪水平和零点,达到待测状态. 2、准液体界面张力仪。 (1)金属环上放一块小纸片,仪器调零。包括两个方面的调节:第一,调节刻度盘蜗轮,使零刻度线与游标零线重合,即读数为零;第二,调节调零微调蜗轮,使吊杆臂上的指针与平面反射镜的红线重合。 (2)在小纸片上放质量0.0005kg的砝码,测量金属环单位长度的受力F,即调节刻度盘蜗轮使指针与红线重合时刻度盘的读数. (3)计算理论值F0=mg/π(d1+d2)。 (4)比较测量值F与理论值F0,如果二者相等,说明校准准确;若不相等,调节两个吊杆臂,保证两臂的长度等值缩短或伸长,使刻度盘上的读数F与理论值F0相等.重复测量几次,直至二者一致为止. 3、测量绘制质量标准曲线。 (1)仪器校准后,放置不同质量m的砝码,记录刻度盘的读数f。 (2)以m为横坐标f为纵坐标绘制质量标准曲线。

用拉脱法测定液体的表面张力系数实验

实验二、用拉脱法测定液体的表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被 周围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解737FB 新型焦利氏秤实验仪的基本结构,掌握用标准砝码对测量仪进行定标的方法; 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 1.测量公式推导: 当逐渐拉提冂形铝片框时,?角逐渐变小而接近为零,这时所拉出的液膜前后两个表面的表面张力f 均垂直向下。设拉起液膜将破裂时的拉力为F ,则有 f 2 g )m m (F 0+?+= (1) 式中:m 为粘附在框上的液膜质量,0m 为线框质量。因表面张力的大小与接触面周界长度成正比,则有: )d L (2f 2+?α= (2) 比例系数α称表面张力系数,单位为m /N 。 由(1),(2)式得: ) d L (2g )m m (F 0+?+-= α (3) 由于冂形铝片框很薄,被拉起的水膜很薄,m 较小,可以将其忽略,且一般有d L >>,那么L d L ≈+,于是(3)式可以简化为 : L 2g m F 0?-= α (4)

最大气泡法测定溶液中的吸附作用和表面张力的测定精

最大气泡法测定溶液中的吸附作用和表面张力的测定 1.1 实验目的及要求 1.了解表面张力的性质,表面能的意义以及表面张力和吸附的关系。 2.掌握一种测定表面张力的方法——最大气泡法。 3.学会计算乙醇水溶液的表面张力、表面吸附量及乙醇分子的横截面积。 1.2实验原理 1.物体表面分子和内部分子所处的境遇不同,表面层分子受到向内的拉力,所以液体表面都有自动缩小的趋势。如果把一个分子由内部迁移到表面,而增大表面积就需要对抗拉力而做功。在温度、压力和组成恒定时,可逆地使表面增加dA 所需对体系做的功,叫表面功。可以表示为: -δw '=σdA (1) 式中σ为比例常数,反映液体表面自动缩小趋势的能力。 显然σ在数值上等于当T 、p 和组成恒定的条件下增加单位表面积时所必须对体系做的可逆非膨胀功,也可以说是每增加单位表面积时体系自由能的增加值。环境对体系作的表面功转变为表面层分子比内部分子多余的自由能。因此,σ称为表面自由能,其单位是2 -?m J 。此单位可化为牛顿每米(1 /-m N ),据此可把σ看作是液体表面单位长度上的力,它导致缩小液体的表面积,此力称为表面积张力。表面张力是液体的重要特性之一,与所处的温度、压力、浓度以及共存的另一相的组成有关。纯液体的表面张力通常是指该液体与饱和了其本身蒸气的空气共存的情况而言。 2.液体表面层的组成与内部层相同,因此,纯液体降低体系表面自由能的唯一途径是尽可能缩小其表面积。对于溶液则由于溶质会影响表面张力,因此可以调节溶质在表面层的浓度来降低表面自由能。 根据能量最低原则,溶质能降低溶剂的表面张力时,表面层中溶质的浓度应比溶液内部来得大。反之溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度来得低,这种表面浓度与溶液内部浓度不同的现象叫“溶液表面的吸附”。显然,在指定温度和压力下,吸附与溶液的表面张力及溶液的浓度有关。1878年,Gibbs 用热力学的方法推导出它们之间的数量关系式: T dc d RT c ??? ??- =Γσ (2) 式中Γ为溶液在表面层中的吸附量,即表面超量( )3 -?dm mol 单位 ;σ为溶液的表面张力( )2 -?m J ; T 为热力学温度;c 为溶液浓度()3-?dm mol 单位;R 为气体常数。 当0Γ称为正吸附;反之,当0>??? ??T dc d σ时,0<Γ称为负吸附。前者表明加入溶质使液体表面张力下降,此类物质称表面活性物质。后者表明加入溶质使液体表面张力升高,此类物质

表面张力的测定实验报告分析

浙江万里学院生物与环境学院 化学工程实验技术实验报告 实验名称:溶液表面张力的测定 (1)实验目的 1、掌握最大气泡法测定表面张力的原理和技术 2、通过对不同浓度正丁醇溶液表面张力的测定,加深对表面张力、表面自由能和表面吸附量关系的理解 3、学习使用Matlab 处理实验数据 (2) 实验原理 1、 表面自由能:从热力学观点看,液体表面缩小是一个自发过程,这是使体系总的自由能减小的过程。如欲使液体产生新的表面A ?,则需要对其做功。功的大小应与A ?成正比:-W=σA ? 2、 溶液的表面吸附:根据能量最低原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比 溶液内部大,反之,溶质使溶液的表面张力升高时,它在表面层中的浓度比在内部的浓度低。这种表面浓度与溶液里面浓度不同的现象叫“吸附”。显然,在指定温度和压力下,吸附与溶液的表面张力及溶液的浓度有关。Gibbs 用热力学的方法推导出它们间的关系式 T c RT c )(??- =Γσ (1)当00,溶质能减少溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附,此类物质叫表面活性物质。(2)当0>??? ????T c σ时,Γ<0,溶质能增加溶剂的表面张力,溶 液表面层的浓度小于内部的浓度,称为负吸附,此类物质叫非表面活性物质。由 T c RT c )(??- =Γσ 可知:通过测定溶液的浓度随表面张力的变化关系可以求得不同浓度下溶液的表面吸附量。 3、 饱和吸附与溶质分子的横截面积:吸附量Γ浓度c 之间的关系,有Langmuir 等温方程 式表示:c K c K ·1·+Γ=Γ ∞

水表面张力系数的测定实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 5 实验台号 实验时间 2008 年 12 月 03 日,第15周,星期 三 第 5-6 节 实验名称 水表面张力系数的测定 教师评语 实验目的与要求: (1) 理解表面张力现象。 (2) 用拉脱法测定室温下水的表面张力系数。 主要仪器设备: FD-NST-I 型液体表面张力系数测定仪、砝码、镊子及其他相关玻璃器皿。 实验原理和内容: 分子间的引力和斥力同时存在,它们以及它们合力的大小随着分子间的距离的变化关系如图所示 对液体表面张力的理解和解释: 在液体和气体接触的表面有一个薄膜,叫做表面层,其宏观上就好像是一张绷紧了的橡皮膜,存在沿着表面并使表面趋于收缩的应力,这种力称为表面张力。 计算张力时可以做如下的假设:想象在表面层上有一条长度为L 的分界线,则界限两端的表面张力方向垂直于界限,大小正比于L ,即f=αL(α为液体表面张力系数)。 实验中, 首先吊环是浸润在水中的, 能够受到表面张力的拉力作用。 测定仪的吊环缓慢离开水面,将拉起一层水膜,并受到向下的拉力f 拉。由于忽略水膜的重力和浮力, 成 绩 教师签字

吊环一共受到三个力,即重力W 、液面的拉力f 拉、传感器的弹力F F f W =+拉 试验中重力是常量,而与表面张力相关的拉力却随着水膜的拉伸而增大。水膜被拉断前瞬间的f 拉,就是表面张力f 。 圆环拉起水膜与空气接触有两个表面层,若吊环的内、外直径分别为D 1、D 2,则界限长度 L=πD 1+πD 2。根据界线思想定义的张力计算式得f=αL,则有 12F απ=(D +D ) 水膜被拉断前传感器受力F 1 112F απ=(D +D )+W 在水膜拉断后传感器受力F 2 2F =W 由上面两式得水的表面张力系数的计算公式为 ) (212 1D D F F +-= πα 步骤与操作方法: (1)力敏传感器的定标 i. 开机预热10分钟。 ii. 将仪器调零后,改变砝码重量,再记录对应的电压值。得到U-G 关系, 完成传感器的 定标。 (2)水的表面张力及吊环内外径的测量 i. 测量吊环的内径D 1和外径D 2(各测量4次取平均)。 ii. 严格处理干净吊环。先用NaOH 溶液洗净,再用清水冲洗干净。 iii. 在升降台上安放好装有清水的干净玻璃皿,并挂上吊环,调节吊环水平(此步重要, 细 微的水平位置偏差将导致结果出现误差)。 iv. 升高平台,当吊环下沿部分均浸入水中后,下降平台。观察环浸入液体中及从液体中 拉起时的物理过程和现象,记录吊环即将拉断液面前瞬间的电压表读数V 1和拉断后的电压表读数V 2(该步骤重复8次)。

最大气泡法测定表面张力

【目的要求】 1. 了解表面自由能、表面张力的意义及表面张力与吸附的关系。 2. 掌握最大气泡法测定表面张力的原理和技术。 3. 通过测定不同浓度乙醇水溶液的表面张力,计算吉布斯表面吸附量和乙醇分子的横载面积。 4. 学会以镜面法作切线,并利用吉布斯吸附公式计算不同浓度下正丁醇溶液的表面吸附量。 5. 求正丁醇分子截面积和饱和吸附分子层厚度。 【基本原理】 在液体的内部任何分子周围的吸引力是平衡的。可 是在液体表面层的分子却不相同。因为表面层的分子, 一方面受到液体内层的邻近分子的吸引,另一方面受到 液面外部气体分子的吸弓I,而且前者的作用要比后者大。 因此在液体表面层中,每个分子都受到垂直于液面并指 向液体内部的不平衡力(如图1所示)。 这种吸引力使表面上的分子向内挤促成液 体的最小面积。要使液体的表面积增大就必须要 图1分子间作用力示意图 反抗分子的内向力而作功增加分子的位能。所以 说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。通常把增大一平方米表面所需的最大功A或增大一平方米所引起的表面自由能的变化值ΔG称为单位表面的表面能其单位为J. m-3。而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力, 其单位是N.m-1。 液体单位表面的表面能和它的表面张力在数值上是相等的。欲使液体表面积加△S时,所消耗 的可逆功A为: -A= ΔG= σΔS 液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体 不分,表面张力趋近于零。液体的表面张力也与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。当加入溶质后,溶剂的表面张力要发生变化,。根据能量最低原理,若溶液质能降 低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的浓度大;如果所加溶质能使溶剂的 表面张力增加,那么,表面层溶液质的浓度应比内部低。这种现象为溶液的表面吸附。用吉布斯公式(GibbS)表示: ⑴式 式中,Γ为表面吸附量(mol.m-2); σ为表面张力(J.m-2); T为绝对温度(K) ;C为溶液浓度(mol/L ); 表示在一定温度下表面张力随浓度的改变率。

液体表面张力系数测定实验报告

液体表面张力系数的测量 【实验目的】 1、 掌握用砝码对硅压阻式力敏传感器定标的方法,并计算该传感 器的灵敏度 2、 了解拉脱法测液体表面张力系数测定仪的结构、测量原理和使 用方法,并用它测量纯水表面张力系数。 3、 观察拉脱法测量液体表面张力系数的物理过程和物理现象,并 用物理学概念和定律进行分析研究,加深对物理规律的认识 4、 掌握读数显微镜的结构、原理及使用方法,学会用毛细管测定 液体的表面张力系数。 5、 利用现有的仪器,综合应用物理知识,自行设计新的实验内容。 【实验原理】 一、拉脱法测量液体的表面张力系数 把金属片弯成如图 1(a )所示的圆环状,并将该圆环吊挂在灵敏的测力计上,如图 1(b )所示,然后把它浸到待测液体中。当缓缓提起测力计(或降低盛液体的器皿)时,金属圆环就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一个最大值 F (当超过此值时,液膜即破裂),则 F 应是金属圆环重力 mg 与液膜拉引金属圆环的表面张力之和。由于液膜有两个表面,若每个表面的力为f L a = (L 为圆形液膜的周长),则有 2F mg L s =+ (2) 所以 2F mg L s -= (3)

圆形液膜的周长L 与金属圆环的平均周长,L 相当,若圆环的内、外直径分别为1,2D D 。则圆形液膜的周长 L ≈L ’=p (D 1+D 2)/2 (4) 将(4)式代入(3)式得() 12F mg D D s p -=- (5) 硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥。当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正比。即U K F D =D (6) 式中,ΔF 为外力的大小;K 为硅压阻式力敏传感器的灵敏度,单位为 V/N ;ΔU 为传感器输出电压的大小。 二、毛细管升高法测液体的表面张力系数 1一只两端开口的均匀细管(称为毛细管)插入液体,当液体与该管润湿且接触角小于90°时,液体会在管内上升一定高度。而当接触角大于 90°时,液体在管内就会下降。这种现象被称为毛细现象。 本实验研究玻璃毛细管插入水中的情形。如图 2 所示,f 为 表面张力,其方向沿着凹球面的切线方向,大小为 2 f r p s =,其中

表面张力实验报告(附数据及处理)

实验报告 实验题目:用焦利氏称测量液体表面张力系数 实验目的:学习焦利氏秤独特的设计原理,并用它测量液体的表面张力系数。 实验内容: 一、用作图法求弹簧的劲度系数 根据已测数据,横轴单位为g ,纵轴单位为cm ,描点,经过拟合后得一条 直线 cot (/)0.1cot (/)0.1*9.8 1.169N/m 0.83818 mg m k g g g cm g kg m x x k θθ= =?=?=?∴==Q 由图得: 二、逐差法求弹簧的劲度系数 m/g 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 x/cm 2.17 2.53 2.98 3.40 3.82 4.24 4.65 5.05 5.50 5.93 /m g ? 2.5 2.5 2.5 2.5 2.5 /x cm ? 2.07 2.12 2.07 2.10 2.11

由上表数据得: 550.6822222 ()() 3.500, 2.094cm,()=0.0103cm () 1.140.005251cm ()0.005773cm ()()()0.005251+0.0057730.005()0.00163 j j j j A x B A B m B m m m k x x x m g x x u x t u x C u x u x u x g u m C σ++-?==-??=?=??===?===?=?+=?===∑∑()()() ()()222222222 22 67g 2.5 1.1939g/cm=1.1700N/m 2.094()()()0.005251+0.0057730.0016672.094 2.50.00001433 0.0037860.004520g/cm=0.004430N/m k=(1.1700.004)N/m A B B m g k cm x U k u x u x u m k x m U k k U k ?===????+=+ ?????=+===∴± 三、自来水的表面张力系数 1)用金属圈测定 金属圈直径: 41 2.900 2.900 2.950 2.850 2.9000.0290044 i i d cm cm cm cm d cm m =+++====∑ 周长: 3.14159*0.029000.09111l d m π=== 膜破时金属圈上升的距离: 5 15 (2.44 1.50)(2.44 1.50)(2.52 1.50)(2.54 1.50)(2.52 1.50)5 0.00992i i x x x cm cm cm cm cm cm cm cm cm cm m =?=-+-+-+-+-==∑(-) 表面张力: '22 F mg k x F l d δδπ-?===?????→水膜质量可忽略

液体表面张力系数测定物理实验

液体表面张力系数的测定 【实验目的】 1.学会用拉脱法测定液体的表面张力系数。 2.了解焦利氏秤的构造和使用方法。 3.通过实验加深对液体表面现象的认识。 【仪器与器材】 焦利氏秤1把,U 形金属丝1条,砝码1盒,镊子1把,玻璃皿1个,温度计1支,酒精灯1个,蒸馏水100ml ,游标尺1把。 【原理与说明】 一、 实验原理 由于液体分子与分子间的相互作用,使液体表面层形成一张紧的膜,其上作用着张力,叫做表面张力。如图3-1所示,设想在液体MN 上划出一条线s s ',s s '把MN 分成A 、B 两部分。由于A 、B 两部分之间的分子相互作用,在s s '两侧就形成表面张力f ,f 的方向与液体表面相切且垂直于s s ',f 的大小与s s '的长度l 成正比,用公式表示为 )13(-=l f α 式中,α为表面张力系数,即作用在s s '的每单位长度上的力。 表面张力系数是研究液体表面性质所要用到的物理量,不同种类的液体,α值不同;同一种液体的α值随温度上升而减小;液体不纯净,α值也会改变。因此,在测定α值时必须注明在什么温度下进行,液体必须保持纯净。 测量表面张力系数α的方法很多,本实验用拉脱法测定。 将U 形金属丝浸入液体中,然后慢慢拉起,这时在金属丝内带起了一层薄膜,如图3-2所示。要想使金属丝由液面拉脱,必须用一定的力 F ,这个力的大小应等于金属丝所受液面的表面张力 f F 2= (注意有两个表面) l F α2= 图 3-1 图3-2

l F 2= α (3-2) 本实验用焦利氏秤测出F ,然后代入式(3-2)计算出α值。 二、 仪器构造 焦利氏秤实际上就是一个比较精确的弹簧秤,用焦利氏秤测力是根据虎克定律 x k F ?= (3-3) 式中,k 为弹簧的倔强系数,等于弹簧伸长单位长度的拉力, x ?为弹簧伸长量,如果已知k 值,再测定弹簧在外力作用下的伸长量x ?,就可以算出作用力F 的大小。 焦利氏秤的构造如图3-3所示,A 为垂直圆筒形支架,圆筒里有一可借助于旋钮D 升降的B 杆,升降高度可以由B 上的刻度和A 上的游标C 读出。弹簧E 悬在B 上的横梁N 上,E 的下端有一指 标镜M ,M 在固定于支架A 上的垂直玻璃管G 内。M 和G 上都刻有标线,H 为平台调节旋钮。 【实验步骤】 一、 k 值的测定 1.按图3-3挂好弹簧、指标镜和砝码盘,再调节三角底座上的螺丝,使指标镜处于玻璃管中,能上下自由振动且不与玻璃管相碰; 2.调节旋钮D ,使指标镜M 上的标线处于“三线重合”位置(先使G 标线在镜中的像与G 标线本身重合,再调节M 标线使之与前者重合),读出标尺上的读数 0x 。如弹簧振动不停,可将镊子靠在玻璃管上端,轻轻阻挡弹簧,即可停止振动; 3.在砝码盘上加0.5g 的砝码,旋转D ,当M 的标线重新处于“三线重合” 位置时,读出读数X; 4.重复步骤2、3共3次,将所得数据记入表3-1中。 二、 F 的测定 1. 先用洗涤液,再用蒸馏水洗净玻璃皿,把装有蒸馏水的玻璃皿放在平台上。用镊子夹 住金属丝在洒精灯上烧干,再挂在指标镜M 的挂钩上; 2. 调节旋钮D ,使M 的标线处于“三线重合”位置,读出标尺上的读数0x ; 3. 调节旋钮H ,让金属丝的水平部分和液面接触(水平部分如果和液面不平行,可用镊 子调整金属丝几次); 4.观察M 的标线是否在“三线重合”位置,如果不在,继续调节旋钮H ,直至标线处于“三线重合”位置; 图3-3

最大泡压法测定

数据记录参考格式(计算时注意单位换算) 温度: 24℃水的表面张力:0.07218N/m 仪器常数K:0.1104 0 0.05 0.1 0.15 0.2 0.25 0.3 0.654 0.604 0.55 0.486 0.403 0.346 0.29 0.07191 0.05568 276 0.05070 45 0.04480 434 0.03715 257 0.03189 774 0.0267351 0 0.05 0.1 0.15 0.2 0.25 0.3 0.07191 0.05568 3 0.05070 5 0.04480 4 0.03715 3 0.03189 8 0.026735 0 0.05 0.1 0.15 0.2 0.25 0.3 -0.2153 -0.18997 -0.1646 4 -0.1393 1 -0.1139 8 -0.0886 5 -0.0633 2 0 3.831400 4465E-06 6.64106 7216E-0 6 8.42900 03085E- 06 9.19519 9724E-0 6 8.93966 54625E- 06 7.66239 7524E-0 6 0 0.05 0.1 0.15 0.2 0.25 0.3 0 3.81E-0 6 6.64E-0 6 8.43E-0 6 9.20E-0 6 8.94E-0 6 7.66E-06

六.注意事项: 1.所用毛细管必须干净、干燥,应保持垂直,其管口刚好与液面相切。 2.读取压力计的压差时,应取气泡单个逸出时的最大压力差。 3.手动做切线时,可用镜面法。 七.思考题: 1.毛细管尖端为何必须调节得恰与液面相切? 如果毛细管端口插入液面有一定深度,对实验数据有何影响? 答:如果将毛细管末端插入到溶液内部,毛细管内会有一段水柱,产生压力P ˊ,则测定管中的压力Pr会变小,△pmax会变大,测量结果偏大。 2.最大泡压法测定表面张力时为什么要读最大压力差?如果气泡逸出的很快,或几个气泡一齐出,对实验结果有无影响? 答:如果毛细管半径很小,则形成的气泡基本上是球形的。当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R和毛细管半径r相等,曲率半径达最小值,根据拉普拉斯(Laplace)公式,此时能承受的压力差为最大:△pmax = p0 - pr = 2σ/γ。气泡进一步长大,R变大,附加压力则变小,直到气泡逸出。最大压力差可通过数字式微压差测量仪得到。 如气泡逸出速度速度太快,气泡的形成与逸出速度快而不稳定;致使压力计的读数不稳定,不易观察出其最高点而起到较大的误差。 3.本实验为何要测定仪器常数?仪器常数与温度有关系吗? 答:因为用同一支毛细管测两种不同液体,其表面张力为γ1,γ2,压力计测得压力差分别为△P1,△P2,则γ1/γ2=△P1/△P2 ,若其中一液体γ1已知,则γ2=K×△P2其中K=γ1/△P1,试验中测得水的表面张力γ1,就能求出系列正丁醇的表面张力。 温度越高,仪器常数就越小 实验总结: 通过本次试验我基本掌握了实验仪器的基本操作!增强了实验数据的分析处理!

相关文档
相关文档 最新文档