文档库 最新最全的文档下载
当前位置:文档库 › 开题报告 银纳米粒子的制备及其性能测试

开题报告 银纳米粒子的制备及其性能测试

开题报告   银纳米粒子的制备及其性能测试
开题报告   银纳米粒子的制备及其性能测试

武汉轻工大学

毕业论文开题报告

2015届

论文题目:银纳米粒子的制备及其性能测试

姓名周浩_ ___

学院化学与环境工程学院

专业应用化学

学号 111303128___

指导教师时宝宪

2015年3月25日

银纳米粒子的制备及其性能测试

1.研究背景

纳米技术是21世纪最有前途的新兴技术,广泛应用于信息、生物、医药、化工、航空航天、能源和国防等领域,具有巨大的市场潜力。纳米粒子是指粒子直径在l~100 nm之间的粒子,也称为超微粒子。纳米材料的优异性能取决于其独特的微观结构。纳米粒子具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等不同于晶态体材料和单个分子的固有特性, 显示出体材料不具备的导电特性、光电特性、光催化能力及随粒径变化的吸收或发射光谱,已被用于各种发光与显示装置。当银颗粒被镶嵌在不同的基底时,材料表现出与原来完全不同的电学和光学性能,目前纳米银粒子的研究仍然是热点,应用前景较为广阔。

银纳米粒子指由银原子组成的颗粒,其粒径通常在1-100 nm范围,在电学、光学和催化等众多方面具有优异的性能, 现已广泛应用于陶瓷材料、医药卫生、环保材料和涂料等领域,因此纳米银粒的制备和性能研究越来越受到研究人员的极大关注.陈水挟等发现负载了银颗粒的活性炭纤维具有很强的杀菌能力,而将负载的银制备成纳米级的颗粒后, 由于其比表面积大幅提高, 表面原子占更大比例, 材料的反应活性即杀菌活性也相应提高。银一直是乙烯环氧化催化剂的主要成分, 减小其粒径是提高催化剂效能的主要手段。纳米银还能提高甲烷选择还原NOx的催化剂活性,掺杂了纳米银颗粒的绝缘体和半导体具有优良的光学特性适于制造光电器件。为了使银纳米粒子具有较好的导电,催化和杀菌能力,必须严格控制银纳米粒子的颗粒尺寸。另外,纳米银粒子的自组装和有序组装膜的结构与性质近年来也受到人们的广泛关注,特别是将粒径分布很小的纳米银粒子或半导体纳米银粒子组装为有序的超晶格及其光电性能的研究更是激起了人们的极大兴趣,为人们通过控制纳米粒子的尺寸或粒子间的距离研究固体复合膜的光电性能提供了可能。

近十几年来,已经发展了多种制备纳米银粒子的物理方法和化学方法。探索低成本、简便、高效且具有工业化前景的纳米银粒子制备方法,一直是该领域研究的重点。物理方法有高能机械球磨法、光照法、蒸发冷凝法等。物理方法原理简单,其缺点是对仪器设备要求较高、生产费用昂贵,主要适用于对纳米银粒子的尺寸和形状要求都不高的产业化制备。化学法合成的纳米银粒子主要应用于对纳米粒子性能要求较高的光学、电学和生物医学等领域,其关键技术是如何控制颗粒的尺寸、较窄的粒度分布和获得特定而均匀的晶型结构。化学制备方法主要有液相化学还原法、电化学还原法、光化学还原法、溶胶-凝胶法、微乳法、化学沉淀法和醇解法等。近年来, 新发展出一种电化学合成纳米粒子的方法, 如B raun 等利用DNA 模板电化学合成了银纳米线, Yu 等用电化学合成了金纳米棒, Zhu 等利用超声电化学合成了半导体PbSe 纳米粒子, Am igo 等用电化学方法合成了Fe2Sr 氧化物等。由于电化学法具有方法简单、快速、无污染等优点, 目前已成为合成纳米材料的一种有效手段。

2.研究现状

耿涛等人的《银纳米粒子的制备及表征》一文中提及,他们在溶剂热条件下, 用乙二醇还原制备出了银纳米粒子,并用X 射线衍射(XRD ) 和透射电子显微镜( TEM ) 进行分析,得出结论:为利用乙二醇水热还原法制备出的纳米银粒子

具有面心立方相多晶结构、平均粒径在50nm左右,主要以粒状形式存在, 粒子

的形状大致呈球形,分散剂起到了很好的阻止颗粒团聚的作用.。

杨必文等人用无毒、绿色的酪氨酸作为还原剂和稳定剂,在碱性条件下还原硝酸银,经60℃恒温水浴处理20 min,成功地合成了银纳米粒子。混合溶液颜

色由淡黄色变为棕黄色直观地呈现了银纳米粒子的生成。利用紫外可见吸收光

谱(UV-Vis)和透射电子显微镜(TEM)对制备样品进行分析和表征,得出结论为。

粒子的UV-Vis吸收在412 nm附近,TEM图像显示,银纳米粒子的形状近似球形,粒子直径在15~25 nm。

孙如等人采用硼氢化钠还原硝酸银制备了较小银纳米粒子。运用紫外可见吸收光谱(Uv-Vis)、扫描电子显微镜(SEM)、循环伏安法(CV)对银纳米粒子进行了表征。结果表明:银纳米粒子粒径约为10 nm,并能以亚单层形式组装于导电玻璃(IT0)表面;CV图显示银纳米粒子有一对不对称的氧化还原峰,而且纳米粒子的浓度对其氧化还原电位存在一定的影响。

顾大明等以次磷酸钠为还原剂、六偏磷酸钠为分散剂、聚乙烯吡咯烷酮(PVP)为保护剂,在pH=1~2、温度40--42℃条件下与硝酸银溶液反应,得到紫红色银胶。经离心分离6000 r/min、钝化剂溶液洗涤和真空干燥(1kPa 50℃)3 h,得

到粉末状产物。透射电镜(TEM)和X射线衍射仪(XRD)分析表明,产品系粒径10~30 nm的纯相纳米银粉。该方法的制备周期约为5 h,产率可达70%~80%。

王银海等采用电化学法以EDTA为配位体,在超声波的存在下制备了不同粒径的球形纳米银粒子,并通过XRD、TEM和紫外一可见光谱对它们进行了表征。实

验表明,通过控制AgN03溶液的浓度,可以控制纳米银粒子的形状和粒径大小。

廖学红等在配位剂N’-羟乙基乙二胺-N,N,N’-三乙酸存在下用电化学方法制备出树枝状纳米银,并用XRD和TEM对该纳米粒子进行了表征,发现配体对纳米

粒子的形成起着非常关键的作用,而且在配体存在下用电化学法制备纳米银是

一种简单、无污染的金属纳米粒子制备方法。同时,他们在配位剂EDTA存在

下,用AgNO3溶液以超声电化学方法成功制备出两种不同粒径的类球形和树枝状

纳米银,并用XRD和TEM对纳米银进行表征。他们还探讨了合成不同形状的纳米

银的可调因素。张韫宏等在8~14层硬脂酸银L-B膜内,用电化学法制备了纳米

尺度的超微银粒子,检测到球形纳米银粒子直径在2-3 nm之间。

3.选题思路

由研究现状可知,在参考了大量有关银纳米粒子的制备及其分析测试的文献之后,得知制备银纳米粒子的方法多种多样,各有优点。本人经过思考与对比

后认为可用电化学合成方法来制备银纳米粒子,此法具有方法简单、快速、无

污染等优点,且药品为实验室常见试剂,简单易的,实验方法具有较强的可行性。

此法制备金属纳米粒子是基于溶液中金属离子在一定的电化学窗口下,可以发生氧化还原反应。在一定的电势下,选择适当的条件,高价态的金属离子可

以被还原为零价态。在电解还原的同时,电解液中存在某种稳定剂,将还原出

来的金属离予保护起来,形成分散的金属纳米粒子。其基本原理是:

阳极 4OH--4e- O2↑+2H2O

阴极 4Ag++4e- +稳定剂 4Ag/稳定剂

总反应 4AgNO3+2H2O 4Ag/稳定剂+O2↑+4HNO3

在合成银纳米粒子后可用X 射线衍射(XRD)、透射电子显微镜(TEM ) 和紫外可见吸收光谱(UV-Vis)对其进行表征。

4.研究方案

(1)试剂及仪器柠檬酸(C6H8O7·H2O, A. R. 级);半胱氨酸(C3H7NO2S, ≥98.5% , 生化试剂);丙酮(CH3COCH3, A. R. 级);硝酸银(AgNO3, A. R. 级)。

电化学工作站;X 射线衍射仪 , Cu 靶;透射电子显微镜;紫外光谱仪。

(2)银纳米粒子的制备使用分析天平准确称取 1g 柠檬酸或0.3g 半胱氨酸(作为配位剂),0.05g AgNO3于小烧杯中,加入50ml蒸馏水溶解配成电解液。将电解池放置于超声清洗器中(50 Hz, 100 W ) , 电极体系为铂丝-铂片(5 mm ×6 mm ) 双电极系统, 以铂片电极为工作电极(接正极), 于5V 电压,10mA 电流下电解25min。将银单质从铂片上分离出来,使用离心机将产物离心分离,分别用蒸馏水及丙酮洗涤两次, 自然干燥。

(3)产物的表征用X 射线衍射(XRD)、透射电子显微镜(TEM ) 和紫外可见吸收光谱(UV-Vis)对其进行表征。

(4)催化活性测试

1). 取0.02 g石墨粉在表面皿中,加入5μL液态石蜡混合均匀,研磨至糊状,填入聚四氟乙烯管中,在另一端插入铜丝作为导线制得碳糊电极。

2).取0.01 g石墨粉和0.01 g银纳米粒子在表面皿中,加入5μL液态石蜡混合均匀,研磨至糊状,填入聚四氟乙烯管中,在另一端插入铜丝作为导线制得银纳米粒子修饰的碳糊电极。

3).用循环伏安法分别测量两根电极反应的起始电势以及反应中通过电极的电流。起始电势越低,说明反应越容易进行;而电极电流越大,说明反应进行的越激烈。由此我们可以推测出银纳米粒子的电催化活性情况。

(4)结果与讨论

(5)得出结论

6.参考文献

1 廖学红,朱俊杰,赵小宁,陈洪渊纳米银的电化学合成[J],高等学校化学学报,2000,21:1837-1839

2 孙如,顾仁傲金银纳米粒子的电化学性质及联苯胺的SERS研究[J],光谱学与光谱分析,2006,26(12):2240-2243

3 王海英,刘志明纳米纤维素/银纳米粒子的制备和表征[J],化学进展,2013,05:667

4 耿涛等银纳米粒子的制备及表征[J],枣庄学院学报,2010.10,27(5)

5 郭斌,罗江山等种子法制备三角形银纳米粒子及其性能表征[J],强激光与粒子束,2007.8,19(8)

6. Zhang Zhanjian,Li Jinpei Synthesis and Characterization of Sliver Nanoparticles by a SonochemicaI Method[J ],Rare Metal Materials and Engineering,2012,41(10):1700-1705

7. ZHAN G L i2De (张立得) , MOU J i2M ei(牟季美). Science for N anocrystals(纳米材料科学) [M ], Shengyang: L iaoning Science &Technology Press, 1994: 9—48 8 L I Xin2Yong (李新勇) , L I Shu2Ben (李树本). Chinese Progress in Chem istry (化学进展) [J ], 1996, 8 (3) : 231—239

9 Erez Braun, Yoav Eichen, U ri Sivan et al. . N ature[J ], 1998, 391: 775—778

10 YU Yu2Ying, CHAN G Ser2Sing, L EE Chien2L iang et al. . J. Phys. Chem.

B[J ], 1997, 101 (34) : 6 661—6 664

11 Zhu Junjie, A runa S. T. , Koltyp in Yuri et al. . Chem. M ater. [J ], 2000, 12: 143—147

12 Am igo R. , A senjo J. , Krotenko E. et al. . Chem. M ater. [J ], 2000, 12: 573—578

13 MostafariM. , M arignier J. L. , Amblard J. et al. . J. Phys. Chem. [J ], 1989, 34: 605—611

14 M atejka P. , V lckova B. , Vohlidal J. et al. . J. Phys. Chem. [J ], 1992, 96: 1 361—1 366

15 A hmadi T. S. , Wang Z. L. , Green T. C. et al. . Science[J ], 1996, 272: 1 924—1 926

16 ZHOU Yong, YU Shu H. , WAN G Cui Y. et al. . A dv. M ater. [J ], 1999, 11 (10) : 850—852

17李敏娜罗青枝等纳米银粒子制备及应用研究进展[J],化工进展,2008,27(11):1765

18 马娟,隋琪,陆天虹配位自还原法制备纳米银及其电催化活性[J],应用化学,2014.11,31,11:1330

19 夏明峰,张帅纳米银粒子抗菌原理的研究进展[J],前沿与进展 2014.10,17(10)

20 王春霞,李英琳,周少波等液相化学还原法制备纳米银颗粒的研究[J],化工技术与开发 2014.6,43(6):25

21 张占江,李金培银纳米粒子的超声化学制备及表征[J],Rare Metal Materials and Engineering,2012,41(10):1700-1705

22 漆红兰,刘晨,范晓荔银纳米粒子合成与表征的仪器分析综合性实验[J],化学教育,2014,10:25

23 王静,易特等紫外光照射制备具有光学活性的银纳米粒子[J],无机化学学报,2014.8,30(8):1889-1894

24 张太蔚,张露银纳米粒子的形状控制合成与应用[J],稀有金属材料与工

程,2007.8,36(8):1495

银纳米粒子的制备及其能测试新

银纳米粒子的制备及其能测试新

毕业论文 论文题目:银纳米粒子的制备及其性能测试

目录 一、前言 (1) 1.1纳米粒子概述 (1) 1.2 纳米粒子的应用 (1) 1.3银纳米粒子概述 (2) 1.4 银纳米粒子的制备方法 (3) 1.5 研究现状 (3) 1.6 研究内容 (4) 二、实验部分 (5) 2.1 实验药品 (5) 2.2 实验仪器 (5) 2.3 实验步骤 (6) 2.3.1 银纳米粒子的制备 (6) 2.3.2 银纳米粒子的表征 (6) 2.3.3 银纳米粒子的电催化活性测试 (6) 3.1 X射线衍射仪表征 (7) 3.3 纳米激光粒度仪测试 (11) 3.4 银纳米粒子的电催化活性测试结果 (12) 四、实验结论 (13) 致谢 (14) 参考文献 (15)

摘要:随着科学技术的进步,银纳米粒子的研究开发也是日新月里的发展起来了。本文尝试了一种制备方法:用电化学还原法,以柠檬酸作为配位剂用电化学工作 溶液制得银纳米粒子。用扫描电镜观察所制得站在一定电流、时间内电解AgNO 3 的产品形貌状态,为松针状的晶体粒子,其粒径在50-100 nm之间,用X射线衍射仪分析了银纳米粒子的晶体结构及样品纯度,纳米粒度分布仪测试得出粒子的大小分布在125-199 nm范围内,并用制得的银纳米粒子修饰碳糊电极,测其C-V 曲线,对其电催化活性进行了初步探索。 关键词:银纳米粒子;电解;制备;表征

Abstract: With the progress of science and technology, the research and development of silver nanoparticles also developed very quickly. This paper attempts a preparation method:electricity chemical reduction method, using citric acid as complexing agent chemical workstation in a certain current, time electrolytic AgNO3solution obtained dendritic silver https://www.wendangku.net/doc/a917133404.html,ing scanning electron microscope observed the product appearance, and it shows pine needle shaped crystal particles, the particle diameter between 50-100 nm, by X ray diffraction analysis the silver nanoparticles on the crystal structure and purity of the samples, nanoparticle size distribution tester that particle size distribution in the range of 125-199nm, and the prepared silver nanoparticles modified carbon paste electrode, measured C-V curve, to conduct a preliminary study of the electrocatalytic activity. Key words: silver nanoparticles;Electrolysis; preparation; characterization

纳米纤维的技术进展

纳米纤维的技术进展 赵婷婷 张玉梅 (东华大学纤维材料改性国家重点实验室,上海,200051) 崔峥嵘 (辽阳石化分公司,辽阳,111003) 王华平 (东华大学纤维材料改性国家重点实验室,上海,200051) 摘 要:本文简单介绍了纳米纤维的定义、特点和应用,主要讨论了纳米纤维的制备方法,包括传统纺丝方法(如:静电纺丝法、复合纺丝法和分子喷丝板法)的改进以及新兴的生物合成法和化学合成法。 关键词:纳米纤维,技术,进展,生物合成,化学合成 中图分类号:TS1021528 文献标识码:A 文章编号:1004-7093(2003)10-0038-05 1 前言 纳米纤维是直径1nm~100nm的纤维,此为狭义的纳米纤维的定义。广义地说,零维或一维纳米材料与三维纳米材料复合而制得的传统纤维,也可以称为纳米复合纤维或广义的纳米纤维。更确切地说,这种复合纤维应称为由纳米微粒或纳米纤维改性的传统纤维。纳米纤维最大的特点就是比表面积大,导致其表面能和活性的增大,从而产生了小尺寸效应、表面或界面效应、量子尺寸效应、宏观量子隧道效应等,在化学、物理(热、光、电磁等)性质方面表现出特异性。纳米纤维广泛应用在服装、食品、医药、能源、电子、造纸、航空等领域。 一方面,纳米纤维的广泛应用,对纳米纤维的制备技术提出了新的要求,同时也为纳米纤维制备技术的发展提供了新的发展空间;另一方面,纳米纤维制备技术的不断创新与发展,也使得纳米纤维的种类不断推陈出新,其性能和功能也得以进一步的体现和应用。本文主要讨论一维纳米纤维制备技术的进展情况。 收稿日期:2003-05-20 作者简介:赵婷婷,女,1980年生,在读硕士研究生。主要从事细菌纤维素的研究。2 传统纺丝方法的改进 2.1 静电纺丝法[1~4] 静电纺丝技术是目前制备纳米纤维最重要的基本方法。这一技术的核心,是使带电荷的高分子溶液或熔体在静电场中流动并发生形变,然后经溶剂蒸发或熔体冷却而固化,于是得到纤维状物质,这一过程简称电纺。 目前电纺技术已经用于几十种不同的高分子,即包括大品种的采用传统技术生产的合成纤维,如:聚酯、尼龙、聚乙烯醇等柔性高分子的电纺,包括聚氨酯弹性体的电纺以及液晶态的刚性高分子聚对苯二甲酰对苯二胺等的电纺。此外,包括蚕丝、蜘蛛丝在内的蛋白质和核酸(DNA)等生物大分子也进行过电纺实验。尽管所用的材料十分广泛,但是目前电纺纤维总是以在收集板负极上沉积的非织造布的形式而制得的,其中单纤维的直径可以随加工条件而变化,典型的数值为40nm~2μm,甚至可以跨越10nm~10μm的数量级,即微米、亚微米或纳米材料的范围。 电纺纤维最主要的特点是所得纤维的直径较细,新形成的非织造布是一种有纳米微孔的多孔材料,因此有很大的比表面积,有多种潜在用途。但是,目前的电纺技术在推广上存在一定技术问题:第一,由于静电纺丝机设计的构型,此法得到的只能是非织造布,而不能得到纳米纤维彼此可

银纳米粒子的合成

银纳米粒子的合成及其表征 一、实验目的: 1. 掌握银纳米粒子的合成原理和制备方法。 2. 掌握TU-1901紫外-可见分光光度计的使用方法并了解此仪器的主要构 造。 3. 进一步熟悉紫外分光光度法的测定原理。 二、实验原理: 纳米粒子是指粒子尺寸在纳米量级(1~100nm)的超细材料。由于其特有的小尺寸效应、表面效应、量子尺寸效应、量子隧道效应等,使其拥有完全不同于常规材料的光学性能,力学性能,热学性能,磁学性能,化学性能,催化性能,生物活性等,从而引起了科技工作者的极大兴趣,并成为材料领域研究的热点。成为21世纪最有前途的材料。 银纳米粒子,因其独特的光学电学性能,得到人们的关注。常用的制备方法分为物理法和化学法。化学法有溶胶-凝胶法、电镀法、氧化-还原法和真空蒸镀法等。本实验中我们利用氧化还原法合成银纳米粒子。银纳米粒子引起尺寸的不同,表现出不同的颜色。由黄溶胶和灰溶胶两种。可用紫外可见光谱表征。根据朗伯-比耳定律:A=εb c,当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。据此,可绘制校准曲线。并对样品进行测定。本实验我们利用氧化还原法合成黄溶胶,并对其进行表征。 三、试剂和仪器 TU-1901紫外-可见分光光度计,比色管 (1.5mmol/L),王水 硝酸银(1mmol/L),NaBH 4 四、实验步骤:

1、化学还原法制备纳米银: 2KBH4+2AgNO3+6H2O→2Ag+2KNO3+2H3BO3+7H2↑ (反应开始后BH4-由于水解而大量消耗:BH4-+H++2H2O→中间体→HBO2+4H2↑) 还原法制得的纳米银颗粒杂质含量相对较高,而且由于相互间表面作用能较大,生成的银微粒之间易团聚,所以制得的银粒径一般较大,分布很宽。 2、银纳米粒子的合成 1)制备银纳米粒子的玻璃容器均需在王水或铬酸溶液中浸泡,最后用去离子水洗涤几次。 (M=37.85)溶液。 2)配制50 mL 1.5mmol/L的NaBH 4 溶液置于冰浴中,在剧烈搅拌下,逐滴加入2.5 3)取15mL 1.5 mmol/L的NaBH 4 mL 1mmol/L的AgNO 溶液,继续搅拌30 min,制得黄色的银纳米粒子溶胶。 3 3、银纳米粒子的表征和测量 1)紫外可见光谱的表征 1. 启动计算机,打开主机电源开关,启动工作站并初始化仪器。 2. 在工作界面上选择测量项目(光谱扫描,光度测量),设置测量条件(测量波长等)。 3. 将空白放入测量池中,点击基线,进行基线校正。 4. 将合成的银纳米粒子放入样品池,点击开始,进行扫描。确定最大吸收波长。 5. 校准曲线的绘制 配制稀释不同倍数的银纳米粒子溶液(1,2,4,5倍),放入样品池,进行

金属纳米晶体的表面与其催化效应

金属纳米晶体的表面与其催化效应 沈正阳 (浙大材料系1104 3110103281) 摘要:概括纳米材料的表面与界面特性,从金属纳米晶体表面活性与结构介绍其的催化性能,简要概述金属纳米晶体形状与晶面的关系以及金属纳米晶体的成核与生长。 关键词:纳米金属;表面活性;催化;高指数晶面 1.纳米材料的表面与界面 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。强烈的表面效应,使超微粒子具有高度的活性。如将刚制成的金属超微粒子暴露在大气中,瞬时就会氧化,若在非超高真空环境,则不断吸附气体并发生反应。[1] 纳米晶体是至少有一个维度介于1到100纳米之间的晶体。纳米材料主要由晶粒和晶粒界面2部分组成,二者对纳米材料的性能有重要影响。纳米材料微观结构与传统晶体结构基本一致,但因每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变,其内部同样会存在各种缺陷,如点缺陷、位错、孪晶界等。纳米金属粒子的形状、粒径、颗粒间界、晶面间界、杂质原子、结构缺陷等是影响其催化性能的重要因素。纳米材料中,晶界原子质量分数达15%~50%,晶界上的原子排列极为复杂,尤其三相或更多相交叉区,原子几乎是自由的、孤立的,其量子力学状态和原子、电子结构已非传统固体物理、晶体理论所能解释。金属纳米晶体研究中,发现面心立方结构纳米金属如 Al、Ni、Cu 和密排六方结构Co都存在孪晶和层错缺陷,Cu纳米金属中存在晶界滑移。 2.金属纳米晶体的催化性能 近年来,关于纳米微粒催化剂的大量研究表明,纳米粒子作为催化剂,表现出非常高的催化活性和选择性。这是因为纳米微粒尺寸小,位于表面的原子或分子所占的比例非常大,并随纳米粒子尺寸的减小而急剧增大,同时微粒的比表面积及表面结合能迅速增大。纳米颗粒表面原子数的增加、原子配位的不足必然导致了纳米结构表面存在许多缺陷。从化学角度看,表面原子所处的键合状态或键

浙江大学硕士研究生开题报告论文模板

浙江大学研究生学位论文编写规则 为规范我校研究生学位论文编写格式,根据《科学技术报告、学位论文和学术论文的编写格式》(GB/T 7713-1987)和《学位论文编写规则》(GB/T 1.1—2000----审批版),制定本研究生学位论文编写规则。 1 学位论文基本结构: 学位论文基本结构包括前臵部份、主体部份和结尾部份。 1.1 前臵部份包括: (1) 封面 (2) 题名页 (3) 英文题名页(硕士可省略) (4) 独创性声明(知识产权声明?) (5) 勘误页(可根据需要) (6) 致谢 (7) 序言或前言(可根据需要) (8) 摘要页 (9) 目次页 (10) 插图和附表清单((可根据需要)) (11) 缩写、符号清单、术语表((可根据需要)) 1.2主体部份: (1) 引言(绪论) (2) 正文 (3) 结论 1.3 结尾部分: (1) 参考文献

(2) 附录(可根据需要) (3) 索引(根据需要) (4) 作者简历及在学期间所取得的科研成果 (5) 封底 2 编写规范与要求 2.1 前臵部份 2.1.1 封面:封面包括分类号、密级、单位代码、作者学号、校名、学校徽标、学位论文中文题目、英文题目、作者姓名、导师姓名、学科和专业名称、提交时间等内容(见附件1:学位论文封面样式)。 分类号:按中国图书分类法,根据学位论文的研究内容确定。 密级:仅限于涉密学位论文(论文课题来源于国防军工项目)填写,密级应根据涉密学位论文确定,分绝密、机密和秘密三级,并注明保密期限。非涉密学位论文不得填写密级。 单位代码:10335。 作者学号:全日制和在职攻读专业学位者填写学号,同等学力申请学位人员填写申请号。 论文题目:应准确概括整个论文的核心内容,简明扼要,一般不能超过25个汉字,英文题目翻译应简短准确,一般不应超过150个字母,必要时可以加副标题。 学科和专业名称:必须按国家研究生培养的学科专业目录,规范填写。 2.1.2 题名页:题名页应包括:学位论文中英文题目,学位论文导师及作者本人签名,学位论文评阅人姓名、职称和单位等信息(隐名评阅除外),学位论文答辩委员会主席及成员姓名、职称和单位,学位论文答辩日期等(详见附件2题名页样式)。 2.1.3 英文题名页:中文题名页相对应的英文翻译。 2.1.4 独创性声明:(见附件3浙江大学研究生学位论文独创性声明)。 2.1.5 致谢:致谢对象限于对课题研究、学位论文完成等方面有较重要帮助的人员。 2.1.6 序言或前言:学位论文的序言或前言,一般是作者对本篇论文基本特征的简介,如说明研究工作缘起、背景、主旨、目的、意义、编写体例,以及资助、支持、协作经过等。

(完整版)纳米纤维技术介绍

纳米纤维技术介绍 1.纳米纤维 纳米纤维是指直径为纳米尺度而长度较大的线状材料,纳米是一个长度单位,其符号为nm,为1毫米的百万分之一(l nm=1×10-6 mm)。图1可以直观的比较人类头发(0.07-0.09 mm)与纳米纤维直径的差别。 图1 纳米纤维直径尺度示例 2 纳米纤维的应用与优势 纳米纤维在众多领域都有应用的优势,这些优势被近年来大量的学术论文报导,同时受到了产业界的重视,一些产品已经在市场上广泛的应用。这些领域包括:空气过滤、液体过滤、能源/电池隔膜、生物医学、药物缓释控释、健康和个人防护、环境保护、吸声材料、食物和包装等等。 纳米纤维作为过滤材料的优势:纳米纤维在空气过滤和液体过滤材料领域已有市场化的产品,其进入中国市场的方式均为原装进口。为确保技术壁垒相关企业虽在国内建立了全资子公司,但不设纳米纤维过滤材料生产线。相关产品有唐纳森公司Torit? DCE?除尘器、燃汽轮机过滤器GDX?、汽车引擎过滤器PowerCore?,唐纳森公司宣称其产品具有无可替代的性能。另有美国贺氏(H&V)公司FA6900NW、FA6901NW、FA6900NWFR系列空气过滤滤料,以及H&V公司一些型号不明的滤料也

有使用纳米材料。 纳米纤维非织造材料对亚微米颗粒的过滤效率是常规的微米纤维非织造材料(无纺布)所无法比拟的。这一特性决定了纳米纤维在空气中颗粒污染物的分离(电子工业、无菌室、室内环境净化、新风系统、工业高效除尘等)和液体中颗粒污染物的分离(燃油滤清器、水处理等)相关领域具有广阔的应用前景。 (1)纳米纤维直径小——孔隙尺寸小、过滤效率高 过滤材料通常为纤维平面非织造材料(纤维无纺布),随着纤维直径的减小,单位面积内的纤维根数显著增加,纤维未搭接处形成的孔隙尺寸显著减小,过滤效率明显提升(如图2所示)。对于常规过滤材料很难拦截的PM 2.5污染物有很高的拦截效率。 图2 纤维直径与孔隙尺寸和过滤效率之间的关系(2)纳米纤维比表面积大——对细微颗粒的吸附能力强 纤维直径减小,纤维比表面积增大。相同的聚合物形成纤维后,比表面积(s)与纤维直径(d)的关系式为:ds1∝,其关系服从图3中的曲线。可知,纤维直径从10 μm减小到100 nm(0.1 μm)时,纤维的比表面积增加至原来的1000倍。 比表面积的增大,增加了颗粒与纤维接触而被吸附的几率,特别是对常规过滤材料无法过滤的100-500 nm的微细颗粒的捕捉与分离,纳米纤维滤料是常规滤料无法比拟的,可以捕获PM2.5污染物中粒径最细小的颗粒。

纳米银粉的液相还原制备方法

纳米银粉的液相还原制备方法 摘要:纳米银粉因粒径小(1~100nm)、比表面积大、表面活性位点多、高导电性等优良特点,已被广泛用作各类电池的电极材料。本文综述了纳米银粉的液相还原制备及其各方面应用,对今后的发展趋势进行了展望。 关键词:纳米银粉、液相还原、制备 Liquid phase reduction method for preparing nanometer silver powder Abstract: Nanosilver powder has been widely applied in the electrode materials due to its small grainsize,large specific surface areas,many active sites Oil the surface,and high conductivity.This paper reviews the nanosilver liquid preparation and all aspects of application of the reduction, the future development trends are discussed. Key words:nanosilver powder、reduction in liquid phase、Preparation 引言 人类社会进入21世纪以来,高新技术发展迅速,特别是生物、信息和新材料等代表了高新技术的发展方向。在信息产业飞速发展的今天,新材料领域有一项技术引起了世界各国政府和科技界的高度关注,这就是纳米科技。[]6纳米材料被誉为21世纪最有前途的材料, 自20 世纪80 年代以来逐渐成为各国研究开发的重点, 引起人们极大的关注, 其应用已十分广泛, 在磁性材料、电子材料、光学材料以及高强、高密度材料的烧结、催化、传感等方而有广阔的应用前景。银纳米粒子不仅具有一般纳米粒子的性质, 作为贵金属纳米的重要一员, 具有独特的光学、电学、催化性质, 可广泛应用于催化剂材料、电池电极材料、低温导热材料和导电材料等。而且, 与其他金属纳米材料相比, 银纳米粒子具有最优良的导电性能和较好电催化性能, 将银纳米粒子修饰到电极上有着较大的应用价值和前景。因此, 研究纳米银的制备方法具有重要意义, 纳米银的制备及改进技术从纳米抗菌材料起始以来就成为研究者及开发商们广泛关注的热点。[]2 1、纳米银粉的基本概念和性质 纳米材料又称为超微颗粒材料,由纳米微粒组成。银粉是一种重要的贵金属粉末,广泛的应用于催化剂、抗菌材料、医药材料、电子浆料等领域。[]1纳米粉末是指尺寸范围为1~100nm的粉末,是介于单个原子、分子与宏观物体之间的原子集合体,是一种典型的介观

碳纳米管限域的金属纳米粒子的催化行为

附件2 论文中英文摘要格式 作者姓名:陈为 论文题目:碳纳米管限域的金属纳米粒子的催化行为 作者简介:陈为,男,1977年7 月出生,2003年9 月师从于中国科学院大连化学物理研究所包信和研究员,于2008年3 月获博士学位。 中文摘要 随着石油价格的高涨及其资源的日益枯竭,迫使人们寻找新的清洁、可持续的能源替代产品。以煤和天然气为资源经合成气催化转化成液体燃料是一种非常有应用前景的过程,对于保障我国能源安全及解决环境污染问题等都具有重大的经济和现实意义,发展高效催化合成气转化的催化剂显得越来越紧迫和重要。碳纳米管自1991年被lijima发现以来,因其独特的 结构和性能引起了人们极为广泛的关注,尤其是碳纳米管的纳米级管道为纳米粒子提供了准一维的限域环境。本论文研究了碳管的限域环境对Fe/Fe2O3粒子的氧化还原性能的调变作用,以及这种限域效应对F-T合成反应性能的影响,取得了如下结果: 1. 发展了高效的碳纳米管填充方法—湿法毛细诱导填充法尽管各种填充方法日趋成熟,然而现有的很多碳纳米管填充的复合体系并不适合于催化应用,如原位填充的金属及其化合物完全被密封在碳纳米管管腔中;熔融填充的金属纳米线或纳米棒严实地充满整个碳纳米管内腔,大部分金属并不能与外界接触;Green 等开创的湿化学填充法,尽管能得到颗粒状填充的过渡金属,但是这个方法对金属盐的消耗量较大,不适用于填充贵金属,并且无法准确定量。这些填充方法的填充效率高低不一,并且其填充复合物的产量还不能够达到一般催化剂量的要求。因此,发展一种适用于催化应用的普适性强的、高效的填充碳纳米管的方法,是实现碳纳米管的“管中催化”亟需解决的首要问题。 相对于其它填充碳纳米管方法,湿化学填充法简单,可得到颗粒状填充的过渡金属粒子。我们针对湿化学填充碳纳米管的方法存在填充效率不高、不易准确定量的缺点,结合碳管本身的结构特点进行了改进,发展了湿法毛细诱导填充法。主要步骤是:首先将碳纳米管端口打开,同时进行表面亲水性处理,使得碳管能够被溶液完全浸润;然后,利用强超声振荡下的空化作用,使碳管内的残余物能够扩散出来,从而含金属离子的溶液能够在毛细力作用下进入碳管管腔;最后,控制溶液的蒸发速率,金属离子在浓度差的驱动下,尽可能进入到碳管管腔中,之后加热使金属前驱物发生分解,得到

水合肼还原法制备纳米银粒子的研究

水合肼还原法制备纳米银粒子的研究 应用化学杜运兴2080301 纳米银材料具有很稳定的物理化学性能,在电学、光学和催化等方面具有十分优异的性能,现已广泛应用于陶瓷和环保材料等领域[1].纳米银材料具有很稳定的物理化学性能,在电学、光学和催化等方面具有十分优异的性能,现已广 泛应用于陶瓷和环保材料等领域[2]. 联氨作为还原剂的最大优点是在碱性条件下还原能力非常强,其氧化产物是干净的N2,不会给反应产物引进金属杂质[4]。 本文对纳米银的性质进行简要说明,对目前采用水合肼在表面活性剂的保护下还原AgNO 3 ,制得粒径均一的纳米银粒子的实验原理及方法深入讨论,并对各影响因素分别论述,最后对纳米银粒子的应用前景进行展望。 1.纳米银粒子的性质 纳米银粒子具有量子效应、小尺寸效应和极大的比表面积,这使得其抗菌性能远大于传统的银离子杀菌剂。 纳米银由于具有很高的表面活性及催化性能而被广泛用作高效催化剂、非线性光学材料及超低温制冷机的稀释剂 纳米银溶液是纳米银的悬浊液,随浓度不同颜色也变化,随着浓度的增加颜色也逐步加深,从黄色至深红色。而液体中有颗粒,质地粗糙。2.纳米银粒子的制备 反应方程式 因为水合肼是弱电解质,在溶液中不能完全电离,在进行氧化还原反应时,只有较多过量才能使银离子的反应完全[3]。根据水合肼还原硝酸银的反应式: 2Ag++N 2H 4 +2H 2 O=2Ag+2NH 3 OH+ 等物质的量的反应物摩尔数之比为水合肼:硝酸银=1:4,按照过量的原则设计水合肼和硝酸银的摩尔比。 由于Ag+直接与水合肼反应过于激烈,所以有些实验中采用氨水作为络合剂,使Ag+与氨形成配合物,降低了Ag+的浓度,从而相应降低Ag+的氧化能力,使反

纳米粒子制备方法

一、纳米粒子的物理制备方法 1.1 机械粉碎法 机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。理论上,固体粉碎的最小粒径可达0.01~0.05 μ m。然而,用目前的机械粉碎设备与工艺很难达到这一理想值。粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。气流磨技术发展较快,20世纪80年代德国Alpine公司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到0.1μm以下。除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。 1.2 蒸发凝聚法 蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。利用这种方法得到的粒子一般在5~100nm之间。蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。 1.3 离子溅射法 用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar(40~250Pa),两极间施加的电压范围为0.3~1.5kV。由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。离子的大小及尺寸分布主要取决于两极间的电压、电流、气体压力。靶材的表面积愈大,原子的蒸发速度愈高,超微粒的获得量愈大。溅射法制备纳米微粒材料的优点是:(1)可以制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;(2)能制备出多组元的化合物纳米微粒,如AlS2,Tl48,Cu91,Mn9,ZrO2等;通过加大被溅射阴极表面可加大纳米微粒的获得量。采用磁控溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备纳米铜颗粒。 1.4 冷冻干燥法 先使干燥的溶液喷雾在冷冻剂中冷冻,然后在低温低压下真空干燥,将溶剂升华除去,就可以得到相应物质的纳米粒子。如果从水溶液出发制备纳米粒子,冻结后将冰升华除去,直接可获得纳米粒子。如果从熔融盐出发,冻结后需要进行热分解,最后得到相应纳米粒子。冷冻干燥法用途比较广泛,特别是以大规模成套设备来生产微细粉末时,其相应成本较低,具有实用性。此外,还有火花放电法,是将电极插入金属粒子的堆积层,利用电极放电在金属粒子之间发生电火花,从而制备出相应的微粉。爆炸烧结法,是利用炸药爆炸产生的巨大能量,以极强的载荷作用于金属套,使得套内的粉末得到压实烧结,通过爆炸法可以得到1μm以下的纳米粒子。活化氢熔融金属反应法的主要特征是将氢气混入等离子体中,这种混合等离子体再加热,待加热物料蒸发,制得相应的纳米粒子。 二、制备纳米粒子的化学方法

银纳米材料的制备

银纳米材料的制备 (矿业学院矿物加工工程080801110265) 摘要为了更好的了解纳米银的制备,主要介绍了纳米银粉的特性、结构和分类;简述了纳 米银的制备方法;纳米银材料研究现状;展望了纳米银研究的发展方向,介绍了其应用领域。 关键词纳米银粉纳米银辐射γ射线电子束 Silver that the material preparation (institute of mining technology mineral processing engineering080801110265) Abstract In order to better understanding of the preparation of radiation,mainly introduces nanometer silver powder characteristics,construction and classification;discussed radiation preparation of method;nm silver of materials research at the present;the direction of the development of nanotechnology research silver, introduced the application domain. Key words nanometer silver powder radiation γ-ray electron beam 前言纳米粒子是指粒子尺寸在1~100nm之间的粒子,具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等特有的性质和功能[1]。金属纳米粒子是指组分相在形态上被缩小至纳米程度(5~100nm)的金属颗粒,这种新型纳米材料,其原子和电子结构不同于化学成分相同的金属粒子。纳米材料是一种新兴的功能材料,具有很高的比表面积和表面活性,例如,纳米银导电率比普通银块至少高20倍,因此,广泛用作催化剂材料、防静电材料、低温超导材料、电子浆料和生物传感器材料等[2]。纳米银还具有抗菌、除臭及吸收部分紫外线的功能,因而可应用于医药行业和化妆品行业[3]。在化纤中加入少量的纳米银,可以改变化纤品的某些性能,并赋予很强的杀菌能力。因此,研究纳米银粉的制备技术具有重要意义。 1 纳米银粉的特性及纳米银的结构 纳米银粉与普通粉相比,由于其尺寸介于原子簇和宏观微粒之间,因此也具有纳米材料的表面效应、体积(小尺寸)效应、量子尺寸效应、宏观量子隧道效应等许多宏观材料所不具有的特殊的性质[4]。 1.1.1 表面效应 纳米银粉是表面效应是指由大颗粒变成超细粉后,表面积增大,表面原子数目增多造成的效应,纳料银粉的表面与块状银粉是十分不同的。 1.1.2 体积效应 纳米银粉的体积效应是指体积缩小,粒子内的原子数目减少而而造成的效应。随着纳米

纳米催化剂

纳米催化剂

纳米催化剂进展 中国地质大学,材化学院,武汉430000 摘要:简要介绍了纳米催化剂的基本性质、其相对于其他催化剂的优势,并较详细地介绍了纳米催化剂类型、部分应用以及相对应类型催化剂例子的介绍,以及常见的制备方法及其表征手段,最后介绍了部分国内和国外纳米催化剂的应用,并对其发展方向进行一定的预测。 关键词:纳米催化剂应用制备催化活性进展 近年来, 纳米科学与技术的发展已广泛地渗透到催化研究领域, 其中最典型的 实例就是纳米催化剂(nanocatalysts—NCs)的出现及与其相关研究的蓬勃发展。NCs具有比表面积大、表面活性高等特点, 显示出许多传统催化剂无法比拟的优异特性;此外, NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。本文主要就近年来NCs 的研究进展进行了综述。 1.纳米催化剂的性质 1.1表面效应 通常所用的参数是颗粒尺寸、比表面积、孔径尺寸及其分布等,有研究表明,当微粒粒径由10nm减小到1nm时, 表面原子数将从20%增加到90%。这不仅使得表面原子的配位数严重不足、出现不饱和键以及表面缺陷增加, 同时还会引起表面张力增大, 使表面原子稳定性降低, 极易结合其它原子来降低表面张力。此外,Perez等认为NCs的表面效应取决于其特殊的16种表面位置, 这些位置对外来吸附质的作用不同, 从而产生不同的吸附态, 显示出不同的催化活性。 1.2体积效应 体积效应是指当纳米颗粒的尺寸与传导电子的德布罗意波长相当或比其更小时, 晶态材 料周期性的边界条件被破坏, 非晶态纳米颗粒的表面附近原子密度减小, 使得其在光、电、声、力、热、磁、内压、化学活性和催化活性等方面都较普通颗粒相发生很大变化,如纳米级胶态金属的催化速率就比常规金属的催化速率提高了100倍。 1.3量子尺寸效应 当纳米颗粒尺寸下降到一定值时, 费米能级附近的电子能级将由准连续态分裂为分立能级, 此时处于分立能级中的电子的波动性可使纳米颗粒具有较突出的光学非线性、特异催化

汽车车架的有限元结构分析开题报告修改,胡远鹏_修见

本科生毕业设计(论文)开题报告(含文献综述) ( 2015 届) 题目:汽车车架的有限元结构分析 学生姓名胡远鹏 学号 201102120418 专业班级交通112 学院名称工程学院 指导教师刘达列 2014年 12 月18 日

1 选题的依据及意义 车架作为汽车的承载基体,安装着发动机、传动系、转向系、悬架、驾驶室、货厢等有关部件和总成,承受着传递给它的各种力和力矩。车架工作状态比较复杂,无法用简单的数学方法对其进行准确的分析计算,而采用有限元方法可以对车架的静动态特性进行较为准确的分析,从而使车架设计从经验设计进入到科学设计阶段。汽车工业属于高技术产品,要生产出技术可靠,性能优越的汽车,不应用好的软件进行辅助设计是无法实现的。在汽车结构设计中采用有限元结构强度分析,可以解决以往很多无法解决的问题。 实际工程结构都是复杂的超静定结构,有限元法的基本思想是将一个复杂的结构拆分成“有限”个“单元”,对这些单元分别进行分析,建立其位移内力的关系,将变分原理为工具,将微分方程化为代数方程,再将单元组装成结构,形成整体结构的刚度方程。采用有限元分析方法将一个复杂的分析过程转变成可以解决的多个步骤,为汽车的发展,提高汽车性能,节约汽车研究成本各方面起到了很大的作用。 对汽车车架结构的分析我将采用ANSYS软件,ANSYS是全世界范围内最知名,功能最丰富,使用最多的有限元显示求解程序。其在高速碰撞模拟,乘客的安全性分析,零件制造,机械部件的运动分析等方面都有应用领域。 2 国内外研究现状及发展趋势 2.1 国内 随着我们经济的高速发展,全球化进程的不断加快,汽车是保证和促进发展的一个重要工具。汽车车架作为重型载货汽车的载体,支撑这发动机、离合器、变速器、转向器、驾驶室和箱货等所有车架上的重物,并且使用条件恶劣,情况复杂,因此车架需要足够的强度,刚度,可靠性和寿命。 有限元法已成为现代汽车设计的重要工具之一,与传统设计方法相比,它的优势在于提高汽车产品的质量,降低汽车开发和生产制造成本,提高汽车产品在市场上的竞争力。 到了上世纪80年代初,国际上较大的结构分析通用有限元程序发展到几百种,其中著名的有NASTRAN,ASKA,MARC,GTSTRUD,SAP,ADINA,ANSYS等。ANSYS是由美国ANSYS公司开发的融结构、热、流体、电磁、声学于一体的大姓通用有限元分析软件。该软件90年代开始

纳米纤维概述

纳米纤维概述 1.纳米纤维的概念 纳米纤维是指直径处在纳米尺度范围(1~100nm)内的纤维,根据其组成成分可分为聚合物纳米纤维、无机纳米纤维及有机/无机复合纳米纤维。纳米纤维具有孔隙率高、比表面积大、长径比大、表面能和活性高、纤维精细程度和均一性高等特点,同时纳米纤维还具有纳米材料的一些特殊性质,如由量子尺寸效应和宏观量子隧道效应带来的特殊的电学、磁学、光学性质[1]。纳米纤维主要应用在分离和过滤、生物及医学治疗、电池材料、聚合物增强、电子和光学设备和酶及催化作用等方面。 2.纳米纤维的制备方法 随着纳米纤维材料在各领域应用技术的不断发展,纳米纤维的制备技术也得到了进一步开发与创新。到目前为止,纳米纤维的制备方法主要包括化学法、相分离法、自组装法和纺丝加工法等。而纺丝加工法被认为是规模化制备高聚物纳米纤维最有前景的方法,主要包括静电纺丝法、双组份复合纺丝法、熔喷法和激光拉伸法等。 2.1静电纺丝法 静电纺丝法是近年来应用最多、发展最快的纳米纤维制备方法[2-4],其原理是聚合物溶液或熔体被加上几千至几万伏的高压静电,从而在毛细管和接地的接收装置间产生一个强大的电场力,随着电场力的增大,毛细管末端呈半球状的液滴在电场力的作用下将被拉伸成圆锥状,即泰勒锥。当外加静电压增大且超过某一临界值时,聚合物溶液所受电场力将克服其本身的表面张力和黏滞力而形成喷射细流,在喷射出后高聚物流体因溶剂挥发或熔体冷却固化而形成亚微米或纳米级的高聚物纤维,最后由接地的接收装置收集。利用静电纺丝法可制备得到多种聚合物纳米纤维,而采用不同的装置可收集获得无序排列的纳米纤维毡或定向排列的纳米纤维束,也可制备空心结构、实心结构、芯--核结构的纳米纤维,满足其在不同领域的应用需要。 2.2双组份复合纺丝法 双组份复合纺丝法制备超细纤维主要以海岛型和裂片型复合纤维为主[5-7],其原理是将两种聚合物经特殊设计的分配板和喷丝板纺丝,制备海岛型或裂片型的复合纤维。将海岛型复合纤维中的“海”组份利用溶剂溶解去除或者将裂片型复合纤维进一步裂解后,即得到超细纤维。双组份复合纺丝法的关键技术是喷丝板的设计,选择不同规格的喷丝板,能够制备得到不同形态和尺寸的超细纤维[8]。Fedorova等[9]以PA6为“岛”,PLA为“海”,利用复合纺丝法制备得到PA6/PLA 复合纤维,然后选择溶剂将作为“海”组分的PLA基体相去除,最终获得尺寸为微纳米级的PA6纤维。研究发现,当“岛”的数量增加至360个时,制备所得纳米纤维的直径为360nm。 海岛型纺丝法要求设备精度比较高,要求海与岛组分要在同一个轴向上,而且海的组分的聚合物溶出也影响纤维成型的品质。但海岛纺丝机成本较高、较复杂,匹配的海、岛纤维也不易找寻,目前为止还无法大批量生产。

各向异性银纳米材料的制备及生长机制研究进展

各向异性银纳米材料的制备及生长机制研究进展* 高敏杰1,孙 磊1,王治华2,赵彦保1 (1 河南大学特种功能材料教育部重点实验室,开封475004;2 河南大学化学化工学院环境和分析化学研究所,开封475004 )摘要 银纳米材料具有许多特异性能,在电学、光学、催化等领域得到了广泛应用,其性能在很大程度上受到形貌、尺度、晶体结构和结晶度等因素的影响,因而研究银纳米材料形貌和尺度的可控制备具有十分重要的意义。从水体系和非水体系两方面综述了液相化学还原法制备银纳米材料的研究工作进展, 详细论述了线(棒)形、片(盘)形、立方体形等特异形貌银纳米粒子的制备方法和实验条件;探讨了银纳米材料各向异性形貌的影响因素;提出了不同形貌银纳米晶的形成机理。分析指出晶种的晶型结构尤其是缺陷结构对晶体的最终形貌有很大影响; 加入表面修饰剂是防止银纳米颗粒团聚和控制形貌的有效方法。提出了此类研究目前存在的主要问题,展望了其发展方向和趋势。 关键词 各向异性 银纳米材料 液相化学还原 生长机制 中图分类号:O781;O648.1 文献标识码:A Progress on the Prep aration and Growth Mechanism ofAnisotrop ic Silver NanomaterialsGAO Minj ie1,SUN Lei 1,WANG Zhihua2,ZHAO Yanbao1 (1 Key Laboratory for Special Functional Materials of Ministry of Education,Henan University,Kaifeng  475004;2 Institute of Environmental and Analytical Sciences,College of Chemistry  and Chemical Engineering,Henan University,Kaifeng 475004)Abstract Due to their novel properties,anisotropic Ag nanomaterials have attracted much attention in recentyears.It is very important to control the size,shape,and structure of silver nanomaterials due to the strong  correla-tion between the parameters and the optical,electrical,and catalytic properties.The study advances on the prepara-tion of silver nanomaterials using chemical reduction method in aqueous and non-aqueous solution are reviewed,inclu-ding the synthesis of Ag nanowires,nanodisks and nanocubes,etc.The growth mechanism and influence factors forthe formation of anisotropic Ag  nanomaterials are concluded.It is found that the formation process is a joint functionof internal(crystal texture)and external(reaction parameter)factors.The structures of crystal seeds play an impor-tant role on the formation process of anisotropic morphology.The addition of surface modification agent is an effectiveapproach to control the particles morphology and restrain aggregation.At last,the shortages in the liquid phase reduc-tion method to synthesis of Ag anisotropic nanomaterials are analyzed and the developing trends of this field are pros-p ected.Key  words anisotropic,Ag nanomaterials,liquid phase chemical reduction,formation mechanism *国家自然科学基金( 50701016);中国博士后科学基金(2011M500787) 高敏杰: 女,1987年生,硕士研究生 孙磊:通讯作者,男,1975年生,副教授,硕士生导师,主要从事纳米材料的制备及性能研究E-mail:sunlei@h enu.edu.cn0 引言 银纳米材料由于具有特异的物化性质,在抗菌材料、传感器、光电材料等领域得到了广泛应用。研究表明,金属纳米材料的性能在很大程度上取决于粒子的形貌、尺寸、组成、结晶度和结构,理论上人们可以通过控制上述参数来精细调 节纳米粒子的性质[ 1,2] 。形貌是影响银纳米颗粒光学性质的主要因素 [3-6] ,不同形貌的纳米银,其表面等离子共振(Sur- face p lasmon resonance,SPR)光谱也不相同。球形银纳米颗粒对称性高,只有一个偶极子,表现为单一SPR峰;棒状银纳米颗粒有横向和纵向两个偶极SPR峰;银纳米立方体有3个SPR峰;三角形银纳米颗粒有弱的面外四极、面内四极和强的面内双极SPR峰。银纳米材料的其它物化性质亦受其 形貌及尺度的影响[ 7-10] 。这一现象引起了许多科学工作者的关注,不同形貌银纳米材料的制备及生长机理的报道也越来越多。 银纳米材料的制备方法有多种,目前主要有液相化学还原法、沉积法、电极法、蒸镀法、机械研磨法、辐射化学还原 · 54·各向异性银纳米材料的制备及生长机制研究进展/高敏杰等

相关文档