文档库 最新最全的文档下载
当前位置:文档库 › EMC频谱仪和接受机的区别

EMC频谱仪和接受机的区别

EMC频谱仪和接受机的区别
EMC频谱仪和接受机的区别

EMC测试频谱仪和接收机有什么区别?

工程师通常在对产品做EMC测试时,常遇到这样的问题:用什么仪器好,EMI接收机与频谱仪到底有何不同,本文依据CISPR16-1(GB/T6113)和GJB152,对频谱仪和接收机的测试原理进行剖析,分析接收机与频谱测试设备

的选择提供参考。

接收机和频谱分析仪的原理差异

频谱分析仪是当前频谱分析的主要工具,尤其是扫频外差式频谱分析仪是当今频谱仪的主流,应用扫频测量技术,通过扫频信号源得到外差信号进行频域动态分析。

接收机是进行EMC测试的主要工具,以点频法为基础,应用本振调谐的原理测试相应频点的电平值。接收机的扫描模式应当是以步进点频调谐的方式得到的。

1 基本原理

频谱分析仪和接收机可分为模拟式和数字式两大类。外差式分析是当前使用最为广泛的接收和分析方法。下面就外差式频谱分析仪与接收机之间的主要差别作一分析。

频谱仪与接收机类似,但是频谱仪与接收机在以下几方面差别较大:前端预选器;本振信号扫描;中频滤波器;杂散信号和精度。

2 输入RF信号的前端处理

接收机与频谱仪在输入端对信号进行的处理是不同的。

频谱仪的信号输入端通常有一组较为简单的低通滤波器,而接收机要采用对宽

带信号有较强的抗扰能力的预选器。通常包括一组固定带通滤波器和一组跟踪滤波器,完成对信号的预选。

由于RF信号的谐波、交调和其它杂散信号的影响,造成频谱仪和接收机测试误差。相对于频谱仪而言,接收机需要更高的精度,这要求在接收机的前端比普通频谱仪多出一个预选器,提高选择性。

3 本振信号的调节

现在的EMC测量,人们不止要求能手动调谐搜索频率点,也需要快速直观观察EUT的频率电平特性。这就是要求本振信号既能测试规定的频率点,也能够在一定频率范围扫描。

频谱仪是通过扫频信号源实现扫频测量的。通常通过斜波或锯齿波信号控制扫频信号源,在预设的频率跨度内扫描,获得期望的混频输出信号。

接收机的频率扫描是步进的,离散的,是离散的点频测试。接收机按照操作者预先设定的频率间隔,通过处理器的控制,在每一个频率点进行电平测量,显示的测试结果曲线实际是单个点频测试的的结果。

4 中频滤波器

频谱仪和接收机的中频滤波器的带宽是不同的。

通常定义频谱仪分辨率带宽是幅频特性的3dB带宽,而接收机的中频带宽是幅频特性的6dB带宽。当频谱仪与接收机设定相同级别的带宽时,它们对信号的实际测试值是不同的。

5检波器

依据EMC标准,要求测试接收机带有峰值、准峰值和平均值检波器,通用频谱分析仪一般带有峰值和平均值检波器,没有准峰值检波器,而EMC标准中限值通常包括准峰值限值。

6 精度

从接收机对信号的处理方式以及EMC测试要求看,接收机要比频谱仪有更高

的精度,更低的乱真响应。

3 结论

依据本文对频谱分析仪和接收机所作的原理分析,针对EMC测试设计的接收机是适合认证测试的唯一选择。许多预测试仪器,如频谱分析仪内置6dB中频带宽、准峰值和平均值检波器,或频谱分析仪外加预选器,都无法完全达到接收机的要求,只可以用于工厂预测试。如国睿安泰信的GA40XX频谱仪可以做EMC预兼容测试,对EMC 预测试成本低,可减少到计量单位测试的次数成本。而接收机成本昂贵,一般只有计量单位才有,测试费用高。

电动机系统节能技术

电动机系统节能技术 电动机系统节能技术概述 电动机节能概念: 主要包括更新淘汰低效电动机及高耗电设备;节能电动机概念和技术,合理匹配电动机系统,提高电动机效率;以先进的电力电子技术传动方式改造传统的机械方式,实现被拖动装置控制和设备制造;推广软启动装置、无功补偿装置、计算机自动控制系统技术、优化电动机系统的运行和控制。 高效电动机: 高效电动机(YX、YX 等系列)通常指高效率三相异步电动机。效率水平能达到或超过电动机能效国家标准(GB18613-2002)所规定的节能评价值的电动机。 电动机能效国家标准: 电动机能效国家标准是“中小型三相异步电动机能效限定值及节能评价值”,国标号为GB18613-2002。由国家质量监督检验检疫总局于2002年1月10日发布,2002年8月1日实施。能效限定值是电动机最低效率允许值,是强制性指标;节能评价值是高效电动机的认

定值,是推荐性指标。 高效电动机节能效果: 高效电动机与普通电动机相比,优化了总体设计,选用了高质量的铜绕组和硅钢片,降低了各种损耗,损耗下降了20%-30%,效率提高2%-7%;投资回收期一般为1-2年,有的短至几个月。 (54)YX2型高效节能电动机 为了节约能源和保证企业的连续安全生产,要求企业装有的电动机均应处于合理、经济运行状态,即电动机在运行中要有高的效率和功率因数,且使用寿命长,性能良好,安全可靠。 但实际运行中的电动机等设备,绝大多数不能满足上述要求。以我油田采油三厂为例,在增压注水系统中运行的电动机,绝大多数存在着匹配不合理、选用电动机容量裕度过大等问题,便“大马拉小车”的现象十分突出,造成电能大量浪费。其原因既有电机设计,制造方面的问题,又有以往在电动机的选用上,忽视了设备的运行经济指标,使电动机的运行效率和功率因数偏低所致。为了改变这一状况,现积极采用高效节能电动机。下面以南阳防爆电机厂新开发设计的

常用节电技术比较分析

2、决定用电设备电能浪费的几种要素 2.1 供电电压 通常由于用电器具距离电源较远,在用电高峰期,势必引起电网供电线路末端电压下降。为了弥补这种损失,电网公司所输送的电网电压总是比用电设备所使用的额定电压高出一部分,这部分多出来的电压,就形成了电能的过剩供给,也就是通常说的"大马拉小车"现象。过剩电压施加于用电设备时,会使用电器具长期工作在超负荷的状态下,这不但造成电力电源的浪费,还会直接缩短用电设备的使用寿命。 2.2 三相电源不平衡 由于目前用电设备,特别是单相大功率设备应用较为普遍,造成三相电源不对称,负载大的相偏低、负载小的相偏高,这种现象会造成逆相序旋转磁场,影响用电设备的输出功率。转子产生逆序电流,从而产生制动转矩,使用电设备温度升高,输出功率减小。三相不平衡越大,线损越大。 2.3 谐波 电网上的高次谐波来源很多,如:大气过电压、雷击、变频设备、晶闸管设备的投入运行等。由于电网中存在高次谐波,既增加了用电设备损耗,又会使效率降低,用电设备发热加剧、温升提高,效率下降,使用寿命缩短。 2.4 功率因数 功率因数的高低是影响电源利用率的关键因素,功率因数低,会降低电源利用率,降低设备的效率,增加了电路上的损耗。 2.5 负载电流大小 设备电***长时期工作在大电流状态下,会增加用电设备的损耗,提高设备工作温度,缩短使用寿命。 2.6 瞬流和浪涌 企业内部用电设备产生大量的瞬流和浪涌,在小电网里迂回徘徊,产生电力污染,给用电设备造成损害,同时也造成了电能的大量浪费。 3、几种常用节电技术比较分析 针对引起电能浪费的几个方面, 掌握各种节电技术的特点并合理应用,是降低电耗,提高节电效果与电网质量的前提条件。常用的节电技术,主要体现在以下几个方面: 3.1 可控硅斩波技术

变频器节能计算

变频不是到处可以省电,有不少场合用变频并不一定能省电。作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯. 变频器在工频下运行,具有节电功能,是事实。但是他的前提条件是:第一,大功率并且为风机/泵类负载;第二,装置本身具有节电功能(软件支持);第三,长期连续运行。这是体现节电效果的三个条件。除此之外,无所谓节不节电,没有什么意义。 变频节能 什么是变频器 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。 PWM和PAM的不同点是什么 PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。 PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。 电压型与电流型有什么不同 变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。 为什么变频器的电压与电流成比例的改变 异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。

浅谈电动机的几种节电方式

浅谈电动机的几种节电方式 [摘要] 分析感应式电动机的工作原理,介绍主要的几种节电方式,要以分析的方法,因地、因时的来选择节电方式,已达到最合理的节约能源,构建节约型社会。 [关键词] 电动机原理效率节电方式 0.引言 电动机是我国工业生产中用电量最大的机械,约占全国用电量的60%。感应式电动机广泛的应用于工农业生产中,需要机械动力的部门,就会有它的存在。感应式电动机约占全部原动力总数的90%以上。因此,如何抓好感应电动机的节电问题对于节能减排具有十分重要的意义和深远的影响。 1.工作原理 交流感应式电动机从动作结构上可分两部分:固定绕组(定子)和旋转绕组(转子)。由于转子设计得象鼠笼,故把此类感应式电动机称为鼠笼式感应电动机。 简言之,在感应式电动机的固定绕组接通交流电,就产生旋转磁场,然后利用变压器效应,将旋转磁场力传递到转子上,从而形成转动。整个过程可以称作“电能-动能”的转换。电动机的整个运转过程,是电磁转换的过程,因此就存在了损耗、效率等概念。固定绕组通电产生旋转磁场的过程中,要有电能的损耗,这就是所谓的“激磁损耗”(或铁损),同时其本身的铜阻还要产生损耗(铜损)。因为要在转子和定子之间留有一定的间隙,所以在电磁转换过程中就会不可避免的损耗部分电能。铜损则与电动机的负载成正比,所以它是在变化着的。铁损与电动机的端电压的平方成正比,由于提拱的端电压是固定不变的,因而铁损也就比较稳定。电动机运行时的负载,接近满载时效率最高。满载时的效率并非太高,这是由于铁损固定不变的原因所造成的,见图1。 图1 感应式电动机损耗与负载关系曲线 由图1可以看见,电动机空载运行时,浪费的能量相对越多,运行效率就越低。但是,若将提供给电动机的端电压减少,负载越轻,越节省电能。 2.节电方式

电机系统节能技术发展分析

电机系统节能技术发展分析

电机系统包括电动机,被拖动装置,传动系统,控制(调速)系统以及管网负荷等,是一个涉及多学科、多专业、多领域的复杂系统。电机系统首先是通过电动机将电能转化为机械能,再通过被拖动装置(如风机,水泵,压缩机,机床,传送带等)做功,实现各种所需的功能。 电机系统节能是二十一世纪电机行业产品发展的必然趋势,目前世界各国在本行业都向绿色化、高效化、智能化方向发展,大家已经意识到电机系统节能技术在本行业乃至全国经济社会发展中的重要作用,已经纷纷投入到电机系统节能技术的研究中,正积极通过法令推动电机系统降低损耗、提高效率。 电机系统用于各行各业,涉及各种复杂多样的工况,不同的负载特性,千差万别的工艺过程,因此,电机系统节能工程技术是在首先满足负载要求功能的前提下,选用合适的系统部件,并将它们合理组合匹配,以使系统综合节能效果和系统性价比达到最佳或较佳的综合工程技术。 以下是国外某权威机构推荐的不同节能措施及可能达到的节能量。 表不同节能措施的节能量 注1:具体节能措施不是上述措施的简单累加,而可能是上述一种或多种措施的组合。

从上表可知,除管网外,电机系统节能的所有措施,主要是围绕电动机来展开的,如设计、制造和选用通用或专用高效或超高效电动机,电动机和负载合理匹配的正确选型以及设计和制造出既能满足负载特性要求,又能得到很好节能效果且性价比高的专用高效电动机或高效机组(如电机-水泵、电机-风机机组等),通过调速驱动,软启动,调压控制,功率因数补偿等措施节能,电能的质量控制等。并且如果高效电动机和高效终端设备和调速装置不能合理的匹配(通用高效电动机往往难以在许多复杂负载情况下使系统达到高效),综合节能效果将不理想,造成“高成本的高效电机和高效终端设备或调速装置组合在一起不节能或节能不明显“的结果。因此,电机系统节能工程是一个复杂的系统工程。 我国目前在通用电机产品本体节能技术研究方面已经开展了一些工作,但在其成套化,系统化,工程化应用方面尚有大量工作要做,我国在专用高效电机的工程化技术研究和应用方面与国外先进水平差距很大,在电机系统综合节能工程技术研究和系统节能产品工程技术研究方面,与国外先进水平差距很大。 1、国外电机系统节能发展现状 发达国家政府对电机及系统节能技术的研究开发投入了巨额财政资助,除辅以政策法规推动之外,还积极推动全世界的电机及系统节能技术的发展,如“中国电机系统节能项目”就是由联合国工业发展组织和美国能源部提供援助资金,国外电机及系统的发展具有以下特点: 1)、高效、超高效电机市场推进速度加快 主要发达国家都在各自的发展计划中提出了明确的强制推行高效电机的时间如表4。 表4.各国高效、超高效电机推进情况

电动机的节电技术分析

关于电动机节电的技术分析 电机班——姚驰宇 电动机作为将电能转化为机械能的一种转换装置,在各个领域得到了广泛应用,电动机消耗的电能约占全国总用电60%~70%。电动机节电应以节约用电和提高电动机的综合效益为原则,合理选择并控制电动机的运行,使其处于经济运行状态,另外,对电动机进行节能改造,降低电动机的能量损耗,从而提高电动机的运行效率。 第一部分 电动机的能量损耗 电动机能量损耗主要包括恒定损耗、负载损耗及杂散损耗。 1.恒定损耗 恒定损耗是指电动机运行时的固有损耗,它与负载电流大小无关,包括铁芯损耗和机械损耗。 (1)铁心损耗Fe P (含空载杂质损耗),主要指主磁场在电动机铁心中交变所引起的涡流损耗和磁滞损耗,其大小取决于组成电动机的铁心材料、频率及磁通密度,与输入电压U 的平方成正比。铁耗一般占异步电动机总损耗的20%~25%。 (2)机械损耗fW P ,通常包括轴承摩擦损耗及通风系统损耗,对于绕线式转子还存在电刷摩擦损耗。轴承摩擦损耗正比于转速的平方,通风损耗正比于转速的三次方。机械损耗一般占总损耗的10%~50%。 2.负载损耗 负载损耗主要是指电动机运行时,转子、定子绕组通过电流而引起的损耗,包括定子铜耗1Cu P 和转子铜耗2Cu P ,其大小取决于负载电流及绕组电阻值,铜耗约占总损耗的20%~70%。 3.杂散损耗(附加损耗) 杂散损耗s P 主要由定子漏磁通和定子、转子的各种高次谐波在导线、铁心及其他金属部件内所引起的损耗,杂散损耗约占总损耗的10%~15%。 第二部分 电动机的经济运行 1.电动机经济运行 电动机经济运行是指电动机在满足生产机械运行要求时,以节能和提高综合经济效益为原则,选择电动机类型,运行方式及功率匹配,使电动机在效率高、损耗低、经济效益最佳状态下运行。 2.效率特性

最新变频器节电率的计算整理

几种典型负载的节电率计算方法 (1)各种风机、泵类因为P∝n的三次方,节电效果显著,应首先应用变频器,具体值见表1。表1 应用变频器节电效果 计算时可用

式中P%——实际消耗功率百分值; s——实际转速百分值; K——系数,K=0.0001。 节电率N%=1-P% 举例,转速n为90%时,相应频率值为45Hz,则P%=0.0001×(90)3=73%。所以N%=1 -73%=27%。一般风机、泵类节电率在30%以上。 (2)空压机、挤出机、搅拌机因为P∝n,所以节电率与允许减速范围成正比,N%=n%。 (3)波动负载如破碎机、粉碎机、冲床、落料机、剪切机等9这种负载具有周期波动性,且波动功率较大,控制方式以闭环为好,相对节电率也大些,功率波动负载如图所示。

(4)阶梯负载如间歇工作有储气罐的空压机、定容积水箱、水池、水塔等,工作时间t1是满负载PH,一定压力后自动卸载,电动机空载Po时间为t1,采用降速降流量,用适当延长工作时间t1、缩短空载时间t2的方法来实现节电。经实际运行,约有15%~20%的节电率。而且t2

(5)间歇负载如高位水箱、水池、水塔等。工作时间t1为满负载,不工作时间为t2,且t2≥t1,现采用降速降流量,延长工作时间t1,缩短不工作时间t2,这样改变后节电效果也明显,约有20%~30%的节电率。间歇工作负载的功率变化情况(Po=0)如图所示。

(6)人为的负载转移来实现节电这种情况往往发生在中央空调系统的冷却泵、冷冻泵或其他同类地方。平常开一台泵,电动机 处于满负载或超负载,而且压力、流量也无富余度,使用变频器后没办法实现节电。但各用泵较多,一般是1:1(五星级宾馆大都如此),这时只有采用人为的负载转移方法来实现节电,见表2。

电机采用变频调速技术的节能效果分析.

焦炉煤气鼓风机采用变频调速技术 的节能效果分析 Energy Saving Analysis on Coal—gas Blower of Coke—oven with Variable Frequency Speed Control Technology 金立明杨生桥王莉武汉钢铁集轩团能源动力公司(武汉430083 杜强丁宁北京经资风机水泵节能技术中心(北京100037 摘要:介绍了变频调速技术在焦炉煤气鼓风机上的首次应用,根据武钢煤气管网的工况,提出了改造方案,进行了系统设计和现场测试,并作了节能效果及效益分析。 叙词:煤气系统鼓风机变频调速技术节能献承 Ahsth'act:This paper introduces first application offrequency control technology on coal-gas blower.Based Oil practical situation ofWngang gas pipdine net,put forwards improvement sdution and system d8ign.FurLhe㈣,make energy saving effect and benefit analysis accord—ing to siteⅡM目目Ⅱ℃H枷results Keywor凼:Coal-gas system Blower Variable frequency删contcol technology Energy saving l刖置 武汉钢铁集团能源动力公司燃气厂担负着整个武钢厂区的生产用气和生活用气。为保证系统用量和管网压力,设有三个煤气加压站,要求管网压力保持在23kPa 左右,因加压站分布远,煤气管线长.用户多.用量不平衡,日供气量波动大,在保证用量的情况下,管网压力只能由运行人员调节挡风门来控制。为稳定中压焦炉煤气主干

频谱分析仪的工作原理

频谱分析仪的工作原理 频谱分析仪对于信号分析来说是不可少的。它是利用频率域对信号进行分析、研究,同时也应用于诸多领域,如通讯发射机以及干扰信号的测量,频谱的监测,器件的特性分析等等,各行各业、各个部门对频谱分析仪应用的侧重点也不尽相同。下面结合我台DSNG卫星移动站的工作特点,就电视信号传输过程中利用频谱分析仪捕捉卫星信标,监控地面站工作状态等方面,简要介绍一下频谱分析仪的工作原理。 科学发展到今天,我们可以用许多方法测量一个信号,不管它是什么信号。通常所用的最基本的仪器是示波器,观察信号的波形、频率、幅度等。但信号的变化非常复杂,许多信息是用示波器检测不出来的,如果我们要恢复一个非正弦波信号F,从理论上来说,它是由频率F1、电压V1与频率为F2、电压为V2信号的矢量迭加(见图1)。从分析手段来说,示波器横轴表示时间,纵轴为电压幅度,曲线是表示随时间变化的电压幅度。这是时域的测量方法,如果要观察其频率的组成,要用频域法,其横坐标为频率,纵轴为功率幅度。这样,我们就可以看到在不同频率点上功率幅度的分布,就可以了解这两个(或是多个)信号的频谱。有了这些单个信号的频谱,我们就能把复杂信号再现、复制出来。这一点是非常重要的。 对于一个有线电视信号,它包含许多图像和声音信号,其频谱分布非常复杂。在卫星监测上,能收到多个信道,每个信道都占有一定的频谱成份,每个频率点上都占有一定的带宽。这些信号都要从频谱分析的角度来得到所需要的参数。 从技术实现来说,目前有两种方法对信号频率进行分析。 其一是对信号进行时域的采集,然后对其进行傅里叶变换,将其转换成频域信号。我们把这种方法叫作动态信号的分析方法。特点是比较快,有较高的采样速率,较高的分辨率。即使是两个信号间隔非常近,用傅立叶变换也可将它们分辨出来。但由于其分析是用数字采样,所能分析信号的最高频率受其采样速率的影响,限制了对高频的分析。目前来说,最高的分析频率只是在10MHz或是几十MHz,也就是说其测量范围是从直流到几十MHz。是矢量分析。 这种分析方法一般用于低频信号的分析,如声音,振动等。 另一方法原理则不同。它是靠电路的硬件去实现的,而不是通过数学变换。它通过直接接收,称为超外差接收直接扫描调谐分析仪。我们叫它为扫描调谐分析仪。

电力技术中的电力节能技术应用 何启钊

电力技术中的电力节能技术应用何启钊 发表时间:2019-09-19T09:54:44.643Z 来源:《电力设备》2019年第8期作者:何启钊[导读] 摘要:现阶段,人们的生活水平逐渐的提高,对电力的要求也突飞猛进。 (广东立胜综合能源服务有限公司广东佛山 528000) 摘要:现阶段,人们的生活水平逐渐的提高,对电力的要求也突飞猛进。电力对人们生活、社会发生有非常重要的作用,随着经济水平的提高,各个电力企业越来越重视电力技术中的电力节能技术应用。当前的节能措施很多,例如使用节能型供配电系统,应用节能的电力设备,减少线路降低电力损耗,在以后的发展中,还会贯彻可持续发展战略。由此可见,节能是电力工程未来的发展趋势,通过降低能 耗,提高企业的核心竞争力。下面就对这些方面进行分析,希望给有关人士一些借鉴。关键词:电力技术;电力节能;技术应用引言随着我国社会经济的发展进步,当前在电力方面的需求不断加大,随着能源的大规模开发,存在有较为严重的浪费现象,不仅会导致生态环境被破坏,同时还很大程度上影响到人类社会的可持续发展。在这种情况下,电力企业需要不断转变和优化当前的生产方式,坚持可持续发展理念,将电力节能技术有效的应用在电力企业生产过程中,满足当前社会经济可持续发展需求,本文对此进行了研究分析。 1电力企业使用节能的设备 1.1分析动力设备、节能灯具的使用当前高压变频调速技术发展很迅速,通过实践技术不断成熟,当前在不同的领域都有应用。对于工矿企业而言,实践工作中应用了很多大动力设备,主要包括风机、水泵,一般都处于工频状态,除此之外,在使用中还要有效利用闸阀动态控制风量与流量,但是将会损耗大量的电能。针对这一问题,技术人员进行了改变,使用新型的变频器,调节变频频率,对电机转速进行调节和完善,同时对对应的风量、流量等进行优化调节,这样就可以很好的降低电能损耗。不仅如此,有关技术人员还使用了Y型高效电动机,该设备优势非常明显,有效降低对电能的损耗,损耗降低率会达到30%,而且工作效率提高了7%,据调查得知,引进设备的投资在1~2年、甚至几个月就可以得到回馈;有必要使用节能型灯具,降低电能损耗的同时提高安全性,延长各个设备的使用寿命。 1.2分析电力企业对节能变压器的使用在输配电线路当中,变压器运行中的电能损耗量非常大,通常会选用小型变压器,这种型号的变压器不仅使用量很大,而且运行时间很长,由于这两方面的特点,其存在很大的节能空间,在之前的电力系统中,使用最为频繁的是S9型号的变压器,但是发展到目前S9型号的变压器已经被S11型号变压器替代了,其是节能型变压器,具体优点可以归结为下列方面:在传输电能的时候,电能损耗很低,要比传统的变压器减少30%左右,除此之外,其空载电流会减少70%左右,而且在运行过程中,产生的噪音也很低,和传统电压器产生的噪音进行对比,噪音量减小3到5db,运行中部容易出现短路问题,发生故障的概率非常低,有很强的运行可靠性。除此之外,还要合理的选择变压器组别,配电线路需要使用三相变压器,其连接组比较复杂,主要涉及到Y、yn0、D,还有yn11,容量一般都在1000kV A,或者是以下的都使用Y,yn0这一连接组别,对于D,yn11这一组别,其有很好的节能优势,例如其空载损耗和负载损耗,都会比同一容量的Y,yn0变压器小很多。使用该组别的变压器,能很好的减少高次谐波电流的影响,在连接零序的时候,产生的阻抗就更小,能够有效避免出现短路故障。 2电力节能技术的具体应用 2.1应用节能型供配电系统当前我国电网损耗在总供电能中占有极高的比例,将电力节能技术应用在电力系统中有着十分重要的作用和意义。应用节能型供配电系统,工作人员可以对供电区域供电距离、用电负荷、电网运行等方面情况进行全方面的了解分析,提高供电电压设置的科学合理性。比如说在6kV-10kV供电电压中,如果10kV供电电压技术经济指标更加优异,在供电系统中可以减少电能的损耗,那么在进行配电电压的选择时,可以优先选择10kV供电电压,如果用户在6kV供电电压设备方面的用量较多,在实际的应用中存在较为理想的技术经济指标,那么在进行配电电压的选择时,可以优先选择6kV供电电压。另外,如果用户偶尔会使用到其他等级的电压,可以为用户设置专用变压器,更好的满足用户的电力需求。在电网运行过程中,变压器、电动机等大多数电力设备都属于感性负荷,在运行过程中会消耗一定的无功功率,通过安装无功补偿设备,比如说并联电容器,为其提供无功功率,降低电网中无功功率的损耗量,提高电网节能水平。通过安装无功补偿装置,可以实现对电网电压的优化,提高电网运行安全稳定性,协调三相不平衡现象,提高电网运行的经济效益,促进我国电力行业的发展进步。 2.2改进配电线路水平在进行电网的建设时,为了减少建设费用,往往选择理论截面大小的输电导线。但实际上,选择比理论截面大一两个等级的导线,可以很大程度上节约电网运行的损耗,购买大截面导线所花费的资金可以在短时间内在从电网运行过程中得到补偿。一般的导线使用寿命超过10年,电网运行10年,因为增大截面而节省的费用将是一笔非常可观的金额。另外,在进行电网的建设时,可以应用架空绝缘导线,这种导线不仅可以提高电网运行的安全可靠性,避免因为外力以及环境等方面因素的影响出现的短路现象,减少停电次数,提高电网运行稳定性。架空绝缘导线的应用,还可以实现对沿线杆塔的简化,可以选择沿墙敷设方式,节约线路材料,提高线路建设的美观性。架空绝缘导线可以显著缩短线路之间的安全距离,其线路电抗不足一般导线的一半,能够很大程度上避免因为腐蚀等现象所造成的线路损坏现象,增强线路实际使用寿命。 2.3变负荷电动机调速运行电动机在电网运行过程中有着十分重要的作用,可以从电动机方面出发提高电网节能效果,一方面可以改良电动机自身的性能,另一方面可以提高变动负荷电动机转速,通过这种方式,实现对电力资源的有效节约。在改良电动机性能的同时提高变动负荷电动机转速,不仅可以提高电动机节能效果,同时还可以在电力资源节约利用方面取得突破性的进步。将电力技术应用在电力节能中,可以从电动机性能以及转速两个方面出发进行分析考虑,在实际的应用中,将这两种方式结合在一起,可以取得最为理想的节能效果。尤其在风机以及泵类存在有变动负荷的电动机中,选择科技含量高的节流阀以及挡风设备,通过调速控制的方式实现对水流量以及风流量的有效控制,在能源节约方面可以取得非常好的应用效果。结语

变频调速的计算

一、变频调速与节流调节的计算 流量q v 与转速成正比,即q v2/q v1=n 2/n 1;扬程H 与转速的平方成正比,即H 1/H 2=(n 2/n 1)2;功率与转速的立方成正比功率。如(1)式所述。 31 23 1212)()(v v v q q n n p p q P ===存在的关系与流量泵与风机的功率 (1) 根据v q 、H 值可以计算泵与风机的功率,即:η ρ102H q P V = (2) 式中P ─功率,kW ;v q ─流量,m 3/s ;H ─扬程,m ;ρ─密度,kg/m 3;η─使用工况效率%; 泵与风机的变频节能计算 (1) 变频调速调节与节流调节 对风机、水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大,如果对风机、泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即对风机、泵类、采用挡板调节流量对应电机输入功率P L 与流量q v 的关系: )(])( 55.045.0[2 kW p q q P e ve V L += (3) 式中 P L ─额定流量时电机输入功率,kW ;q ve ─额定流量,m 3/s ; 若流量的调节范围(0.5~1)q ve ,由上面的公式及下面的公式可得电机调速调节流量相比节流调节流量所要节约的节电率(Ki )为: ] )(55.045.0[)( 1/)( 23 3 ve v b ve v L b ve v e L L q q q q P q q P P p p Ki +- =-=?= ηη (4) 式中Ki ─节电率;ηb ─调速机构效率。 从上式分析,节流调速时由于q v /q ve <1,平方后更小于1,乘以0.55再加上0.45仍小于1,却节流后电机的负载变小了,消耗的功率也比额定功率小。当挡板或阀门全关时,泵与风景空载运行,消耗的功率最少,等于0.45Pc 。由(1)式可知采用电机变速调节后,电机消耗的功率与实际流量和额定流量比值的三次方成正比,由于变频调速效率高,本身的损耗相比很小,在变频器内部,逆变器功率器件的开关损耗最大,其余是电子元器件的热损耗和风机损耗,变频器的效率一般为95%~98%。采用变频调速,泵与风机的效率几乎不变,其特性近似满足相似定律,即满足(1)式的关系。因此(4)式能较准确地计算泵与风机电机变频调速调节相比节流调节所要节约的节电率。 例5.1 某厂离心风机125kW ,实际用风量为0.7,年工作4800h ,准备投资15万元改造为变频器驱动,变频器的效率为96%,估算节电率和投资回收期。 解:由题意知q v /q ve =0.7,由式(4)得节电率为 5.0) 7.055.045.0(96.07.012 3 =?+?-=Ki 由式(3)得:P L =(0.45+0.55×0.72 )×125=90(kW)

电机系统节能关键技术及展望 段先卫

电机系统节能关键技术及展望段先卫 发表时间:2018-05-31T10:33:21.013Z 来源:《电力设备》2018年第2期作者:段先卫 [导读] 摘要:本文主要概括分析了电机系统节能关键技术,展望了电机系统节能技术的未来发展趋势。 (广东汇嵘绿色能源股份有限公司广东东莞 523000) 摘要:本文主要概括分析了电机系统节能关键技术,展望了电机系统节能技术的未来发展趋势。从而能够更好的把握电机系统节能关键技术的发展脉络,通过电机系统节能技术水准的不断提升,更好的提高电机系统的节能降耗效果,为我国工业的节能化方向发展提供技术支撑。 关键词:电机系统;节能;关键技术;展望; 前言: 随着我国工业化的进一步发展,各类工业化技术都相继出现了突破性进展。电机系统是工业所应用设备中最为重要的动力化设备,其中包含着工业所应用的泵类的机械化设备空气压缩类的机械化设备、风机等设备。在一定程度上,电机系统还是把电能进行机械能转换环节最为重要的能源转换系统装置。电机系统的潜在节能性较大,不仅能够提高运行机械化设备的运行效率,还能够实现成本的节约。那么,为了能够更好的推动我国电机系统节能技术的进一步发展,就需要对电机系统节能关键技术进行有效的分析,进而展望电机系统节能技术未来的发展趋势。从而能够更好的把握电机系统节能技术的发展趋势,不断的提高电机系统节能关键技术的水准。 1、概述电机系统节能的关键技术 1.1电动机的软启动系统装置的节能技术 随着我国计算机科学技术与电子信息化技术的高效发展,我国逐渐将开关性的器件应用于电动机系统当中。在系统的设计开发中,逐渐应用了晶体的阀管,将其设计在单片机控制中,以达到核心控制电子的软启动器,实现异步的电动机系统启动与控制。那么,与传统的电动机系统设计相比较,此种方法有着一定的现实意义,虽然效果作用并不是很明显。但是,并不会对电流产生冲击性影响,而是能够利用负载的特性在启动时进行参数的合理调节,切实的保障电机系统能够在启动过程中保持着稳定状态。电机系统在转载与空载时,都能实现电压高效率的输送,降低电机系统实际的功耗量,让其整体的功率因数逐渐提升,让输电线的损耗逐渐降低,以实现节能的作用。 那么,在启动软件时,电机系统其实际的起动转矩会逐渐增加,转速也会随之增加。对于电动系统的软启动系统装置,其主要的启动方法主要包含以下几种。其一,斜坡的升压性软启动系统模式。此种启动系统模式比较简单化,无需复杂性的电网控制与电流的闭环。它主要是通过利用晶阀管其导通的角度,在固定的时间区间内对函数关系予以合理调整,让其逐渐增加。但是,此种模式也有着一定的弊病,就是其会造成冲击性电流的逐渐增加,而致使晶阀管出现损坏情况。因而,此种启动系统模式应用的较少;其二,斜坡的恒流性启动系统模式。此种模式极易引发电流逐渐增加后出现不稳定的情况,致使电流在达到一定状态后保持恒定,一直到启动控制结束。随着电流速率的增加,其启动的转矩就会随之增加,促使启动时间逐渐缩短。基于该类启动系统模式的基本特征,该种模式比较适用于泵类或者风机等的负载,目前应用的较为广泛。 1.2变频调速的节能技术 随着我国工业化的进一步发展,可调速的拖动性技术实现了新的突破性进展。在一定程度上,其可以有效的利用直流的电动机进行便捷化的调速。而基于直流性电机其实际体积较大,市场价格比较高,对电能的节约效果也并不明显。而交流性异步的电动机则相比占有一定的功能优势,其不仅体积小、市场价格较为低廉,且总体运行具有着较高的可靠性。那么,在调节控制交流性异步的电动机时,不仅可以有效的提升电动机拖动系统整体的控制效率,还能够起到极大的电能节约作用。因而,我国目前对变频调速与低压性交流节能技术的应用较为广泛。 1.2.1变频调速的基本原理 依据常规性的电动学基础理论,交流性的电流具有着一定的转速功能优势,异步性电动机其实际的转速效果明显要比同步性的较低。随着同步转速变化,电源的实际频率也会随之变化,其电动机实际的转速自然同步增长,致使电源实际的频率逐渐降低的。在电动机实际的P值保持不变的情况下,其电动机实际的转速相比较电源的频率会呈现着较为明显的变化,若向电动机系统提供该电源,则电源的频率就会发生变化,实现变频器与电动机转速的协调性运行。 1.2.2利用风机变频调速来达到节能效果 对于电动机系统来说,风机是其转速与负荷转矩间的平方相互条件关系。在实际运行过程中,需要对流量予以合理的控制与管理。对于流量的调节法主要包含着以下两种。其一,是改变与调整管网曲线的特性,此种方法的实际效率比较低,节能效果并不明显;其二,就是将风机实际的转速予以降低,该种方法能够有效的提升节能的实际效率,让流量随着变化,以实现合理调整流量,降低功率的目的,节能效果较为明显。 2、展望电机系统节能技术的未来发展趋势 2.1 综合性设计与仿真节能技术 电机系统其主要是电、机、温度及磁等多场的交叉、耦合的非线性的多变量系统,具有较高的复杂性特点。目前,我国针对电机系统的设计与相关技术的研究,还处于较为简单的经验公式计算与磁路法上。而随着我国设计与仿真节能技术的进一步发展,我国的电机系统节能技术必将会与设计、仿真节能技术相融合,实现综合性的设计与仿真节能技术,对电机系统的节能效果予以仿真测试,从而能够更好的对电机系统予以技术调整,切实的提高电机系统的节能效果。 2.2 高效率化电机系统节能技术 我国目前的各类特种电机系统,多数都是只是考虑到应用场合、基础性功能、整体结构方面,致使所应用的电机系统节能技术并不具备较高的节能效率。那么,随着电机高效产品的问世,我国的电机系统节能技术必将实现高效率化,更好的提升电机系统的节能效果,降低电能的消耗。 2.3 伺服性电机节能技术 伺服性电机节能技术,其主要是涉及到现代化控制的基础理论、电子学基础性理论、电力电子的功率转换技术、电机系统设计及制造

压缩机变频节能改造及节能量计算

压缩机变频节能改造及节能量分析 冯东升 (上海电机系统节能工程技术研究中心有限公司,上海 200063) 摘要:本文从压缩机的变频调速原理出发,介绍了压缩机系统的变频改造方案,并主要阐述了变频改造后的节能量计算方法,最后通过实例进行了节能效果分析,结果表明该技术节能效果显著,值得推广。 关键词: 压缩机 变频改造 节能 The Analysis of Frequency Conversion Energy Saving In Compressor Feng dong-sheng (Shanghai Engineering Research Center of Motor System EnergySaving Co.,Ltd., Shanghai 200063,China) Abstract: This paper start with the frequency control of compressor, mainly introduces the project of frequency conversion and method of calculating energy saving in compressor. Results show that , the technology is advanced and worth promoting. Key words: compressor;frequency conversion; energy-saving 1 概述 压缩机作为基础工业装备,广泛的应用于机械制造、冶金、石油化工、矿山、纺织等工业生产的各个领域中。空压机的种类有很多,常见的主要有活塞式、螺杆式、离心式等几种。由于压缩机通常是长期连续的运转方式,因此在各种工矿企业内属于耗电量较多的重点用电设备之一。 在国民经济可持续发展的战略之下,能源作为国家的重要物质基础,节能和绿色生产已成为国家十二五规划的重点,工业企业在保证正常的生产条件下,如何实现节能已势在必行,空压机作为重点耗能设备,已经成为了关键词。

频谱仪在分析无线电干扰中的应用

频谱仪在分析无线电干扰中的应用 2007-03-02 申浩张旭东 频谱仪是一种将信号电压幅度随频率变化的规律予以显示的仪器。频谱仪在电磁兼容分析方面有着广泛的应用,它能够在扫描范围内精确地测量和显示各个频率上的信号特征,使我们能够“看到”电信号,从而为分析电信号带来方便。 1频谱仪的原理 频谱仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。 图1 频谱分析仪的原理框图 频谱分析仪采用频率扫描超外差的工作方式。混频器将天线上接收到的信号与本振产生的信号混频,当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。检波后的信号被视频放大器进行放大,然后显示出来。由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。当本振振荡器的频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上的幅度,将不同频率上信号的幅度记录下来,就得到了被测信号的频谱。进行干扰分析时,根据这个频谱,就能够知道被测设备或空中电波是否有超过标准规定的干扰信号以及干扰信号的发射特征。

要进行深入的干扰分析,必须熟练地操作频谱分析仪,关键是掌握各个参数的物理意义和设置要求。 (1)频率扫描范围 通过调整扫描频率范围,可以对所要研究的频率成分进行细致的观察。扫描频率范围越宽,则扫描一遍所需要时间越长,频谱上各点的测量精度越低,因此,在可能的情况下,尽量使用较小的频率范围。在设置这个参数时,可以通过设置扫描开始频率和终止频率来确定,例如:start frequency=150 MHz,stop frequency=160MHz;也可以通过设置扫描中心频率和频率范围来确定,例如:center frequency=155 MHz,span=10 MHz。这两种设置的结果是一样的。Span越小,光标读出信号频率的精度就越高。一般扫描范围是根据被观测的信号频谱宽度或信道间隔来选择。如分析一个正弦波,则扫描范围应大于2f(f为调制信号的频率),若要观测有无二次谐波的调制边带,则应大于4f。 (2)中频分辨率带宽 频谱分析仪的中频带宽决定了仪器的选择性和扫描时间。调整分辨带宽可以达到两个目的,一个是提高仪器的选择性,以便对频率相距很近的两个信号进行区别,若有两个频率成分同时落在中放通频带内,则频谱仪不能区分两个频率成分,所以,中放通频带越窄,则频谱仪的选择性越好。另一个目的是提高仪器的灵敏度。因为任何电路都有热噪声,这些噪声会将微弱信号淹没,而使仪器无法观察微弱信号。噪声的幅度与仪器的通频带宽成正比,带宽越宽,则噪声越大。因此减小仪器的分辨带宽可以减小仪器本身的噪声,从而增强对微弱信号的检测能力。根据实际经验,在测量信号功率时,一般来说,分辨率带宽RBW宜为扫描宽度的1%—3%,即可保证测量精度。 分辨带宽一般以3dB带宽来表示。当分辨带宽变化时,屏幕上显示的信号幅度可能会发变化。这是因为当带宽增加时,若测量信号的带宽大于通频带带宽,由于通过中频放大器的

田供用电系统节电技术途径分析

油田供用电系统节电技术途径分析 2007-07-05 16:00:59| 分类:节能|字号大中小订阅 出处:大港油田公司作者:夏艳铎上传时间:[2005-4-19 16:08:00] 摘要油田既是能源生产企业,同时也是能源消耗大户,原油的提升、处理、掺水、脱水、注水都需要消耗电力来完成。本文从油田配电线路的优化运行、经济电流密度、变压器的经济运行、新型变压器的技术分析、泵类设备调速方式、新型永磁同步电动机、异步电动机的节电运行、无功补偿等方面进行分析总结,阐述油田电能传送各环节中电耗的特点和减少损耗的技术手段,为油田的节电降耗工作提供参考。 关键字潮流分布计算,最佳无功补偿,经济电流密度,变压器的经济运行,电动机经济运行,同步电机,无功补偿,油井间开控制柜] 第一部分配电网潮流计算和配电网最佳无功补偿 配电线路在电网中起到把电能配送到用户的作用,在配电线路输送的电能中网损占了相当大比重,约占总输送电量的10%,象油田这样的电网6KV线路损失在7%-15%之间,电网结构的不合理和无功损耗在配电线路中造成的损失最大,这样就存在电网结构的调整和无功补偿的问题,电力系统实行功率因数补偿的手段是串联调相机和并联静态补偿电容两种,用以就地补偿设备所需建立磁场的无功功率,避免无功的长距离输送,增加发电机的出力,减小网损。在企业一般用并联电容的方式,低压系统目前已经可以实现根据功率因数自动投切电容,高压系统(6-10KV)虽有自动投切的技术和设备,但从应用上看还不太成熟并且一次

性投入太大。所以目前在野外高压线路一般还是采用安装固定电容的方式进行补偿。由于抽油机的运行特性,如果全补偿就存在过励磁问题,使得完全在低压进行就地补偿不可行;另外,由于油田生产的井下情况变化引起抽油机和变压器频繁调动,输电网的潮流计算方法不适用配电网的计算。总之,在合适的位置加装适当容量的高压电容、配电网损计算、变压器调整以及电网改造方案就需要进行专门研究和计算。 一、配电网的精确数学模型 由于配电网结线复杂,变化性大,因此长期以来,在配电网的潮流分布和网损计算时,多采用经过简化的等值模型,如等值电阻模型、概率统计模型、等值阻抗模型等,根据资料的查询和总结:西安石油学院姜衍智教授的配电网精确数学模型,适合对油田配电网的负荷经常变动,新井投产、老井停抽等线路进行计算。 二、配网潮流分布计算 当建立了配电网数学模型(关联矩阵E)并输入了有关原始数据后,即可进行配电网的潮流计算。根据能源部颁发的《电力网电能损耗计算导则》,计算可做如下假设: 1、各负荷结点的负荷曲线与首端相同。 2、各负荷结点的功率因数与首端相同。 3、忽略沿线电压损失对功率损耗的影响。 在此基础上按下列公式进行计算,即可得出配电网的潮流计算结果。 三、配电线路的最佳无功补偿 一般抽油机开关箱内装有低压静态电容补偿器,但由于机械的特性,为防止自励磁,不能进行全补偿,这样为提高变电所出口功率因数,必然要在线路上安装一定容量的高压电容补偿,另外也要考虑安装维护工作量和补偿的经济性问题,油田配电网根据分支情况和线路长短装设3个点左右,出口功率因数达到0.95是合理的。配电网优化计算的过程如下: 1、统计线路上配电变压器下口负荷,包括有功负荷和无功负荷进行原始电网的潮流计算。 2、选择补偿位置。 3、确定需补偿的总容量。 4、根据网损等微增率准则确定具体各补偿点的容量。 5、再以总补偿容量为约束条件,即可求得各点的补偿容量。

变频器节能计算方法

变频调速节能量的计算方法 一、概述 据统计,全世界的用电量中约有60%是通过电动机来消耗的。由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行, 采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的 运行状态,这样可节省大量的电能。生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩、恒转矩和恒功率等几类机械 特性,本文仅对平方转矩、恒转矩负载的节能进行估算。所谓估算,即在 变频器投运前,对使用了变频器后的节能效果进行的计算预测。变频器一 旦投运后,用电工仪表测量系统的节能量更为准确。现假定,电动机系统 在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%风压裕度为10°%^ 10%~15%设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30的比较常见。生产中实际操作时,对于离心风机、泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器、液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。本文介绍用以下的公式来进行节能的估算。 二、节能的估算 1、风机、泵类平方转矩负载的变频调速节能风机、泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%采用电动机变频调速来调节流量,比用挡板、阀门之类来调节,可节电20%~50%如果平均按30%+算,节省的电量为全国总用电量的9%这将产生巨大的社会效益和经济效益。生产中,对风机、水泵常用阀门、挡板进行节流调节,增加 了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大。如果用变 频器对风机、泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可 用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即: 能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即:

相关文档